Способ оценки защитной концентрации летучих ингибиторов коррозии в фазовой пленке влаги, формирующейся на поверхности металла

Изобретение относится к электрохимическому способу оценки защитной концентрации летучих ингибиторов коррозии (ЛИК), которые абсорбируются в фазовой пленке влаги, формирующейся на поверхности металла. Способ включает в себя следующие этапы: определение весовым методом момента времени, к которому скорость коррозии на металлических образцах достигает постоянного значения, а концентрация летучего ингибитора становится достаточной для их противокоррозионной защиты (защитной); получение на дистиллированной воде, абсорбировавшей за этот момент времени летучий ингибитор в замкнутом объеме, раствора электролита; сопоставление поляризационных кривых этого электролита с поляризационными кривыми того же электролита с введенными в него заданными концентрациями летучего ингибитора. Техническим результатом является экспресс-оценка защитной концентрации ЛИК любой природы в фазовой пленке влаги на металле. 3 ил.

 

Изобретение относится к электрохимическому способу для оценки защитной концентрации летучих ингибиторов коррозии в фазовой пленке влаги, формирующейся на поверхности металла.

В условиях атмосферной коррозии на поверхности корродирующего металла формируется фазовая пленка влаги, в которой абсорбируются присутствующие в воздухе агрессивные микропримеси (H2S, SO2, НСl и др.) (Михайловский Ю.Н., Агафонов В.В., Санько В.А. Физико-математическое моделирование коррозии стали в атмосферных условиях // Защита металлов. 1977. Т. 13. №5. С. 515-522; Панченко Ю.М., Ковтанюк В.В., Николаева Л.А. Долгосрочное прогнозирование коррозионных массопотерь пластин и проволочных спиралей технически важных металлов в различных регионах мира. Ч.1. Связь параметра, характеризующего защитные свойства продуктов с агрессивностью атмосферы. // Коррозия: материалы, защита. 2013. №7. С. 1-7). Именно эта фазовая пленка определяет коррозионные потери и разрушение металла в атмосферных условиях (Михайлов Α.Α., Стрекалов П.В. Моделирование атмосферной коррозии металлов в виде функции «доза-ответ» // Коррозия: материалы, защита. 2006. №3. С. 2-13) Летучие ингибиторы коррозии металлов, абсорбируясь в такой поверхностной фазовой пленке влаги, предотвращают этот процесс.

Однако до сих пор отсутствуют методы оценки защитной концентрации летучих ингибиторов коррозии (ЛИК), адсорбирующихся в таких пленках. Подобные публикации отсутствуют как в отечественной, так и в зарубежной литературе (Landolfo R., Cascini L, Portion F. Modeling of Metal Structure Corrosion Damage. A. State of the Art Report // Sustain ability. 2010. №2. P. 2163-2175). Нет и подобных нормативных документов (EN/ISO / 9223. Corrosion of metal sand alloys: corrosivity of atmospheres: Classification; European Committee for Standardication (CEN); Brussels. Belgium. 1992; EN ISO /9226/ corrosion of atmospheres: Determination of corrosion rate of standart specimen for the evolution of corrosivity; European committee for standardization (CEN): Brussels. Belgium. 1992).

Подобная ситуация приводит к тому, что пользователи ЛИК просто вводят их больше массы в закрытые атмосферы, предполагая, что заведомо избыток ингибиторов позволит достичь их максимально защитной концентрации в атмосфере и фазовой поверхностной пленке влаги. Кроме того, отсутствует прямой метод определения промежутка времени от начала ввода ЛИК, за который достигается эта защитная концентрация. С этой целью используются косвенные весовые оценки скорости коррозии, длительные и весьма затратные.

Цель изобретения - экспресс-оценка защитной концентрации ЛИК любой природы в фазовой пленке влаги на металле.

Нами предлагается прямой электрохимический способ подобной оценки защитной концентрации ЛИК в фазовой пленке влаги на поверхности корродирующего металла и времени ее достижения после введения ингибиторов в замкнутую атмосферу. Способ можно использовать независимо от природы ЛИК и корродирующего металла. С некоторыми ограничениями его можно применять и при отличной от 100%-ной влажности воздуха, о чем подробнее указано в описании способа.

В герметичные емкости, в качестве которых можно использовать эксикаторы, на подставках из не набухающего материала с использованием капроновых нитей, подвешивают испытуемые образцы из исследуемого металла (сталь, медь, латунь и т.д.) в количестве 6 штук или более. Одновременно на дно эксикаторов ставят две емкости. В одну из них наливают дистиллированную воду, позволяющую создать в объеме паровой фазы 100%-ную относительную влажность. Эта емкость должна легко вмещать 200-300 см3 жидкости. Если проводят испытания при любой другой заданной относительной влажности (Н), то вместо дистиллированной воды в емкость наливают раствор, создающий заданную величину Η (Краткий справочник химика (составитель В.И. Перельман, под общей редакцией Б.В. Некрасова, М.: ГНТИ химической литературы. 1956. 56 с.). Например, насыщенный раствор NaCl позволяет получить относительную влажность, равную 75% в интервале температур 10-30°С; насыщенный раствор NH4Cl - (79±1)% в интервале температур 20-30°С, насыщенный раствор Na2CO3⋅10Н2О - (89±2)% в том же температурном интервале. Во вторую емкость помещают 25-50 г летучего ингибитора. Целесообразно использовать несколько эксикаторов, например четыре. Их необходимое количество станет ясно из последующего изложения.

Помимо этого проводят холостой опыт. С этой целью в пятый эксикатор подвешивают 24 образца из того же металла (либо используют 2 эксикатора по 12 образцов) и помещают емкость с дистиллированной водой или солевой раствор, если изучение эффективности ЛИК проводят при величине Η<100%. Емкость с ингибитором в этот эксикатор не помещают, то есть в нем образцы металла выступают в роли образцов-свидетелей.

В первом эксикаторе коррозионное воздействие среды продолжают 7 суток, во втором - 14 суток, в третьем 21 сутки и в четвертом - 28 суток. После этого из первого эксикатора извлекают образцы металла (желательно не менее 6 штук) для проведения статистической обработки посредством метода малых выборок (Физико-химические методы анализа (практическое руководство). Под редакцией В.Б. Алексовского и К.Б. Яцимирского. Л.: Химия. 1971. 424 с.) и определяют его скорость коррозии по известной формуле: (Цыганкова Л.Е., Вигдорович В.И., Поздняков А.П. Введение в теорию коррозии металлов. Тамбов: Издательство ТГУ им. Г.Р. Державина. 2002. 311 с.):

Ki=(m0, i-mi)/S⋅τ,

где m0, i - и mi - исходная и после коррозии и снятия продуктов окисления масса i-гo образца, S - его площадь и τ - продолжительность коррозионных испытаний. Величины К обычно приводят в г/(м2⋅ч). Затем находят среднюю с учетом всех образцов(i в формуле в нижнем индексе - номер образца).

Из этого же эксикатора извлекают емкость с водным раствором, который образуется в результате абсорбции ингибитора в исходной дистиллированной воде.

В этот раствор добавляют твердый хлорид натрия (квалификация не ниже ч.д.а.) в количестве, необходимом для получения 0,1 Μ концентрации, и в нем снимают поляризационные кривые потенциодинамическим методом со скоростью развертки потенциала порядка 0,66-1,00 мВ/с. Дополнительно готовят серию стандартных 0,1 Μ растворов NaCl, содержащих 5, 20, 50, 150, 500 мг/л исследуемого ингибитора, и также снимают поляризационные кривые при той же скорости развертки потенциала. Их наносят на единый график в полулогарифмических координатах Е, lgi, где Е и i - соответственно, потенциал электрода и плотность поляризующего тока, А/м2.

При этом возможны следующие варианты:

1. Ингибитор замедляет катодную и анодную реакции. Тогда катодные ветки поляризационных кривых в его присутствии смещаются в область отрицательных, а анодные - положительных потенциалов. Соответственно, снижается и скорость коррозии. Подобный случай показан на фиг. 1. Совпадение кривых 4 и 6 (4' и 6'), фиг. 1 указывает, что концентрация ЛИК в растворе, полученном адсорбцией ингибитора, равна или близка к 50 мг/л.

2. Ингибитор ускоряет катодную реакцию на корродирующем металле и замедляет анодную. В этом случае с ростом концентрации ингибитора катодная и анодная ветви поляризационной кривой сдвигаются в область положительных потенциалов. Но протекание коррозии лимитируется кинетикой анодной реакции, так как снижается скорость коррозии металла. Этот случай показан на фиг. 2. Из фиг. 2 следует совпадение поляризационных кривых под номерами 4' и 6', следовательно, концентрация ингибитора в растворе, образованном в результате его абсорбции, вновь равна или близка к 50 мг/л.

Возможен и третий случай, наблюдающийся правда сравнительно редко, когда ингибитор замедляет катодную реакцию и ускоряет анодную. Тогда катодная и анодная ветви поляризационных кривых смещаются в область более отрицательных потенциалов. Подход к оценке концентрации адсорбированного ингибитора в этом случае не меняется. Поэтому этот вариант специально не интерпретирован, как не несущий дополнительной информации.

Конечно, определить концентрацию абсорбированного ингибитора можно и посредством химического анализа раствора. Но это, как правило, возможно, если ингибитор представляет собой индивидуальное соединение, что бывает достаточно редко. В подавляющем большинстве случаев ЛИК представляют собой синергетические смеси. Предлагаемый нами способ является универсальным. На него не накладываются, как ранее отмечалось, ограничения, обуславливаемые природой и составом изучаемых ЛИК и природой металлической фазы.

Если же химический анализ может быть использован при оценке концентрации ЛИК, то это целесообразно делать в том случае, когда для создания необходимой относительной влажности используются солевые растворы.

Процедуры, связанные с использованием образцов металла и раствора, взятые из первого эксикатора, не позволяют решить, является ли найденная концентрация ЛИК текущей или равновесной, и тем более понять, являются создаваемые ею условия защиты максимально достижимыми. Для этого и используются результаты, которые можно оценить с использованием данных, получаемых после обработки образцов и растворов, находящихся в трех оставшихся эксикаторах.

С этой целью через указанные выше промежутки времени извлекаются образцы из остальных эксикаторов и рассчитывают скорости коррозии за соответствующие промежутки времени (14, 21 и 28 суток). Выясняют, к какому моменту времени скорость коррозии достигает постоянного значения либо ее снижение становится незначительным (величина ΔΖ составляет 1% и менее).

Из этих эксикаторов извлекают также растворы, полученные абсорбцией летучего ингибитора дистиллированной водой, и вводят в них твердый хлористый натрий для получения 0,1 Μ растворов.

В растворах, абсорбирующих ингибитор, соответствующий каждому эксикатору (продолжительности коррозии), определяют его концентрацию. С этой целью вновь строят графики типа показанных на фиг. 1 или 2 и определяют Синг, обусловливающего максимальную величину Ζ. Если концентрация ЛИК в стандартных (модельных) растворах оказывается недостаточной, то готовят дополнительные среды с большей Синг вплоть до равновесной величины. Последняя достигается, в частности, в том случае, когда после введения ингибитора и его растворения образуется осадок, либо для этого используются иные широко известные методы.

Концентрация ингибитора, позволяющая получить максимальную величину защитного действия, остается той же и в фазовой поверхностной пленке (ФПП) влаги, так как свойства воды в объеме жидкой фазе и в ФФП одинаковы (Стрекалов В.П. Атмосферная коррозия металлов под полимолекулярными адсорбционными слоями влаги. Обзор. // Защита металлов. 1998. Т. 34. №6. С. 565-584). Наличие хлорид-ионов может только несколько повысить эту предельную величину (Синг, пред), позволяющую достичь максимального значения Ζ, создавая, тем самым, определенный коэффициент запаса для коррозии в реальных условиях.

Таким образом, предлагаемый способ позволяет оценить и расходные коэффициенты ЛИК с учетом давления их насыщенного пара, защищаемой поверхности металла и толщин фазовых пленок влаги.

Оценим защитную концентрацию ингибитора ИФХАН-118, созданного на основе соли ароматического амина, при коррозии углеродистой стали Ст3 в условиях 100%-ной относительной влажности.

Согласно данным весовых испытаний в закрытой атмосфере (эксикатор) при 100%-ной влажности наблюдается следующая зависимость защитного действия от времени.

Таким образом, за 4 недели в растворе достигается защитная концентрация ингибитора ИФХАН-118.

Данные потенциодинамических поляризационных измерений в растворе после 4 недель адсорбции ингибитора в модельных средах (0,1 Μ NaCl) со скоростью развертки 0,66 мВ/с приведены на фиг. 3.

Анализ относительного расположения катодных и анодных ветвей потенциодинамических поляризационных кривых показывает, что ингибитор ИФХАН-118 замедляет анодную реакцию и ускоряет катодную (фиг. 3). Следовательно, кинетика анодного процесса лимитирует скорость коррозии. В присутствии 50 мг/л ИФХАН-118 анодная реакция тормозится слабее, чем в растворе, адсорбировавшем ингибитор (фиг. 3, кривые 2 и 4). В присутствии 150 мг/л ИФХАН-118 поляризационные ветви кривых 2 и 5 фиг. 3 полностью совпадают. В присутствии 500 мг/л ингибитора наблюдается снижение торможения анодной реакции (кривые 2 и 6 фиг. 3). Таким образом, в фазовой поверхностной пленке влаги максимальным защитным действием обладает летучий ингибитор ИФХАН-118 в концентрации 150 мг/л.

Но это не значит, что данная концентрация этого летучего ингибитора позволяет достичь максимального защитного эффекта и на других металлических конструкционных материалах. Предложенный способ показал, что, например, при коррозии латуни Л62 (сплав с α+β фазами сплавов, содержащий, масс. %: Zn-22,5; Mn-2,9; Fe-2,8, Αl - 4,1 и Cu-67,7) в тех же условиях максимальная защита (85±0,5%) достигается в присутствии 5 мг/л ИФХАН-118. Повышение этой концентрации в пленке не увеличивает значение защитной эффективности.

Способ оценки защитной концентрации летучих ингибиторов коррозии в фазовой пленке влаги, формирующейся на поверхности металла, заключающийся в сопоставлении поляризационных кривых, полученных на металле в электролите на основе дистиллированной воды, абсорбировавшей летучий ингибитор коррозии (ЛИК) в момент времени, когда скорость коррозии металла, находящегося с ней в едином замкнутом объеме, стала постоянной, с поляризационными кривыми того же электролита с введенными в него заданными концентрациями ЛИК.



 

Похожие патенты:

Изобретение относится к области металлургии, конкретнее к оценке стойкости против коррозионного растрескивания под напряжением (КРН) низколегированных сталей, предназначенных для строительства магистральных газо- и нефтепроводов.

Изобретение относится к области принятия решений о продлении срока службы летательных аппаратов после 25 лет эксплуатации. Способ заключается в прогнозировании степени коррозионного поражения с помощью метода нечеткого логического вывода на основе априорных данных о свойствах конструкционного материала конструкции, условиях эксплуатации летательного аппарата, режиме эксплуатации и сроке службы после последнего ремонта.
Изобретение относится к контролю режима работы систем протекторной защиты стальных корпусов кораблей и судов. Способ контроля режима работы систем протекторной защиты стальных корпусов кораблей и судов включает периодическое измерение потенциала корпуса в контрольных точках по длине корпуса с помощью переносного электроизмерительного прибора и переносного электрода сравнения.

Изобретение относится к коррозионным испытаниям, а именно к способам испытания высокопрочных сталей на склонность к коррозионному растрескиванию. Способ испытания трубных сталей на коррозионное растрескивание под напряжением (КРН) заключается в том, что сперва вырезают модельный образец прямоугольной формы, его очищают от загрязнения, обезжиривают и высушивают.
Изобретение относится к способам измерения эрозионной опасности дождя. По слоям почвенного образца размещают группы меченых почвенных частиц.

Настоящее изобретение относится к способу оценки каталитической трубки для риформинга природного газа. Способ оценки каталитической трубки установки для риформинга природного газа заключается в том, что проводится измерение температуры множества каталитических трубок (этап S1).

Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов. Способ нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций.

Предлагаемое изобретение относится к области исследования и контроля качества легких сплавов для авиационных и других тяжело нагруженных изделий. Испытания проводятся в специальном растворе на нагруженных до заданных растягивающих напряжений образцах.

Изобретение относится к методу неразрушающего магнитного контроля локальных зон повышенной коррозионной активности протяженных стальных металлоконструкций и их контактируемых элементов.

Изобретение относится к области защиты от коррозии и может быть использовано для автоматической коррекции величины защитного потенциала по длине трубопровода для его эффективной защиты. Система содержит ведущую и ведомые станции катодной защиты, корректируемые задатчики величины начального защитного потенциала, электроды сравнения, блоки сравнения потенциала удаленных точек, линию связи, силовые модули, датчики нагрузки силовых модулей, электроды сравнения, нормирующие усилители потенциала удаленных точек, нормирующие усилители потенциала ведомых станций катодной защиты, нормирующие усилители потенциала ведущей станции катодной защиты, нормирующие усилители датчиков нагрузки силовых модулей ведущей и ведомых станций катодной защиты. Техническим результатом изобретения является повышение эффективности защиты газопровода от коррозии посредством контроля значений защитного потенциала по длине газопровода и в удаленных точках для поддержания равномерного его распределения и управления величиной нагрузки ведущей и ведомых станций катодной защиты при работе на единый газопровод для компенсации воздействия внешних нестационарных электрических полей от различных источников. 1 ил.

Изобретение относится к области исследований устойчивости материалов к световому воздействию и касается способа оценки светостойкости текстильных материалов. Способ включает в себя использование эталонов, проб и источника света. В качестве источника излучения применяется аргоновая плазма с температурой плазменного факела 5000-9000 K, обеспечивающая излучение в ультрафиолетовой и видимой частях спектра. В качестве плазмообразующего газа применяется аргон, расход которого лежит в пределах 1,25-1,50 м3/час. Время облучения текстильного материала составляет 2-15 минут. Технический результат заключается в ускорении процесса оценки светостойкости. 5 табл.

Изобретение относится к оценке эксплуатационных свойств топлив, в частности к оценке коррозионной активности реактивных топлив. Сущность изобретения заключается в том, что топливо циркулирует в вертикально расположенном замкнутом контуре из нержавеющей стали, представляющем собой конструкцию из труб круглого сечения, пластинку из бронзы ВБ-23НЦ размещают в верхнем горизонтальном участке контура, циркуляцию топлива в контуре осуществляют в 3 этапа по 3 ч каждый, со сменой топлива после 1-го и 2-го этапов, перед началом первого этапа непосредственно за пластинкой по ходу потока устанавливают фильтрующий элемент. В качестве оценочных показателей используют потерю массы пластинки за время испытания, отнесенную к ее площади (K1), и показатель забивки фильтрующего элемента (К2) в 1-м этапе. Достигается повышение достоверности оценки коррозионной активности реактивных топлив за счет создания условий испытаний, приближенных к реальным условиям эксплуатации топливной системы двигателей при значительном сокращении времени испытания. 2 табл.

Изобретение относится к области мониторинга коррозии и может быть использовано в нефте- и газотранспортных системах, а также теплосетях. Заявленное устройство для измерения коррозии трубопроводов, содержащее крышку, уплотняющую прокладку и пластину-свидетель, при этом в крышке закреплен центральный стержень, расположенный в отверстии на стенке трубопровода, снабженном сальниковым уплотнением, состоящим из прокладки и крышки сальника, в качестве пластины-свидетеля используют часть внутренней поверхности трубопровода, ограниченной внутренним диаметром крышки, на ограниченной части внутренней поверхности трубопровода расположены два патрубка с кранами на расстоянии 0,4-0,5 диаметра крышки от оси центрального стержня, а на расстоянии 0,2-0,3 диаметра крышки расположен серебряный электрод. Технический результат при реализации заявленного решения заключается в повышении точности прогнозирования и анализа коррозии за счет создания условий применения вольтамперометрических методов исследования. 2 ил.

Изобретение относится к транспортной, энергетической, строительной и другим отраслям промышленности и может быть использовано для непрерывного (on-line) мониторинга скорости коррозии на таких объектах, как мосты, путепроводы, эстакады, градирни, дымовые трубы, резервуары и др. Заявленное устройство для измерения токов коррозии состоит из пакетного биметаллического датчика и регистратора, при этом пакет разделенных анодных пластин из низкоуглеродистой стали и катодных пластин из меди помещен в изолирующую оправку из эпоксидной смолы для контроля площади рабочей поверхности и возможности сопоставления данных с различных датчиков по величине удельной плотности тока. Технический результат заключается в определении коррозионного тока и оценке скорости коррозии стальной арматуры в железобетонных конструкциях. 1 з.п. ф-лы, 2 ил.

Изобретение относится к сельскому хозяйству и может быть использовано для оценки опасности водной эрозии почв. Способ оценки эрозионной опасности дождя на орошаемых участках, обработанных раствором гербицида глифосат, включает создание капельного потока воды, торможение капель дождя в среде поровой жидкости, измерение в ней давления и оценку эрозионной опасности по средней величине давления в поровой жидкости. При этом в поровую жидкость вводят раствор гербицида глифосат в концентрации 2-6%, затем тормозят в поровой жидкости капли дождя, измеряют давление в поровой жидкости и по его величине оценивают эрозионную опасность дождя. Изобретение обеспечивает расширение функциональных возможностей способа за счет возможности контроля эрозионной опасности дождя на орошаемых участках, обработанных раствором гербицида глифосат. 1 табл., 1 пр.

Изобретение относится к испытательной контролирующей технике, а именно к коррозионным водородным зондам. Коррозионный водородный зонд содержит корпус, датчик водорода, поршни, манометры, тензодатчики и регистрирующий прибор. Датчик водорода выполнен в виде трубки, в которую вставлен трубчатый вкладыш с тензодатчиками, которые нагружаются растягивающей нагрузкой от давления агрессивной наводороживающей среды, воздействующей на связанный с ними поршень. При этом уровень напряжения регулируют изменением величины противодавления компенсирующего поршня через сжимаемую кремнийорганическую жидкость. Коррозионный водородный зонд может быть использован для контроля скорости коррозии оборудования, эксплуатируемого в агрессивной наводороживающей среде, в частности для определения эффективности и времени последействия ингибиторов коррозии, для контроля водородопроницаемости, что также может быть использовано для определения защитной эффективности ингибиторов коррозии и времени их последействия, для определения времени до сквозного питтингообразования в стенке датчика водорода для фиксации времени до коррозионного растрескивания датчика, водорода и обеспечения условий безопасной эксплуатации зонда. Технический результат - повышение чувствительности зонда и, как результат, обеспечение безопасности эксплуатации объекта. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения остаточных технологических напряжений в образцах, вырезанных из исследуемой детали. Устройство содержит основание со стойкой, травильную ванну, датчики деформации и толщины образца, соединенные с системой обработки информации, приспособление для размещения узла крепления образца и датчиков деформации и толщины образца, выполненное в виде вертикальной рамки, присоединенной к стойке двумя подвижными консолями, в нижней части рамки установлен узел крепления исследуемого образца в вертикальном положении. Узел крепления образца снабжен держателем, зажимом для образца и плоским кронштейном с криволинейным пазом. Держатель расположен вертикально, выполнен в виде прямолинейной пластины с продольным пазом, прикреплен верхней частью к рамке и кронштейну болтами с шайбами и гайками, проходящими через пазы держателя и кронштейна, причем держатель установлен с возможностью перемещения в направлении продольного паза и отклонения от вертикали в пределах длин продольного и криволинейного пазов при ослабленной затяжке болтов. Зажим для образца расположен на нижней части держателя и состоит из двух пластинок, скрепленных болтами с гайками, причем одна из пластинок жестко соединена с держателем, другая пластинка выполнена накладной с возможностью размещения на нижнем конце закрепляемого образца. Плоский кронштейн жестко закреплен вертикально на рамке. Датчик деформации состоит из удлинителя, выполненного с возможностью закрепления на верхнем конце образца в вертикальном положении, и цифрового индикатора, закрепленного на рамке, контактирующего измерительным наконечником с верхним концом удлинителя, на верхнем конце удлинителя прикреплена пружинка, вторым концом соединенная с цифровым индикатором, датчик толщины включает два рычага, охватывающие концами образец по толщине, выполненные длинными, установленные вертикально, шарнирно закрепленные на рамке, на верхнем конце левого рычага закреплен цифровой индикатор, контактирующий измерительным наконечником с правым рычагом, нижние плечи рычагов соединены пружинкой, а верхний конец правого рычага соединен с индикатором другой пружинкой, при этом длины рычагов и удлинителя в 5…8 раз больше длины образца и соотношение длин плеч рычагов составляет 1:4…1:6, причем большему соотношению длин рычагов и удлинителя к длине образца соответствует большее соотношение длин плеч рычагов. Технический результат: возможность исследовать образцы с широким диапазоном длин рабочей зоны, с прямолинейной и криволинейной формой, что значительно расширяет технологические возможности устройства. 5 ил.

Использование: для оценки индивидуальных вкладов компонентов антикоррозионной системы в ее суммарную защитную эффективность при коррозии металлических конструкционных материалов в воздушной атмосфере или в объеме жидкой агрессивной среды любой природы. Сущность изобретения заключается в том, что экспериментально определяют интегральную эффективность антикоррозионной системы в агрессивной среде, на основании которой производят оценку вклада каждого компонента системы. Технический результат: обеспечение возможности оценки индивидуальных вкладов компонентов антикоррозионной системы в ее суммарную защитную эффективность. 5 ил.

Изобретение относится к средствам для мониторинга и диагностики коррозионных процессов внутри технологических аппаратов и трубопроводов. Способ включает установку метки, отбор флюида и контроль индикаторов. Метку наносят на внутреннюю металлическую поверхность исследуемого объекта на заранее определенные участки. Метку выбирают из условий: устойчивости к рабочему флюиду, отсутствия аналогов в составе рабочего флюида, биологической и химической неактивности по отношению к рабочему флюиду и поверхности, на которую наносят метку, а также устойчивости к баротермическому воздействию. При эксплуатации объекта в результате коррозионного процесса метка вместе с частицами металла или антикоррозийного покрытия отслаивается от объекта и выходит в зону отбора флюида. По концентрации меток определяют наличие, интервал, в котором произошла коррозия, и интенсивность коррозионного процесса. В качестве метки выбирают флуоресцентные вещества, или индикаторы радикального типа, или вещества с высоким поглощением тепловых нейтронов, или радиоактивные изотопы, или цветные вещества. 4 з.п. ф-лы.
Наверх