Лазерный дальномер с комбинированным лазерным излучателем



Лазерный дальномер с комбинированным лазерным излучателем
Лазерный дальномер с комбинированным лазерным излучателем

 


Владельцы патента RU 2618787:

Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU)

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Лазерный дальномер с комбинированным лазерным излучателем содержащит приемное устройство и передающее устройство, включающее объектив с фокусным расстоянием Fo. Также дальномер содержит по крайней мере два лазерных излучателя, каждый из которых выполнен в виде полупроводникового лазерного диода, излучающая площадка которого смещена перпендикулярно оптической оси объектива на расстояние Y. Перед каждой излучающей площадкой установлена цилиндрическая линза с фокусным расстоянием f, фокус цилиндрической линзы смещен параллельно оптической оси объектива на расстояние z1 от излучающей площадки в сторону фокуса объектива так, чтобы изображение излучающей площадки совпало с фокальной плоскостью объектива, центр цилиндрической линзы смещен перпендикулярно оптической оси объектива и параллельно излучающей площадке на расстояние Y+δY в сторону от оптической оси объектива, причем номинальное значение δY определяется выражением

,

а цилиндрические линзы имеют возможность перемещения параллельно оси объектива на максимальное расстояние δz так, чтобы выполнялись условия

;

,

где ΔYmax и ΔХmax - допуски на величину поперечного ΔY и продольного ΔХ отклонений изображения излучающей площадки от фокуса объектива. Технический результат - обеспечение точного совмещения пучков излучения двух и более лазеров при компактности и простоте устройства. 2 ил.

 

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известен лазерный дальномер с комбинированным лазерным излучателем, содержащий передающее и приемное устройства [1]. Этот лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив и раздельно размещенные лазерные излучатели, выполненные в виде полупроводникового лазерного диода, перед излучающей площадкой которого установлена коллекторная линза. Благодаря объединению пучков излучения от нескольких лазеров возрастает энергия зондирующего излучения и дальность действия дальномера.

В этом устройстве лазерные излучатели разнесены между собой, что усложняет конструкцию лазерного дальномера, увеличивает его габариты и затрудняет сопряжение оптических осей лазерных излучателей. Кроме того, такое решение обеспечивает суммирование излучения только двух лазерных диодов, что может быть недостаточно.

Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер с комбинированным лазерным излучателем, описанный в [2]. Этот лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив и несколько лазерных излучателей, каждый из которых выполнен в виде полупроводникового лазерного диода, перед излучающей площадкой которого установлена цилиндрическая линза. Для объединения пучков излучения этих излучателей использован двулучепреломляющий элемент, усложняющий конструкцию дальномера. Кроме того, такой оптический сумматор объединяет только два лазерных пучка. Иногда этого недостаточно.

Задачей изобретения является обеспечение точного совмещения пучков излучения двух и более лазеров при компактности и простоте устройства.

С указанной целью в известном лазерном дальномере с комбинированным лазерным излучателем, содержащем приемное устройство и передающее устройство, включающее объектив с фокусным расстоянием Fo, по крайней мере два лазерных излучателя, каждый из которых выполнен в виде полупроводникового лазерного диода, излучающая площадка которого смещена перпендикулярно оптической оси объектива на расстояние Y, перед каждой излучающей площадкой установлена цилиндрическая линза с фокусным расстоянием f, фокус цилиндрической линзы смещен параллельно оптической оси объектива на расстояние z1 от излучающей площадки в сторону фокуса объектива так, чтобы изображение излучающей площадки совпало с фокальной плоскостью объектива, центр цилиндрической линзы смещен перпендикулярно оптической оси объектива и параллельно излучающей площадке на расстояние Y+δY в сторону от оптической оси объектива, причем номинальное значение δY определяется выражением

,

а цилиндрические линзы имеют возможность перемещения параллельно оси объектива на максимальное расстояние δz так, чтобы выполнялись условия

;

,

где ΔYmax и ΔXmax - допуски на величину поперечного ΔY и продольного ΔХ отклонений изображения излучающей площадки от фокуса объектива.

где ΔYmax и ΔХmax - допуски на величину поперечного ΔY и продольного ΔХ отклонений изображения излучающей площадки от фокуса объектива.

На фиг. 1 представлена схема лазерного дальномера. На фиг. 2 показано взаимное расположение элементов передающего устройства относительно оптической оси и фокуса Fo объектива 3.

Лазерный дальномер (фиг. 1) содержит передающее устройство и приемное устройство, состоящее из приемного объектива 1 и фотоприемника 2, расположенного в его фокусе. Передающее устройство состоит из объектива 3 и N сборок, включающих полупроводниковый лазер и цилиндрическую линзу, установленную перед его излучающей площадкой. На фиг. 1 показан вариант с N=2. Цилиндрические линзы 4, 5 и лазерные излучатели установлены так, чтобы изображения излучающих площадок 6, 7, создаваемые цилиндрическими линзами, совпадали с фокусом Fo объектива 3.

Устройство работает следующим образом.

При включении лазерных диодов излучающие площадки 6, 7 посылают лазерные импульсы в угол γ1. Это излучение собирается цилиндрическими линзами 4, 5 в угол γ2. Далее это излучение собирается объективом 3 в параллельный пучок, направляемый на цель. Отраженное целью излучение попадает на приемный объектив 1 и фокусируется им на чувствительную площадку фотоприемника 2 с задержкой τ=2R/c, где R - дальность до цели, а с - скорость света.

Для обеспечения параллельности лазерных пучков на выходе объектива 3 положение цилиндрических линз должно обеспечить совпадение создаваемых ими изображений соответствующих излучающих площадок в фокусе Fo объектива 3. В обозначениях фиг. 2 это означает равенство

В соответствии с формулой Ньютона [3]

Откуда

Пример.

f=70 мкм; z1=10 мкм; Y=50 мкм;

Тогда .

При неточном соблюдении этого условия вследствие технологических допусков на изготовление решетки излучателей и установку цилиндрических линз параллельность выходных пучков излучения нарушается. Для устранения этого фактора согласно настоящему изобретению предусмотрена подвижка δz=z1-z1* цилиндрических линз параллельно оптической оси объектива (фиг. 2).

При этом в обозначениях фиг. 2 справедливы следующие соотношения

ΔХ=(z1*+z2*)-(z1+z2)=(z1*-z1)+(z2*-z2)=(z2*-z2)-δz.

Далее

Из (4) и (5)

Пример

f=70 мкм; Y=50 мкм; z1=10 мкм; δz=2 мкм.

Тогда продольное смещение (5) фокуса системы (дефокусировка) ΔХ=120,5 мкм.

Поперечное смещение (6) фокуса системы (разъюстировка) ΔY=12,01 мкм.

При указанном значении ΔХ обеспечивается требуемая глубина резкости оптической системы, которая при таких исходных данных составляет 200-500 мкм, и при этом благодаря такому значению поперечного смещения фокуса ΔY обеспечивается возможность компенсации неточности поперечной установки излучающих площадок и цилиндрических линз - эквивалентная погрешность изготовления и сборки не превышает 5-10 мкм. Кроме того, данное техническое решение позволяет одной общей регулировкой компенсировать разность периодов излучающих площадок и микролинз при их групповом изготовлении в виде решеток.

В разработанном макете устройства излучатель представляет собой блок полупроводниковых лазерных диодов, каждый из которых выполнен в виде монолитной каскадной гетероструктуры с активными областями, образованными последовательно напыленными нанослоями соединений InGaAs и AlGaAs. Габариты излучающих площадок составляют 3×100 мкм, а расстояние между соседними площадками - 100 мкм. Это обеспечивает возможность объединения лазерных пучков от 2-4 площадок в апертуре одного объектива со световым диаметром 25-50 мм и фокусным расстоянием 100-150 мм.

Предлагаемое техническое решение позволяет объединить излучение нескольких лазеров благодаря использованию цилиндрических линз с коротким фокусным расстоянием f, соизмеримым с габаритами излучающей площадки лазера. При тесном расположении излучающих площадок, как в указанном выше конструктивном исполнении, данное техническое решение обеспечивает возможность объединения лазерных пучков от 2-х, 3-х, 4-х и более излучателей.

Возможность продольного перемещения цилиндрических линз обеспечивает на выходе дальномера параллельность лазерных пучков от всех излучателей при их дефокусировке в пределах заданного допуска.

Указанные преимущества обеспечивают решение поставленной задачи - точное совмещения пучков излучения двух и более лазеров при компактности и простоте устройства.

Источники информации

1. Патент США №6714285 от 30 марта 2004 г., Кл. США 356/4.01.

2. Лазерный дальномер. Патент РФ №2362120 по з-ке 2007145830 от 12.12.2007 г. - прототип.

3. И.Л. Сакин. Инженерная оптика. Л.: Машиностроение. 1976 г.

Лазерный дальномер с комбинированным лазерным излучателем, содержащий приемное устройство и передающее устройство, включающее объектив с фокусным расстоянием Fo, по крайней мере два лазерных излучателя, каждый из которых выполнен в виде полупроводникового лазерного диода, излучающая площадка которого смещена перпендикулярно оптической оси объектива на расстояние Y, перед каждой излучающей площадкой установлена цилиндрическая линза с фокусным расстоянием f, отличающийся тем, что фокус цилиндрической линзы смещен параллельно оптической оси объектива на расстояние z1 от излучающей площадки в сторону фокуса объектива так, чтобы изображение излучающей площадки совпало с фокальной плоскостью объектива, центр цилиндрической линзы смещен перпендикулярно оптической оси объектива и параллельно излучающей площадке на расстояние Y+δY в сторону от оптической оси объектива, причем номинальное значение δY определяется выражением

,

а цилиндрические линзы имеют возможность перемещения параллельно оси объектива на максимальное расстояние δz так, чтобы выполнялись условия

;

∆X=f2- z ∆Xmax

,

где ΔYmax и ΔXmax - допуски на величину поперечного ΔY и продольного ΔХ отклонений изображения излучающей площадки от фокуса объектива.



 

Похожие патенты:

Лазерный фазовый дальномер содержит передающую систему и приемную систему. Передающая система состоит из масштабного генератора, источника излучения в виде лазера, коллиматора лазерного излучения, поворотного зеркала и поворотной призмы.

Изобретение относится к ручному лазерному дальномеру. Дальномер содержит лазерный узел для определения отличающихся первого и второго расстояний в первом и втором относительных направлениях через короткий промежуток времени и устройство ввода для установки угла между первым и вторым относительными направлениями.

Способ определения расстояния при помощи камеры основан на том, что получают один видеокадр, получают калибровочные характеристики камеры, выделяют на кадре объект, до которого измеряют расстояние.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений.

Датчик для дальномера имеет чувствительный элемент и оптическое экранирующее устройство. Чувствительный элемент имеет первую детектирующую часть для детектирования измерительного излучения и вторую детектирующую часть для детектирования контрольного излучения.

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения.

Способ определения пространственного положения объектов обеспечивает облучение объекта через двумерную дифракционную решетку, что обеспечивает образование матрицы смежных оптических каналов.

Способ измерение расстояния до объектов, их угловых координат и взаимного расположения включает в себя облучение во множестве направлений, перекрывающих в совокупности поле обзора и образующих матрицу смежных оптических каналов, каждому оптическому каналу ставится в соответствие определенное угловое направление, а дальность до точки объекта вычисляется в оптических каналах поочередно в соответствии с заданной последовательностью.

Изобретение относится к области оптического приборостроения, а именно, к устройствам наблюдения объектов и прицеливания, а также к устройствам для наведения управляемых ракет на цель по лазерному лучу, и может быть использовано в системах управления огнем объектов бронетанковой техники.

Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с двулучепреломляющим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора, выполненного в виде двулучепреломляющей плоскопараллельной пластины. При этом лазерные излучатели расположены со стороны одной из ее граней так, чтобы их оптические оси были параллельны, а плоскости поляризации лазерного излучения взаимно перпендикулярны. Кроме того, двулучепреломляющая пластина закреплена с возможностью вращения вокруг оси, параллельной оптическим осям лазерных излучателей, на углы 0≤α≤αmax, где αmax - предельная величина угла вращения пластины, причем толщина двулучепреломляющей пластины удовлетворяет условиюh≥a/tgβ, гдеh - толщина пластины; a - максимально допустимое расстояние между оптическими осями лазерных излучателей;β - угол преломления необыкновенного луча,а предельная величина угла вращения двулучепреломляющей пластины удовлетворяет условию , где - коэффициент допустимого снижения мощности излучения;I0 - мощность излучения на выходе двулучепреломляющей пластины при α=0;I - минимально допустимая мощность излучения на выходе двулучепреломляющей пластины вдоль оси объектива. Технический результат - повышение дальности действия дальномера и снижение уровня отражений от посторонних объектов, близких к его оси. 4 ил.
Наверх