Способ извлечения никеля из окисленных никелевых руд



Способ извлечения никеля из окисленных никелевых руд
Способ извлечения никеля из окисленных никелевых руд
Способ извлечения никеля из окисленных никелевых руд
Способ извлечения никеля из окисленных никелевых руд

 


Владельцы патента RU 2618595:

Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) (RU)

Изобретение относится к области цветной металлургии и может быть использовано в геотехнологии для извлечения никеля из окисленных никелевых руд. Способ извлечения никеля из окисленных никелевых руд включает кучное выщелачивание никеля раствором серной кислоты. Выщелачивание проводят в три стадии: на первой стадии концентрация серной кислоты - 15 г/дм3, на второй и третьей - 10 и 5 г/дм3 соответственно. Техническим результатом является получение более чистых безжелезистых растворов и снижение расходов реагентов за счет выщелачивания низкоконцентрированными растворами серной кислоты. 4 табл., 3 пр.

 

Изобретение относится к области цветной металлургии и может быть использовано в геотехнологии для извлечения никеля из окисленных никелевых руд.

Известен способ выщелачивания никеля и кобальта из никель- и кобальсодержащих латеритных руд (патент РФ №2333972, МПК С22В 23/00, С22В 3/14, опубл. 20.09.2008), основанный на обжиге исходной руды в восстановительной атмосфере при Т 600-850°С для выделения никеля и кобальта в выщелачивающий раствор.

Недостатками данного способа являются значительный расход топлива на стадии восстановительного обжига, повышенное количество серы, содержащееся в топливе, которое приводит к потерям аммиака в виде тиосульфата или сульфата на стадии аммиачно-карбонатного выщелачивания, а также повышенные температуры выщелачивания (около 60°С).

Известен способ извлечения металлов из силикатных никелевых руд (патент РФ №2432409, МПК С22В 23/00, С22В 3/14, С22В 3/08, опубл. 27.10.2011), заключающийся в рудоподготовке силикатной никелевой руды дроблением, классификацией и сортировкой, выщелачивании из руды кремния культуральной средой силикатных бактерий и последующее извлечение никеля из кека.

Высокие концентрации H2SO4 (50-450 г/дм3) на выщелачивание никеля из кека, повышенное содержание железа в растворах выщелачивания (порядка 18,5 г/дм3), которое требует предварительного осаждения Fe перед переработкой растворов, являются основными недостатками данного способа.

Наиболее близким к заявленному является способ извлечения никеля из окисленных никелевых руд (патент РФ №2430172, МПК С22В 23/00, С22В 3/08, опубл. 27.09.2011), включающий кучное выщелачивание никеля раствором серной кислоты, нейтрализацию продуктивного раствора, сорбцию из него никеля на ионите, переработку десорбата с получением никеля, подачу раствора рафината на кучное выщелачивание руды при его обороте и циркуляции - прототип.

Недостатком данного способа являются повышенные концентрации H2SO4 (100 г/дм3). Это приводит к повышенному выщелачиванию железа и других примесей, в результате чего необходима предварительная нейтрализация перед дальнейшей переработкой растворов.

Техническим результатом данного изобретения является получение продукционных безжелезистых растворов и снижение расхода реагентов за счет выщелачивания малоконцентрированными растворами серной кислоты.

Технический результат достигается тем, что в способе извлечения никеля из окисленных никелевых руд путем кучного выщелачивания никеля раствором серной кислоты, где выщелачивание проводят постадийно в три этапа: на первом этапе поддерживают концентрацию раствора серной кислоты 15 г/дм3 и до 10% извлечения Ni из руды, на втором - поддерживают концентрацию раствора серной кислоты 10 г/дм3, а на третьем этапе выщелачивание проводят водным раствором серной кислоты с концентрацией 5 г/дм3.

Оксиды железа в верхних слоях выщелачиваются с образованием Fe2(SO4)3, который при дальнейшем вертикальном продвижении растворов (просачивании растворов через руду), при рН больше 2 гидролизуется с образованием H2SO4 и осадков гидратов и основных гидратов железа, которые остаются в толще руды по реакции:

Выделяющаяся H2SO4 затрачивается на выщелачивание только полезных компонентов руды, Ni, Со, Мn и Mg. Таким образом, во-первых, полезно используется H2SO4, подаваемая с растворами орошения, а во-вторых, за счет повышения рН до 3-3,5 в выходящих продукционных растворах отсутствует нежелательная примесь - сульфат железа.

Сущность изобретения заключается в использовании серной кислоты с более низкими концентрациями.

Проведение первоначального выщелачивания растворами с концентрацией H2SO4 15 г/дм3 в подаваемый раствор, а затем на второй и третьей стадиях выщелачивания растворами с более низкой концентрацией H2SO4 (10 и 5 г/дм3, соответственно) позволяет повысить скорость нейтрализации кислотоемких составляющих элементов пустой породы (до 10% извлечения Ni), снизить расход кислоты и получить чистые безжелезистые растворы за счет снижения затрат на выщелачивание никеля и избавиться от нежелательных примесей сульфата Fe3+.

В случае выщелачивания избыточным количеством H2SO4 с концентрацией 15 г/дм при рН меньше 1,5-2 получают продукционные растворы, содержащие ионы железа. Эти растворы подаются вновь на орошение без добавления серной кислоты. Таким образом, сущность изобретения заключается в выщелачивании растворами концентрации 5-15 г/дм3, при которой в выходящих продукционных растворах водородный показатель (рН) не превышает 3-3,5.

Заявленный способ выщелачивания прошел испытания в лабораторных условиях.

Пример 1

Выщелачивание проводили в перколяторе объемом 3800 см3. Плотность орошения - 300 дм3/т руды. Масса руды в перколяторе 3,68 кг. Время выщелачивания 450 суток. Химический, минералогический и фракционный состав руды приведен в таблицах 1, 2 и 3.

Руду обрабатывали растворами серной кислоты концентрацией 15 г/дм3, для нейтрализации свободных оснований с получением кислых продукционных растворов, содержащих Ni и Со. Получаемые слабокислые растворы доукрепляли 6-8 раз серной кислотой до первоначальной концентрации (15 г/дм3) и вновь направляли на выщелачивание. В результате выщелачивания были получены при рН равной 1,2 высокожелезисто-магнезиальные продукционные растворы с содержанием, г/л: 9,97 Fe, 0,93 Ni, 0,037 Со, 8 Mg и 1,26 Мn.

Полученные растворы без предварительной очистки от примесей Fe и других металлов непригодны для переработки как экстракционными, так сорбционными и гидролитическими методами.

Пример 2

Выщелачиванию подвергалась руда того же состава, что и в предыдущем примере. Отличительной особенностью данного опыта было то, что плотность орошения была снижена с 300 г/дм3 до 70 г/дм3 с целью получения более концентрированных по никелю и кобальту растворов. Время выщелачивания 350 суток.

На начальной стадии руду выщелачивали до 10%-ного извлечения никеля (после каждого этапа отбирали пробу на химический анализ). При выщелачивании руды на данном этапе подавали растворы H2SO4 с концентрацией 15 г/дм3 и вновь направляли на выщелачивание 6-7 раз продукционные растворы без доукрепления серной кислотой с целью повышения содержания никеля и снижения концентрации железа. В результате при рН, равной 1,5, были получены растворы с меньшим содержанием железа и большей концентрацией по никелю, г/л: 7,31 Fe, 2,27 Ni, 0,098 Со, 16,24 Mg, 2,14 Mn.

При дальнейшем выщелачивании (проводили в 3-4 этапа до 40-50%-го извлечения, после каждой стадии отбирали пробу на химический анализ) концентрацию H2SO4 снизили до 10 г/дм3, с получением при рН равной 2 растворов, содержащих, г/дм3: 2,4 Ni, 1,93 Fe, 0,127 Со, 21,23 Mg, 3,14 Mn.

Данные растворы предполагается подавать на порцию свежей руды с целью удаления железа и увеличения концентрации никеля в растворе.

Пример 3

Выщелачивание проводили при тех же условиях, что и в предыдущем примере. Выщелачивание вели в три стадии. На первой стадии руду выщелачивали до 10%-ного извлечения Ni, после каждого этапа отбирали пробу руды на химический анализ. При выщелачивании подавали растворы серной кислоты (15 г/дм3) и полученные растворы вновь подавали на выщелачивание без доукрепления. На второй стадии выщелачивание проводили до 40%-ного извлечения Ni растворами с концентрацией серной кислоты 10 г/дм3, а третью стадию проводили до 80%-ного извлечения Ni при пониженной концентрации серной кислоты 5 г/дм3 (рН~1-1,5).

На третьей стадии выщелачивания при концентрации H2SO4 в подаваемых растворах 5 г/дм3 концентрация железа в продукционных растворах снизилась до 0,01-0,03 г/дм3 и были получены безжелезистые растворы, г/дм3: 2,5 Ni; 0,09 Со; 0,02 Fe; 11,8 Mg; 2,43 Mn; 4,17 Al.

Извлечение никеля и кобальта из руды в раствор составило 80 и 100% соответственно, а расход кислоты составил 151,83 кг/т руды.

Как видно из таблицы, заявленный нами способ извлечения никеля из окисленных никелевых руд по сравнению с прототипом (патент РФ №2430172, МПК С22В 23/00, С22В 3/08, опубл. 27.09.2011) позволяет примерно в два раза снизить расход кислоты на выщелачивание руды и получить практически безжелезистые растворы. Такие растворы без очистки их от примесей пригодны для дальнейшей переработки экстракционными, сорбционными, гидролитическими и другими способами.

Способ извлечения никеля из окисленных никелевых руд путем кучного выщелачивания никеля водным раствором серной кислоты, отличающийся тем, что выщелачивание проводят постадийно в три этапа, причем на первом этапе поддерживают концентрацию водного раствора серной кислоты 15 г/дм3 и выщелачивание ведут до 10% извлечения Ni из руды, на втором - концентрацию водного раствора серной кислоты поддерживают 10 г/дм3, а на третьем этапе выщелачивание проводят водным раствором серной кислоты с концентрацией 5 г/дм3.



 

Похожие патенты:

Изобретение относится к способу переработки марганецсодержащего сырья. В качестве исходного сырья используют ванадий-, магний-, марганецсодержащие кеки содового выщелачивания металлургических шлаков или марганцевых карбонатных руд.
Изобретение относится к области комплексной переработки апатита и других фосфатсодержащих руд с извлечением и получением концентрата редкоземельных металлов и радионуклидов и может быть использовано при переработке минерального сырья в химической промышленности.

Изобретение относится к способу переработки фосфогипса для получения экологически безопасной и полезной продукции. Способ включает кислотную обработку фосфогипса смешанным раствором, содержащим наряду с серной кислотой фосфорную кислоту, c получением твердой фазы и кислого раствора.

Изобретение относится к способу извлечения металлов из латеритовых руд. Способ включает сульфатирование латеритовой руды для получения сульфата железа(III) в сульфатированной массе и селективный пиролиз сульфата железа(III) для разложения сульфата железа(III) на триоксид серы и гематит.
Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений.

Изобретение относится к цветной металлургии, в частности к способу извлечения цветных и редких металлов из перерабатываемых производственных отходов, в частности к способу извлечения металлов из вельц-окислов.

Изобретение может быть использовано в обогащении меди и серебра для переработки сульфидно-окисленных медных руд. Перед подачей на кислотное выщелачивание при перемешивании коллективного концентрата, полученного из сульфидно-окисленной медной руды, осуществляют стадиальную коллективную флотацию с использованием добавки сульфида натрия.

Изобретение может быть использовано в химической промышленности. Способ обработки сульфата кальция, содержащего редкоземельные элементы, включает выщелачивание дигидрата сульфата кальция, содержащего редкоземельные элементы, серной кислотой для получения суспензии, состоящей из твердой фазы, содержащей указанный дигидрат сульфата кальция, и жидкой фазы, содержащей указанные редкоземельные элементы в растворе.

Изобретение относится к переработке фосфогипса. После водной обработки фосфогипс выщелачивают серной кислотой с переводом концентрата редкоземельных элементов (РЗЭ) и примесных компонентов в раствор.
Изобретение относится к гидрометаллургии урана. Способ извлечения урана из урансодержащей руды включает выщелачивание руды сернокислым выщелачивающим раствором с окислителем, содержащим надсерную кислоту.

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения Ni и Со в растворах, образующихся при выщелачивании Ni-Co сырья. Способ включает предварительное приготовление экстрагента в солевой Ni-Co и Ni формах.

Изобретение относится к способу извлечения металлов из латеритовых руд. Способ включает сульфатирование латеритовой руды для получения сульфата железа(III) в сульфатированной массе и селективный пиролиз сульфата железа(III) для разложения сульфата железа(III) на триоксид серы и гематит.

Изобретение относится к способу очистки никелевого электролита от примесей ионов Fe (III), Со (III) и Cu (II) экстракцией с селективным извлечением указанных ионов из электролита в органическую фазу.

Изобретение относится гидрометаллургии, а именно к очистке латеритно-никелевого выщелачивающего потока. В предложенном способе осуществляют регулирование рН раствора выщелачивания латерита, содержащего никель, до уровня, составляющего от 1,0 до 3,0, приведение в контакт раствора выщелачивания латерита, содержащего никель, с отрегулированным рН с ионообменной смолой, включающей бис-пиколиламиновую функциональную группу, для того чтобы селективно по сравнению с двухвалентным и трехвалентным железом адсорбировать никель и медь, и выделение никеля.

Изобретение относится к гидрометаллургическим способам переработки растворов, содержащих цветные металлы, осаждением гидратов цветных металлов с помощью магнийсодержащего осадителя.
Изобретение относится к способу переработки окисленных никелевых руд. Способ включает сульфатизирующий обжиг с использованием серной кислоты с получением сульфатного огарка.

Изобретение относится к металлургии цветных металлов. Способ переработки сульфидного никелевого сырья включает обжиг шихты, содержащей сульфидное никелевое сырье и хлорид натрия, при температуре 350-400°С с доступом кислорода в течение 1,5-2 ч и выщелачивание полученного огарка водой при температуре до 100°С.

Изобретение относится к металлургии. Способ химического обогащения полиметаллических марганецсодержащих руд включает дробление и размол руды, который ведут до крупности минус 0,125, автоклавное выщелачивание присутствующих в руде элементов путем смешивания ее с 18%-ным раствором хлористого железа в соотношении 1:9 с последующим нагревом до температуры 475-500 K в течение 3 часов.
Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения.

Изобретение относится извлечению металлического кобальта, рутения и алюминия из отработанного катализатора Co-Ru/Al2O3 для синтеза Фишера-Тропша. Катализатор подвергают воздействию прокаливанием и восстановительной обработке.

Изобретение относится к способу извлечения редкоземельных элементов из низкосортных руд, содержащих первый металл, выбранный из группы, содержащей по меньшей мере один металл из железа и алюминия, и второй металл, выбранный из группы, состоящей из по меньшей мере одного из редкоземельных элементов, таких как лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций, иттрий и скандий. Способ включает этапы: (i) контактирование руды с серной кислотой для получения сульфатов металлов первой группы, (ii) воздействие высоких температур для превращения первой группы сульфатов в фосфаты или другие устойчивые вещества, а второй группы - в сульфаты, (iii) добавление воды для охлаждения смеси и селективного растворения редкоземельных элементов и (iv) очистку раствора. Техническим результатом является снижение примесей в извлекаемом продукте. 11 з.п. ф-лы, 9 ил., 5 табл., 4 пр.
Наверх