Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, и способ их получения



Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, и способ их получения

 


Владельцы патента RU 2618867:

федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" (RU)

Изобретение может быть использовано при производстве люминесцентных материалов для источников и преобразователей света. Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5, содержит смесь порошков оксида иттрия(III), оксида алюминия, оксида церия(III), оксида гадолиния(III), восстановителя - металлического алюминия и перхлората натрия в качестве окислителя при следующих соотношениях компонентов, мас. %: оксид иттрия(III) 0-53; оксид алюминия 17,18-24,85; оксид церия(III) 0,39-12,42; оксид гадолиния(III) 0-54,17; металлический алюминий 5,57-8,05; перхлорат натрия - остальное. Шихту перемешивают 20 мин. Затем осуществляют экзотермическое взаимодействие компонентов указанной шихты в режиме самораспространяющегося высокотемпературного синтеза в реакторе открытого типа при атмосферном давлении на воздухе. В процессе синтеза люминофора не используется сложное оборудование и инертная атмосфера, за счёт чего он упрощается. Расширяется диапазон светотехнических характеристик люминофоров. 2 н.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к области получения алюминатных люминофоров со структурой граната, в частности к получению иттрий-алюминиевого граната (ИАГ), активированного церием, и может быть использовано при производстве люминесцентных материалов для источников и преобразователей света.

Известен люминофор на основе иттрий-алюминиевого граната, активированного церием ((Y,Ce)3Al5O12), и способ его получения. Синтез люминофора проводится при прокаливании смеси оксидов иттрия, алюминия и церия в две стадии. На первой стадии нагревание проводится на воздухе при температуре 1250-1350°С в течение 2 часов. На второй стадии спекание проводится при температуре 1400-1600°С в восстановительной среде в течение 2 часов. Полученный гранат является соединением фиксированного стехиометрического состава с частичным замещением иттрия на церий (Y1-хСех)3Al5O12, где x=0.01-0,20 (US 3564322, МПК H01J 29/20, C09K 11/80, C09K 11/77, опубл. 16.02.1971).

Недостатками являются то, что проведение процесса синтеза получается энергозатратным, многостадийным и длительным, а также требуется использование сложного оборудования и восстановительной атмосферы при проведении спекания. В заявляемом изобретении используется простое оборудование (кварцевая лодочка), синтез люминофора проходит в воздушной атмосфере при атмосферном давлении, не используется внешний подвод тепла для синтеза люминофора, и время синтеза составляет около 10 минут.

Известны другие способы получения (Y,Ce)3Al5O12: золь-гель метод (А. Katelnikovas, P. Vitta, P. Pobedinskas, G. Tamulaitis, A. Zukauskas, J.-E. , A. Kareiva. «Photoluminescence in sol-gel-derived YAG: Ce phosphors», Journal of Crystal Growth (2007), vol. 304, p. 361-368), криохимический метод (CN 101497790, 2009), метод соосаждения из растворов (CN 1562880, 2005; CN 101973569, 2011; RU 2503754, 2012).

К недостаткам данного патента можно отнести применение дорогостоящего оборудования, многостадийность процессов, необходимость поддержания высокой температуры и использование сложного оборудования для поддержания восстановительной атмосферы при проведении спекания. В заявленном решении используется простое оборудование (кварцевая лодочка), синтез люминофора проходит в воздушной атмосфере при атмосферном давлении, не используется внешний подвод тепла для синтеза люминофора, и время синтеза составляет около 10 минут.

Наиболее близким техническим решением к заявляемому является способ получения (Y,Ce)3Al5O12, основанный на реакции самораспространяющегося высокотемпературного синтеза (СВС). В качестве исходных компонентов шихты взяты следующие соединения: Y2O3 - 16,8 г; Al2O3 - 12,9 г; CeO2 - 0,44-0,8 г; NH4F - 1,5 г; KClO3 - 15,3-18,4 г; восстановитель - 2,25-10,8 г. В качестве восстановителя используют следующие соединения: сажа, уголь, полиэтилен, уротропин, мочевина. Компоненты шихты перемешивают. Из реакционной смеси формируют гранулы с плотностью 1 г/см3, которые помещают в камеру сгорания с атмосферой аргона высокой чистоты при давлении 2 МПа (WO 2011/102566, МПК C09K 11/80, опубл. 25.08.2011).

К недостаткам относится использование камеры сгорания, поддерживающей повышенное давление, а также применение высокочистого аргона, что приводит к существенному удорожанию и усложнению процесса. В заявленном же решении отсутствует камера сгорания и нет необходимости в инертной атмосфере. В заявленном решении используется простое оборудование (кварцевая лодочка), синтез люминофора проходит в воздушной атмосфере при атмосферном давлении.

Технический результат заключается в упрощении процесса синтеза иттрий-алюминиевого граната, активированного церием, в режиме самораспространяющегося высокотемпературного синтеза, за счет отсутствия необходимости использования сложного оборудования и инертной атмосферы, а также в расширении диапазона светотехнических характеристик люминофоров со структурой граната за счет введения оксида гадолиния в шихту.

Сущность изобретения заключается в том, что шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5 в режиме самораспространяющегося высокотемпературного синтеза содержит смесь порошков оксида иттрия(III), оксида алюминия, оксида церия(III), оксида гадолиния(III), восстановителя, содержащего порошок металлического алюминия, и перхлората щелочного металла - порошок перхлората натрия в качестве окислителя, при следующих соотношениях компонентов, мас. %:

Оксид иттрия(III) 0-53
Оксид алюминия 17,18-24,85
Оксид церия(III) 0,39-12,42
Оксид гадолиния(III) 0-54,17
Металлический алюминий 5,57-8,05
Перхлорат натрия Остальное

Способ получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5, включает перемешивание шихты с дальнейшим экзотермическим взаимодействием ее компонентов в режиме самораспространяющегося высокотемпературного синтеза. Для получения люминофоров готовят шихту из порошков оксида иттрия(III), оксида алюминия, оксида церия(III), оксида гадолиния(III), восстановителя - металлического алюминия и окислителя - перхлората натрия. Перемешивание осуществляют в течение 20 минут, а процесс экзотермического взаимодействия проводят в реакторе открытого типа при атмосферном давлении на воздухе.

Оксид иттрия - компонент для создания матрицы люминофора, порошок белого цвета, марка S5.2, чистота 99,999%.

Оксид гадолиния - компонент для создания матрицы люминофора, порошок белого цвета, марка S6, чистота 99,9%.

Оксид церия - компонент активатор люминесценции, порошок желтого цвета, марка SCel, чистота 99,95%.

Оксид алюминия - компонент для создания матрицы люминофора, порошок белого цвета, изготовленный согласно ТУ 6-09-426-75, чистота марки - химически чистый.

Металлический алюминий - восстановитель, компонент, обеспечивающий экзотермический характер реакции синтеза, порошок серебряного цвета с металлическим блеском, марка ПАД - 1, СТО 22436138-006-2006, содержание алюминия 99,7%.

Перхлорат натрия - окислитель, источник кислорода для проведения экзотермической реакции синтеза, кристаллический порошок белого цвета, изготовленный согласно ТУ 6-09-3605-74, чистота марки - химически чистый.

Шихту для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, осуществляют следующим образом.

Пример 1. Готовят стехиометрическую смесь, рассчитанную на получение алюминатного люминофора со структурой граната, активированного церием, общей формулы Y2.9Ce0,1Al5O12. Для приготовления шихты в количестве 20 г используют следующие порошки: оксид иттрия(III) (Y2O3) - 10,227 г (51,13 мас. %); оксид церия(III) (Се2О3) - 0,513 г (2,57 мас. %); оксид алюминия (Al2O3) - 4,935 г (24,68 мас. %); алюминий - 1,6 г (8,00 мас. %); перхлорат натрия (NaClO4) - 2,725 г (13,62 мас. %).

Осуществляют в течение 20 минут перемешивание порошков в планетарной мельнице, что обеспечивает гомогенизацию и предварительную механическую активацию исходных компонентов. Полученную гомогенизированную смесь помещают в кварцевый реактор. Процесс СВС инициируют «затравкой» вспомогательного состава (смесь BaO2-Al в соотношении 3:1, соответственно). После прохождения в объеме шихты устойчивого фронта волны твердофазного горения, сопровождающегося экзотермическими химическими реакциями, образуется спеченный пористый продукт желтого цвета. Полученный продукт естественным образом охлаждают на воздухе. Общее время синтеза с остыванием составляет ~ 10 мин. Полученный спек размалывают до состояния мелкодисперсного порошка и обрабатывают 5%-ным раствором HCl. Затем продукт выделяют декантацией, промывают дистиллированной водой до нейтральной среды промывных вод и высушивают при 80°С. Потом проводят размол люминофора с последующим просеиванием его через сито для выделения фракции с гранулами нужного размера. Выход люминофора составляет более 60%. Рентгенофазовый анализ полученного продукта показал наличие алюмината, отвечающего структуре иттрий-алюминиевого граната.

Пример 2. Готовят стехиометрическую смесь, рассчитанную на получение алюминатных люминофоров со структурой граната, активированного ионами церия, формулой Y1,375Gd1,375Ce0,25Al5O12. Для приготовления шихты в количестве 20 г используют следующие порошки: оксид иттрия(III) (Y2O3) - 3,96 г (19,80 мас. %); оксид гадолиния(III) (Gd2O3) - 6,357 г (31,78 мас. %); оксид церия(III) (Се2О3) - 1,047 г (5,24 мас. %); оксид алюминия (Al2O3) - 4,03 г (20,15 мас. %); алюминий - 1,308 г (6,54 мас. %); перхлорат натрия (NaClO4) - 3,298 г (16,49 мас. %).

Далее процесс смешивания всех компонентов, их взаимодействие и обработку осуществляют аналогично примеру 1.

Рентгенофазовый анализ полученного продукта показал наличие алюмината, отвечающего структуре иттрий-гадолиний-алюминиевого граната.

Дополнительные примеры получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, приведены в табл. 1.

Исследование спектральных характеристик полученных люминофоров подтверждает их принадлежность к люминофорам желто-оранжевого свечения. Для всех образцов максимум излучения люминесценции находится в интервале 560-580 нм.

По сравнению с известным решением предлагаемое позволяет упростить и удешевить процесс синтеза люминофоров желтого свечения в режиме СВС за счет сокращения времени синтеза, исключения энергетической составляющей процесса и необходимости использования сложного оборудования, а также расширить диапазон светотехнических характеристик люминофоров со структурой граната за счет введения в шихту оксида гадолиния.

1. Шихта для получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, в режиме самораспространяющегося высокотемпературного синтеза, содержащая смесь порошков оксида иттрия(III), оксида алюминия, оксида церия(III), восстановителя и перхлората щелочного металла в качестве окислителя, отличающаяся тем, что для получения люминофоров общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5, в качестве восстановителя она содержит порошок металлического алюминия, в качестве перхлората щелочного металла - порошок перхлората натрия, и дополнительно - порошок оксида гадолиния(III), при следующих соотношениях компонентов, мас.%:

Оксид иттрия(III) 0-53
Оксид алюминия 17,18-24,85
Оксид церия(III) 0,39-12,42
Оксид гадолиния(III) 0-54,17
Металлический алюминий 5,57-8,05
Перхлорат натрия остальное.

2. Способ получения алюминатных люминофоров с кристаллической структурой граната, активированных церием, включающий перемешивание шихты с дальнейшим экзотермическим взаимодействием ее компонентов в режиме самораспространяющегося высокотемпературного синтеза, отличающийся тем, что для получения люминофоров общей формулы Y3-x-yGdxCeyAl5O12, где 0≤x≤2,75 и 0,015≤y≤0,5, готовят шихту из порошков оксида иттрия(III), оксида алюминия, оксида церия(III), оксида гадолиния(III), восстановителя - металлического алюминия и окислителя - перхлората натрия, перемешивание осуществляют в течение 20 минут, а процесс экзотермического взаимодействия проводят в реакторе открытого типа при атмосферном давлении на воздухе.



 

Похожие патенты:

Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике, в том числе для изготовления светодиодных источников освещения.

Изобретение предназначено для светотехники и может быть использовано в светодиодах белого свечения, лампах дневного света, светильниках, автомобильных фарах и дизайне освещения.

Изобретение относится к области светотехники и может быть использовано при изготовлении светодиодов и систем преобразования света. Нитридный люминофор с красным свечением, возбуждаемый излучением в диапазоне длин волн 200-570 нм, имеет общую формулу Lis(M(1-x)Eux)1MgmAlnSipNq, где M=Sr, Ca, Ba, взятые отдельно или их смесь, 0,045≤s≤0,60; 0,005≤х≤0,12; 0≤m≤0,12; 0≤n≤1,0; 1,0≤р≤2,40; 3,015≤q≤4,20; причём для всех композиций 2,0≤р+n≤2,40 и q≠4.

Изобретение может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений, в частности нейтронов. Сцинтилляционное стекло получают из композиции SiO2, Li2CO3, MgO, Al2O3, AlF3, CeO2, а для подавления окисления ионов церия в стекло вводят добавку металлического кремния (Si) в количестве 0,001-10 мас.%.

Изобретение относится к получению алюминатных люминофоров, активированных ионами редкоземельных металлов, и может быть использовано при производстве материалов для источников и преобразователей света.

Изобретение относится к светотехнике, в частности к полимерным люминесцентным композициям, применяемым для изготовления устройств общего и местного освещения. Полимерная композиция, возбуждаемая синим светодиодом, содержит прозрачный поликарбонат с показателем текучести расплава 6-40 г/10 мин, фотолюминофор - иттрия-гадолиния алюмогаллиевый гранат, активированный церием, формулы (YGd)3(AlGa)5O12:Ce, воск полиэтиленовый в виде порошка с размером частиц 18-30 мкм, термостабилизатор - Ultranox 626 и Tinuvin 360.

Изобретение относится к химической промышленности и может быть использовано в светодиодах белого свечения. Люминофор имеет общую стехиометрическую формулу ( Y 0,65 ± x   G d 0,30 ± x   L u 0,01   T b 0,01   C e 0,03 ) 3   ( A l 19   y B 0,1 ) 2   ( A l O 3,96 C l 0,02 P 0,02 ) 3 0.05 ≤ x ≤ 0.15,   0.02 ≤ y ≤ 0.04 с квантовым выходом Q>0,9, кубическую структуру граната с пространственной группой Ia3d со спектральными параметрами: λв = 460+_3 нм; λиз = 570+_3 нм, где λиз - длина волны возбуждения люминофора; λиз - длина волны излучения люминофора.

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров для покрытий флуоресцентных ламп. Гамма оксид алюминия, полученный из квасцов, в количестве 85%-95% по массе смешивают с 0,4%-1,8% по массе спекающего агента - NH4F и 2,5%-13% по массе зародышей альфа оксида алюминия.
Изобретение относится к «светящимся» картону или бумаге и может быть использовано для декоративно-прикладных работ, в художественном и детском творчестве, в полиграфии и рекламе при изготовлении фотографий, рисунков, визиток.

Изобретение относится к светотехнике и может быть использовано в синеизлучающих светодиодах твердотельных источников белого света. Люминесцирующий материал на основе алюмината иттрия, включающего оксид церия, соответствует общей формуле (Y1-xCex)3±αAl5O12+1,5α, где х - атомная доля церия, равная 0,01-0,20; 0<α≤0,5 или 0>α≥1,5.

Изобретение относится к химической промышленности и может быть использовано при получении люминофоров. Шихта для получения люминесцентного материала содержит, мас.%: YF3 26,0-29,0; Y2O3 20,0-22,0; V2O5 41,0-43,5; Nd2O3 1,0-1,5; MgWO4 5,5-6,7; SeO3 1,0-1,5; PF5 0,5-0,8.
Изобретение относится к химической промышленности и может быть использовано при изготовлении люминесцентных покрытий для ламп низкого давления. Сначала смешивают органические экстракты лантана, церия и тербия из азотнокислых растворов в мольном соотношении 0,8:0,15:0,05, соответственно, и в объемном соотношении 7:1:0,8, соответственно.

Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике, в том числе для изготовления светодиодных источников освещения.

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в фундаментальной физике, технике и медицине.

Изобретение относится к химической промышленности. Шихта для получения люминесцентного материала содержит следующие компоненты, мас.%: YF3 26,0-29,0; Y2O3 26,0-28,5; V2O5 20,0-30,0; Gd2O3 15,0-25,5.

Изобретение относится к химической промышленности и может быть использовано при изготовлении изделий для регистрации модулированного излучения полиспектрального состава.

Изобретение относится к материалам квантовой электроники и оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, люминесцентных лампах, в частности, светоизлучающих диодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах.

Изобретение может быть использовано при изготовлении светоизлучающих приборов, испускающих ультрафиолетовое излучение. Люминесцентный материал имеет химическую формулу (Y1-xLux)9LiSi6O26:Ln, где Ln - трехвалентный редкоземельный металл, выбранный из Pr, Nd или их смеси; 0,0≤x≤1,0.

Изобретение предназначено для светотехники и может быть использовано в светодиодах белого свечения, лампах дневного света, светильниках, автомобильных фарах и дизайне освещения.

Изобретение предназначено для осветительной техники и медицины. Преобразующий длину волны материал включает соединение формулы (Y1-w-x-y-zScwLaxGdyLuz)2-a(SO4)3:Mea, где Me - трехвалентный катион или смесь трехвалентных катионов, способных испускать УФ-C излучение, например, Pr3+, Nd3+ и Bi3+; каждый из w, x, y и z находится в диапазоне от 0,0 до 1,0; w+x+y+z≤1,0; 0,0005≤a≤0,2.

Изобретение относится к области технической светотехники и может быть использовано при изготовлении осветительных приборов. Фотолюминофор нейтрально-белого свечения со структурой граната на основе оксидов редкоземельных элементов и элементов IIIa подгруппы имеет следующую химическую формулу: (ΣLn,Bi)3[(ΣMl)2][AlO4-x(F,N)x]3, где Ln - лантаноиды Y, Се, Lu, Tb; Ml - В, Al, Ga; [х]≤0,2 атомных долей. Фотолюминофор имеет кристаллографическую структуру граната с принадлежностью к пространственной группе 1a3d, параметром кубической кристаллической решетки «а» более 12 ангстрем , возрастающим при увеличении концентрации Се3+. Светодиод нейтрально-белого свечения включает нитридную гетероструктуру GaInN 1 и находящийся в контакте с ней гетерофазный равнотолщинный переизлучающий конвертер 4, выполненный из радиационно стойкого поликарбоната в качестве дисперсионной среды и 12-26% вышеуказанного фотолюминофора в качестве дисперсной фазы. Толщина конвертера 4 составляет 60-120 мкм. Светодиод также включает конический керамический светосборник 6 с коэффициентом отражения внутренней поверхности более 96% и полусферическую крышку 7 из оптически прозрачного полимера, радиус кривизны которой выбран таким, что точка фокуса находится в геометрическом центре переизлучающего конвертера 4. Фотолюминофор нейтрально-белого свечения обладает повышенной термоустойчивостью, а светодиод – светоотдачей более 170 лм/Вт. 2 н. и 4 з.п. ф-лы, 10 ил., 1 табл.
Наверх