Способ сборки кристаллов мфпу

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств (МФПУ). Одной из основных операций при изготовлении МФПУ является сборка кристаллов в корпус с последующим соединением контактных площадок кристалла БИС с внешними выводами корпуса МФПУ. Такая электрическая связь осуществляется обычно с помощью золотых проволочек, развариваемых на соответствующие контакты. Техническим результатом изобретения является повышение надежности сборки кристаллов МФПУ путем исключения возможности закороток кристалла с металлизированными шинами. Способ сборки кристаллов МФПУ включает нанесение слоя металла на диэлектрический растр, формирование рисунка проводящих шин и контактных площадок, нанесение изолирующего покрытия и приклейку кристалла на растр, для изготовления растра используют кремниевую шайбу, на поверхности которой вытравливают канавки глубиной больше толщины слоя металлизации и шириной больше ширины шин металлизации, проводят глубокое окисление поверхности кремния, наносят слой металлизации и формируют рисунок проводящей разводки так, чтобы металлизированные шины и контактные площадки располагались на дне вытравленных канавок. 2 ил.

 

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств (МФПУ).

Одной из основных операций при изготовлении МФПУ является сборка кристаллов в корпус с последующим соединением контактных площадок кристалла БИС с внешними выводами корпуса МФПУ. Такая электрическая связь осуществляется обычно с помощью золотых проволочек, развариваемых на соответствующие контакты.

Известен способ сборки кристаллов МФПУ в корпус [Фоторезистор с кодом Грея из гетероэпитаксиальных структур КРТ для регистрации импульсного излучения CO2 лазера. Гиндин П.Д., Карпов В.В. и др. XXIII Международная научно-техническая конференция по фотоэлектронике и приборам ночного видения. Труды конференции, стр. 538, Москва, 28-30 мая 2014 г.], в соответствии с которым контактные площадки кристалла развариваются золотыми проволочками непосредственно на контактные площадки корпуса.

Однако данный способ имеет существенный недостаток, связанный с тем, что данная конструкция корпуса из-за высоких теплопритоков не может быть использована для корпусирования МФПУ, требующих глубокого охлаждения (КРТ, антимонид индия и др.).

Наиболее близким к предлагаемому техническому решению является способ сборки кристалла с использованием промежуточной диэлектрической платы (растра) с нанесенными на ее поверхность металлизированными шинами с контактными площадками [Многорядное ФПУ для дистанционного зондирования Земли в шести спектральных полосах ИК диапазона 3-12,5 мкм. Балиев Д.Л., Болтарь К.О., Бурлаков И.Д. и др. XXIV Международная научно-техническая конференция и школа по фотоэлектронике и приборам ночного видения. Труды конференции, стр. 39, Москва, 24-27 мая 2016 г.]. Обычно такие платы изготавливаются из плоских шайб синтетического лейкосапфира, на поверхности которой формируют требуемый рисунок металлизации. Сам же кристалл приклеивается к растру тыльной стороной специальным клеем. При этом внутренние контактные площадки шин соединяются короткими проволочками с контактными площадками кристалла, а внешние - с площадками корпуса.

Недостаток такого технического решения проявляется в растрах, где металлизированные шины проходят под кристаллом, например, для объединения контактных площадок от однотипных узлов, расположенных на противоположных сторонах кристалла. В этом случае появляется возможность закоротки металлизированных шин растра, проходящих под кристаллом, на его тыльную сторону, приклеенную на растр. Как показала практика, ни изоляция металлизированных шин, ни окисление тыльной стороны кристалла, ни слой клея под кристаллом не гарантируют полной защиты от закороток металлизированных шин на тыльную сторону кристалла.

Задачей изобретения является повышение надежности сборки, кристаллов МФПУ путем исключения возможности закороток кристалла с металлизированными шинами.

Решение задачи обеспечивается тем, что способ сборки кристаллов МФПУ включает нанесение слоя металла на диэлектрический растр, формирование рисунка проводящих шин и контактных площадок, нанесение изолирующего покрытия и приклейку кристалла на растр, для изготовления растра используют кремниевую шайбу, на поверхности которой вытравливают канавки глубиной больше толщины слоя металлизации и шириной больше ширины шин металлизации, проводят глубокое окисление поверхности кремния, наносят слой металлизации и формируют рисунок проводящей разводки так, чтобы металлизированные шины и контактные площадки располагались на дне вытравленных канавок.

Технический результат - повышение надежности сборки, достигается тем, что для изготовления растра используется материал, допускающий обработку поверхности методами полупроводниковой технологии, например кремний или специальные виды керамики. В данном случае использование кремния для изготовления растра для охлаждаемых МФПУ более предпочтительно из-за его высокой теплопроводности, одинакового КТР с материалом БИС, относительно низкой стоимости, малым разбросом толщин растров, полученных с разных кремниевых пластин, возможности группового изготовления растров на стандартной пластине с последующим их разделением и т. д. При этом на кремниевой шайбе необходимой формы фотолитографическими методами вытравливают канавки глубиной больше суммарной толщины слоя металлизации и диэлектрика, а шириной больше ширины шин и контактных площадок металлизации. С целью изоляции шин металлизации от кремния проводят глубокое окисление поверхности кремния, наносят слой металлизации и формируют рисунок проводящей разводки так, чтобы металлизированные шины и контактные площадки располагались на дне вытравленных канавок.

Последовательность технологической цепочки предлагаемого способа показана на фиг. 1, а внешний вид готовой структуры - на фиг. 2, где:

1 - кремниевый растр;

2 - вытравленные канавки;

3 - слой термического окисла;

4 - металлизированная разводка;

5 - слой диэлектрика;

6 - кристалл МФПУ;

7 - слой клея;

8 - золотые проволочки.

Способ сборки кристаллов МФПУ осуществляется в следующей последовательности:

1 - формирование кремниевой шайбы необходимых размеров.

2 - травление канавок на поверхности кремния в местах расположения шин металлизации,

3 - глубокое термическое окисление поверхности кремния и канавок,

4 - напыления слоя металлизации,

5 - формирование рисунка металлизации на дне канавок,

6 - нанесение слоя диэлектрика на проводящие шины,

7 - приклейка кристалла на растр,

8 - разварка контактных площадок МФПУ на растр.

Этот способ может быть использован также для соединения однотипных контактов у нескольких кристаллов, расположенных на одном растре.

Формирование канавок возможно по всему растру или только под кристаллом МФПУ. Металлизированные шины, не проходящие под кристаллом МФПУ, могут располагаться как в канавках, так и на поверхности растра.

Способ сборки кристаллов МФПУ, включающий нанесение слоя металла на диэлектрический растр, формирование рисунка проводящих шин и контактных площадок, нанесение изолирующего покрытия и приклейку кристалла на растр, отличающийся тем, что с целью повышения надежности сборки для изготовления растра используют кремниевую шайбу, на поверхности которой вытравливают канавки глубиной больше толщины слоя металлизации и шириной больше ширины шин металлизации, проводят глубокое окисление поверхности кремния, наносят слой металлизации и формируют рисунок проводящей разводки так, чтобы металлизированные шины и контактные площадки располагались на дне вытравленных канавок.



 

Похожие патенты:

Изобретения могут быть использованы для формирователя сигналов изображения в инфракрасной области спектра. Гетероструктурный диод с p-n-переходом содержит подложку на основе HgCdTe, главным образом n-легированную, причем упомянутая подложка содержит первую часть (4), имеющую первую концентрацию кадмия, вторую часть (11), имеющую вторую концентрацию кадмия больше, чем первая концентрация кадмия, причем вторая часть(11) образует гетероструктуру с первой частью (4), р+-легированную зону (9) или р-легированную зону, расположенную в концентрированной части (11) и продолжающуюся в первую часть (4) и образующую p-n-переход (10) с n-легированным участком первой части (4), называемым базовой подложкой (1), при этом концентрированная часть (11) расположена только в р+-легированной зоне (9) и образует карман (12) по существу с постоянной концентрацией кадмия.

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д.

Изобретение относится к области полупроводникового материаловедения, а именно – к технологии получения тонких фоточувствительных пленок селенида свинца, широко используемых в изделиях оптоэлектроники в ИК-диапазоне 1-5 мкм, лазерной и сенсорной технике.
Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических соединений в потоке водорода сверхрешетки, состоящей из чередующихся слоев GaSb и InAs.

Изобретение относится к области полупроводниковой электроники, в частности к способам изготовления структур фотоэлектрических приемных устройств (ФПУ), предназначенных для преобразования светового излучения определенного спектрального диапазона в электрический сигнал.
Изобретение относится к многоэлементным и матричным фотоприемникам (МФП) ИК-диапазона на основе теллурида кадмия-ртути, конкретно к технологии изготовления матрицы фоточувствительных элементов (МФЧЭ).

Изобретение относится к полупроводниковой технике, в частности к созданию компактных источников электроэнергии с использованием радиоактивных изотопов и полупроводниковых преобразователей.

Способ определения концентрации донорного фона в CdxHg1-xTe принадлежит к характеризации материалов и структур оптоэлектроники, точнее к твердым растворам CdxHg1-xTe – основному материалу для изготовления фотодиодов инфракрасного диапазона спектра.

Светочувствительное устройство с множественной глубиной резкости содержит два светочувствительных пиксельных слоя. Причем различные светочувствительные пиксельные слои обнаруживают световые сигналы с различными цветами.

Настоящее изобретение относится к области преобразователей энергии радиационных излучений в электрическую энергию и может быть также использовано в взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах и сенсорах, расположенных в труднодоступных местах и т.д.

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания переизлучающих текстурированных покрытий для использования в тонкопленочных солнечных элементах. Способ получения переизлучающих текстурированных тонких пленок на основе аморфного гидрогенизированного кремния с нанокристаллами кремния включает получение тонких пленок аморфного гидрогенизированного кремния, которые обрабатывают в атмосфере воздуха фемтосекундными лазерными импульсами с центральной длиной волны излучения 500-1100 нм, частотой повторения импульсов 50-500 кГц, длительностью импульсов 100-500 фс и плотностью энергии лазерных импульсов 260-500 мДж/см2. Изобретение обеспечивает возможность формирования переизлучающих текстурированных тонких пленок, эффективно поглощающих ультрафиолетовую часть солнечного спектра с последующим ее преобразованием в видимый свет. 5 з.п. ф-лы, 5 ил.

Изобретение относится к способам коммутации ячеек фотоэлектрических преобразователей на основе кристаллического кремния, в частности к способу контактирования контактных шин к пластинам фотоэлектрических преобразователей с применением адгезивов и ультразвуковой пайки. Способ коммутации гетероструктурных фотоэлектрических преобразователей включает присоединение контактных шин к гетероструктурным фотоэлектрическим преобразователям, при этом перед присоединением между контактными шинами и поверхностью фотоэлектрических преобразователей наносят диэлектрический адгезив, присоединение контактных шин к фотоэлектрическим преобразователям осуществляют ультразвуковой сваркой путем продавливания контактных шин через слой адгезива до элементов контактной сетки фотоэлектрических преобразователей и выполняют процесс сварки. Изобретение позволяет повысить прочность механического соединения при коммутации отдельных фотоэлектрических преобразователей в единую цепь, повысить надежность, снизить контактное сопротивление и повысить срок эксплуатации. 6 з.п. ф-лы, 6 ил., 4 пр.

Изобретение относится к способам получения тройных нано-гетероструктур из полупроводниковых материалов, характеризующихся различной шириной запрещенной зоны, и может быть использовано при разработке фотокатализаторов на основе нано-гетероструктурных материалов в фотоэлектрохимических и фотокаталитических устройствах для получения чистого водорода и кислорода, синтеза органических молекул. Техническим результатом заявленного изобретения является возможность получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 с варьируемым распределением по составу компонентов, размерами частиц узкозонных полупроводников, диаметра и длины нанотрубок на подложке из титановой фольги, а также упрощение технологического процесса и снижение трудозатрат при получении данной системы высокой чистоты. Способ получения фотокатализатора на основе тройной нано-гетероструктурной системы состава CdS-WO3-TiO2 с формированием 3D-структур на основе диоксида титана осуществляется только электрохимическим методом в электролитах различного состава: при анодировании в процессе роста нанотрубок из диоксида титана на подложке из титановой фольги в электролите, который приготавливают из фторида аммония, дистиллированной воды и этиленгликоля, создаются включения второй фазы оксида вольфрама (VI) из металлического вольфрама, предварительно электрохимически восстановленного из раствора вольфрамата натрия в диметилформамиде и формамиде. Последующее одностадийное электрохимическое осаждение сульфида кадмия в полученную систему WO3-TiO2 осуществляется в водном растворе CdSO4 и Na2S2O4 при рН=7. Таким образом, путем варьирования условий проведения электрохимических процессов получают наноразмерную гетероструктурную систему CdS-WO3-TiO2 высокой степени чистоты с заданными параметрами, а именно, толщина слоя массива нанотрубок из диоксида титана, диаметр и длина нанотрубок из диоксида титана, размер частиц полупроводников оксида вольфрама (VI) и сульфида кадмия. 1 з.п. ф-лы, 6 ил., 2 пр.

Согласно изобретению предложен способ изготовления солнечных батарей, содержащий этапы формирования пленки SiNx поверх второй главной поверхности полупроводниковой подложки n-типа; формирования диффузионного слоя p-типа поверх первой главной поверхности полупроводниковой подложки n-типа после стадии формирования пленки SiNx; и формирования поверх диффузионного слоя p-типа пассивирующей пленки, состоящей из пленки SiO2 или пленки оксида алюминия. Предложен второй вариант способа, в котором осуществляют формирование диффузионного слоя n-типа поверх второй главной поверхности полупроводниковой подложки p-типа; формирование пленки SiNx поверх диффузионного слоя n-типа; формирование текстуры только на первой главной поверхности полупроводниковой подложки p-типа после этапа формирования пленки SiNx и формирование поверх первой главной поверхности полупроводниковой подложки p-типа пассивирующей пленки, состоящей из пленки SiO2 или пленки оксида алюминия, после этапа формирования текстуры. Также предложены солнечные батареи, изготовленные описанными выше способами. Заявленные изобретения обеспечивают возможность повышения эффективности фотоэлектрического преобразования. 4 н. и 6 з.п. ф-лы, 1 табл., 7 ил.

Изобретение относится к способу изготовления многоэлементных или матричных фотоприемников на основе антимонида индия. Многоэлементный фотоприемник на основе антимонида индия включает матрицу фоточувствительных элементов (МФЧЭ) с антиотражающим покрытием на освещаемой стороне фоточувствительных элементов (ФЧЭ), соединенных микроконтактами со схемой считывания. Предлагаемый способ включает пассивацию освещаемой поверхности ФЧЭ перед формированием антиотражающего покрытия, заключающуюся в том, что перед напылением антиотражающего покрытия с поверхности МФЧЭ ионным травлением удаляется слой собственного окисла без разгерметизации вакуумной камеры, что позволяет уменьшить скорость поверхностной рекомбинации фотогенерированных носителей тока и тем повысить квантовую эффективность и устранить захват носителей медленными состояниями. Изобретение обеспечивает повышение чувствительности, улучшение однородности параметров матричных фотоприемников в серийном производстве за счет повышения квантовой эффективности фоточувствительных элементов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей. Структура фотопреобразователя на основе кристаллического кремния включает: текстурированную поликристаллическую или монокристаллическую пластину кремния; пассивирующий слой в виде аморфного гидрогенизированного кремния, нанесенный на каждую сторону пластины кремния; р-слой; n-слой; контактные токосъемные слои в виде прозрачных проводящих оксидов; тыльный токосъемный слой в виде металлического непрозрачного проводящего слоя, при этом в качестве р-слоя и n-слоя применяют металлические оксиды соответственно р-типа и n-типа, при этом слои n-типа и р-типа, пассивирующий и токосъемный слои наносятся методом магнетронного распыления. В качестве металлического оксида n-типа используют оксид цинка (ZnO), или SnO2, Fe2О3, ТiO2, V2O7, МnО2, CdO, или другие металлические оксиды n-типа. В качестве металлического оксида р-типа используют МоО, или СоО, Сu2О, NiO, Сr2О3, или другие металлические оксиды р-типа. Линия по производству фотопреобразователя на основе кристаллического кремния, включающая последовательные операции, такие как: очистку и текстурирование пластин кристаллического кремния; нанесение пассивирующего слоя аморфного гидрогенизированного кремния на каждую сторону пластины кремния; нанесение р-слоя фотопреобразователя; нанесение n-слоя фотопреобразователя; нанесение контактных токосъемных слоев фотопреобразователя; нанесение тыльного токосъемного слоя; окончательная сборка, при этом выполняют последовательное магнетронное напыление пассивирующего слоя, р-слоя в виде металлического оксида р-типа, n-слоя в виде металлического оксида n-типа и токосъемных слоев методом магнетронного распыления. При этом может осуществляться магнетронное распыление кремниевой мишени в атмосфере силана и аргона с добавлением водорода. Изобретение позволяет повысить производительность, уменьшить габариты производственной линии, исключить необходимость переворота пластин кремния в процессе производства. 2 н. и 3 з.п. ф-лы, 1 ил.
Изобретение относится к технологии изготовления полупроводникового фотоприемника (ФП) и может быть использовано при создании матричных ФП различного назначения. Способ изготовления матричного ФЧЭ на основе GaAs, в котором согласно изобретению базовую область МФЧЭ после гибридизации с БИС мультиплексором утоньшают от 500 мкм до 20-40 мкм с помощью ХМП, включающего обработку пластины МФЧЭ вращающимся полировальником, утоньшение проводят сначала ХМП от толщины 500 мкм до 40-50 мкм полирующим составом, содержащим (10,0÷45,0) г/л водного раствора гипохлорита натрия и (0,5÷3,0) г/л водного раствора гидроокиси натрия, а затем проводят с помощью ХМП утоньшение базовой области до толщины 20-40 мкм в полирующем составе, содержащем в качестве комплексообразователя винную кислоту при концентрации 7,0÷70,0% об., окислителя - пероксид водорода при концентрации 7,0÷70,0% об., смазки - этиленгликоль при концентрации 5,0÷15,0% об., остальное - деионизованная вода. Изобретение обеспечивает плоскостность МФЧЭ не хуже 1 мкм с сохранением первоначальной геометрии. 2 пр.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения эпитаксиальных слоев узкозонных полупроводниковых твердых растворов CdxHg1-xTe для изготовления на их основе фотовольтаических приемников инфракрасного излучения. Способ получения эпитаксиальных слоев CdxHg1-xTe из раствора на основе теллура включает выращивание эпитаксиального слоя CdxHg1-xTe (0,19<х<0,33) методом жидкофазной эпитаксии в запаянной кварцевой ампуле при температуре 500÷513°С на подложку Cd1-yZnyTe (0,02<y<0,06) с кристаллографической ориентацией поверхности (111)В±0,5°, расположенную горизонтально над слоем жидкой фазы высотой от 1 до 2 мм, в условиях принудительного охлаждения системы подложка/раствор на 6÷11°С, в зависимости от требуемой толщины эпитаксиального слоя, и предварительное растворение поверхностного слоя подложки в перегретом не более чем на 2° относительно температуры ликвидуса растворе на основе теллура, из которого проводится выращивание эпитаксиального слоя, при этом охлаждение системы проводят со скоростью снижения температуры 0,2÷0,5 град/мин, начиная с момента контакта подложки с перегретым раствором. Техническим результатом изобретения является воспроизводимое получение эпитаксиальных слоев CdxHg1-xTe диаметром до 50 мм без отклонения формы поверхности от формы поверхности подложки с высотой микрорельефа на поверхности эпитаксиального слоя не более 60 нм и разнотолщинностью эпитаксиального слоя по его площади не более 1 мкм при номинальном значении толщины в интервале от 10 до 20 мкм. 1 табл.

Способ изготовления солнечного элемента включает в себя формирование с высокой производительностью просветляющей пленки, содержащей нитрид кремния, причем упомянутая просветляющая пленка обладает превосходным пассивирующим эффектом. В способе изготовления солнечного элемента согласно изобретению используется установка (100) усиленного непрямой плазмой химического осаждения из газовой фазы для формирования на полупроводниковой подложке (102) первой пленки нитрида кремния при перемещении полупроводниковой подложки (102) в камере (101) осаждения, с использованием потока плазмы от первой плазменной камеры (111), и дальнейшего формирования второй пленки нитрида кремния, которая имеет состав, отличный от упомянутой первой пленки нитрида кремния, с использованием потока плазмы от второй плазменной камеры (112), в которую были введены газообразный аммиак и газообразный силан при другом соотношении расходов, чем в первой плазменной камере (111). Установка (100) усиленного непрямой плазмой химического осаждения из газовой фазы снабжена камерой (101) осаждения; плазменными камерами (111, 112), имеющими участки (111а, 112а) возбуждения, которые возбуждают газообразный аммиак, и участки (111b, 112b) активации реакции, которые активируют возбужденный газообразный аммиак посредством введения туда газообразного силана; и регулятор (113) расхода, который регулирует соотношение расходов газообразного аммиака и газообразного силана для каждой из упомянутых плазменных камер (111, 112). Изобретение обеспечивает высокую производительность формирования просветляющей пленки и улучшенный просветляющий эффект. 2 н. и 4 з.п. ф-лы, 1 табл., 5 ил.

Настоящее изобретение относится к способу изготовления солнечного элемента, имеющего долговременную надежность и высокую эффективность, причем упомянутый способ включает в себя: этап нанесения пастообразного электродного вещества на просветляющую пленку, сформированную на стороне светопринимающей поверхности полупроводниковой подложки, имеющей по меньшей мере pn-переход, причем упомянутое электродное вещество содержит проводящий материал; и этап обжига электрода, включающий в себя локальную термообработку для подачи тепла так, что обжигают по меньшей мере часть проводящего материала посредством облучения лазерным лучом только участка с нанесенным электродным веществом, и термообработку всего объекта для нагревания полупроводниковой подложки целиком до температуры ниже 800°C. 4 з.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств. Одной из основных операций при изготовлении МФПУ является сборка кристаллов в корпус с последующим соединением контактных площадок кристалла БИС с внешними выводами корпуса МФПУ. Такая электрическая связь осуществляется обычно с помощью золотых проволочек, развариваемых на соответствующие контакты. Техническим результатом изобретения является повышение надежности сборки кристаллов МФПУ путем исключения возможности закороток кристалла с металлизированными шинами. Способ сборки кристаллов МФПУ включает нанесение слоя металла на диэлектрический растр, формирование рисунка проводящих шин и контактных площадок, нанесение изолирующего покрытия и приклейку кристалла на растр, для изготовления растра используют кремниевую шайбу, на поверхности которой вытравливают канавки глубиной больше толщины слоя металлизации и шириной больше ширины шин металлизации, проводят глубокое окисление поверхности кремния, наносят слой металлизации и формируют рисунок проводящей разводки так, чтобы металлизированные шины и контактные площадки располагались на дне вытравленных канавок. 2 ил.

Наверх