Способ импульсного электронно-пучкового полирования поверхности металлических изделий


C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)
B24B1/00 - Станки, устройства или способы для шлифования или полирования (шлифование зубчатых колес B23F, винтовой резьбы B23G 1/36, путем электроэрозионной обработки B23H; путем пескоструйной обработки B24C, инструменты для шлифования, полирования и заточки B24D; полирующие составы C09G 1/00; абразивные материалы C09K 3/14; электролитическое травление или полирование C25F 3/00, устройства для шлифования уложенных рельсовых путей E01B 31/17); правка шлифующих поверхностей или придание им требуемого вида; подача шлифовальных, полировальных или притирочных материалов

Владельцы патента RU 2619543:

ФАНО России Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) (RU)

Изобретение относится к импульсному электронно-пучковому полированию поверхности металлических изделий, полученных селективным спеканием порошка. На поверхность изделия с исходной шероховатостью воздействуют импульсным пучком в вакууме при давлении (2-5)⋅10-2 Па, энергии электронов 15-25 кэВ, длительности импульсов 150-200 мкс и плотности энергии в импульсе 40-60 Дж/см2. Обеспечивается значительное снижение пористости и шероховатости поверхностного слоя объемных металлических изделий. 2 ил.

 

Изобретение относится к технологии лазерного и электронно-пучкового синтеза объемных изделий и деталей машин методом селективного спекания, в частности к способам уменьшения пористости и шероховатости поверхности металлических объемных изделий после спекания.

Известны способы уменьшения пористости и шероховатости поверхности металлических материалов [1], включающие механическую обработку (шлифование абразивными кругами и лентами, шлифование в барабанных и вибрационных установках, крацевание, струйную абразивную и гидроабразивную обработку и др.), химическое и электрохимическое травление.

Способы механической обработки позволяют получить как развитую морфологию поверхности металлического материала, так и значительно уменьшить шероховатость поверхности в зависимости от размера используемого абразива. Способы отличаются относительной дешевизной и могут обеспечивать достаточную равномерность структуры поверхности, однако имеют ряд недостатков: в результате механической обработки в поверхностном слое материала могут оставаться частицы абразива; сложность обработки объемных изделий с развитым рельефом поверхности; унос материала в процессе обработки особенно для выпуклых частей поверхности и сложность контроля этого процесса.

Способы химического и электрохимического травления поверхности металлических материалов заключаются в использовании селективных травителей и постоянного или импульсного тока для каждого материала, что в свою очередь позволяет контролировать скорость травления, и соответственно толщину стравливаемого слоя.

Данные способы также не лишены недостатков: требуется утилизации агрессивных продуктов реакции травления; необходимо использование дорогостоящих реактивов; не обладают универсальностью применения (требуют подбора компонентов травителя для каждого металлического материала).

Наиболее близким к предлагаемому решению является способ лазерно-плазменного полирования металлической поверхности [2], заключающийся в том, что над полируемой поверхностью посредством лазерного луча поджигают в парах металла и поддерживают в непрерывном оптическом разряде приповерхностную лазерную плазму. Изменение режима полирования осуществляют путем перемещения энергетического центра плазмы относительно полируемой поверхности. Способ предусматривает «грубую» полировку поверхности с осуществлением режима глубокого проплавления и объемного парообразования, а также «чистовую» полировку поверхности, и обеспечивает значительное упрощение контроля процесса и производительность.

Основными недостатками данного способа являются локальность воздействия лазерного луча, относительно малый размер пятна, необходимость создания защитной атмосферы, препятствующей окислению материала в процессе полировки, и испарение поверхностного материала.

Задачей изобретения является уменьшение шероховатости и пористости поверхности металлических объемных изделий, получаемых методом селективного лазерного или электронно-пучкового спекания порошка. Поверхность таких изделий из-за особенностей производства отличается высокой пористостью и шероховатостью, обусловленной размером отдельных частиц порошка (40-100 мкм), из которого выращивается изделие (конечная шероховатость поверхности изделия может достигать Ra=30 мкм, Rz=150 мкм).

Технический результат заключается в получении однородного рельефа поверхности металлического объемного изделия со значительно меньшей шероховатостью относительно исходного состояния.

Поставленная задача решается тем, что полирование проводят воздействием импульсным электронным пучком в вакууме при давлении (2-5)⋅10-2 Па на обрабатываемую поверхность изделия, полученного методом селективного лазерного или электронно-пучкового спекания металлического порошка с размером частиц 40-100 мкм и исходной шероховатостью до Ra=30 мкм, Rz=150 мкм, при этом параметры электронного пучка удовлетворяют условиям: энергия электронов 15-25 кэВ; длительность импульсов 150-200 мкс; плотность энергии в импульсе 40-60 Дж/см2.

Предлагаемый способ осуществляется следующим образом.

При воздействии короткого (150-200 мкс) интенсивного (до 300 А) электронного пучка с энергией электронов 15-25 кэВ и плотностью энергии в импульсе 40-60 Дж/см2 на пористой поверхности металлического изделия происходит сверхбыстрый (~107 К/с) нагрев поверхностного слоя, включающего выступающие частицы порошка размером до 150 мкм, отвечающие за исходную шероховатость и пористость поверхности. Нагрев поверхности сопровождается плавлением поверхностного слоя на глубину нескольких десятков микрометров за один импульс. В результате за счет сил поверхностного натяжения расплава происходит выглаживание выступающих частиц порошка и заполнение пор исходного рельефа поверхности. Дальнейшее сверхбыстрое (105-106 К/с) остывание поверхностного слоя, происходящее за счет теплопроводности материала, приводит к рекристаллизации с образованием однородной микроструктуры. Испарение материала с поверхности изделия при этом пренебрежимо мало.

Предлагаемый способ реализован на вакуумной электронно-пучковой установке, схематично изображенной на фиг. 1.

Газоразрядная ячейка плазменного катода электронного источника содержит полый анод поджигающего разряда 1, катод с контрагирующим отверстием 2 (диаметром 5 мм), полый анод основного разряда 3 с отверстием диаметром 40 мм, закрытым металлической мелкоструктурной сеткой 4. Система извлечения и транспортировки электронного пучка содержит трубу дрейфа 5 (диаметром 80 мм), катушки внешнего магнитного поля 6 и двухкоординатный стол-манипулятор 7 (область сканирования 200×200 мм), на котором располагаются обрабатываемые металлические изделия 8. Напуск газа (Ar) в устройство осуществляется через газоразрядную ячейку (рабочее давление (2-5)⋅102 Па), вакуумная откачка - через вакуумную камеру 9, где находится стол-манипулятор. Расстояние между эмиссионной сеткой и манипулятором - 500 мм.

Для обеспечения работы плазменного катода между электродом 2 и полым анодом 3 зажигается импульсный (длительность импульса 20-200 мкс) дуговой разряд низкого давления (амплитуда тока до 250 А) с образованием на внутренней поверхности контрагирующего канала электрода 2 катодного пятна, которое предварительно инициируется с помощью поджигающего разряда между электродами 1 и 2. Граница катодной плазмы стабилизируется металлической мелкоструктурной сеткой 4. Извлечение и ускорение электронов происходит в слое пространственного заряда под действием постоянного напряжения (до 25 кВ), приложенного между эмиссионной сеткой и трубой дрейфа 5. Пучок транспортируется в плазме, образованной при ионизации газа в пространстве дрейфа ускоренными электронами, до стола-манипулятора 7, на котором располагаются металлические изделия 8. Для обеспечения транспортировки и управления фокусировкой пучка используется внешнее продольное импульсное магнитное поле с индукцией до 0,1 Тл.

Для обеспечения работы плазменного катода между электродом 2 и полым анодом 3 зажигается импульсный (длительность импульса 20-200 мкс) дуговой разряд низкого давления (амплитуда тока до 250 А) с образованием на внутренней поверхности контрагирующего канала электрода 2 катодного пятна, которое предварительно инициируется с помощью поджигающего разряда между электродами 1 и 2. Граница катодной плазмы стабилизируется металлической мелкоструктурной сеткой 4. Извлечение и ускорение электронов происходит в слое пространственного заряда под действием постоянного напряжения (до 25 кВ), приложенного между эмиссионной сеткой и трубой дрейфа 5. Пучок транспортируется в плазме, образованной при ионизации газа в пространстве дрейфа ускоренными электронами, до стола-манипулятора 7, на котором располагаются металлические изделия 8. Для обеспечения транспортировки и управления фокусировкой пучка используется внешнее продольное импульсное магнитное поле с индукцией до 0,1 Тл. Диаметр автографа электронного пучка на обрабатываемой поверхности составляет 1,5-3 см, в зависимости от параметров облучения.

В качестве примера рассмотрим результаты, полученные при облучении поверхности металлических образцов в виде пластин размером 15×30×5 мм, изготовленных методом селективного спекания в вакууме титанового порошка марки ВТ6 с размером частиц 40-80 мкм с помощью электронного пучка (установка фирмы Arcam, Швеция).

Облучение поверхности металлических образцов осуществляли на вакуумной электронно-пучковой установке «СОЛО» [3], в состав которой входит электронный источник с плазменным катодом на основе импульсного дугового разряда низкого давления с сеточной стабилизацией катодной границы плазмы. Оптимальный режим для титанового сплава ВТ6, при котором наблюдалось максимальное снижение шероховатости поверхности: плотность энергии в импульсе 45 Дж/см2, длительность импульсов 200 мкс, количество импульсов на участок поверхности 10, частота следования импульсов 0,3 Гц.

Исследования поверхности образцов, обработанных в оптимальных режимах, методами профилометрии показали, что шероховатость Ra титанового сплава ВТ6 уменьшилась ~ в 9,7 раза (с исходной Ra=10,7±1,5 мкм до Ra=1,1±0,5 мкм), Rz ~ в 11,9 раза (с исходной Rz=73,8±10 мкм до Rz=6,2±1,5 мкм). Пористость поверхностного слоя исчезает.

Сканирующая электронная микроскопия подтверждает, что в результате импульсного электронно-пучкового воздействия профиль поверхности образцов значительно изменяется (Фиг. 2). В поверхностном слое титанового сплава ВТ6 формируется однородная зеренная структура, в составе которой отдельные частицы порошка не наблюдаются (Фиг. 2 (б)).

Таким образом, использование импульсного электронного пучка для полирования поверхности металлических изделий, полученных методом порошкового спекания, ведет к значительному снижению пористости и шероховатости их поверхностного слоя.

Источники информации

1. Грилихес С.Я. Обезжиривание, травление и полирование металлов. - М.: РХТУ, 1983, 1994-190 с.

2. RU 2381094 С1, 10.02.2010 г.

3. Grigoriev S.V., Koval N.N., Devjatkov V.N., Teresov A.D. The automated installation for surface modification of metal and ceramic-metal materials and products by intensive pulse sub-millisecond electron beam // Proc. 9th Int. Conf. Modification of Materials with Particle Beams and Plasma Flows. Tomsk, Russia, 2008. - P. 19-22.

Способ импульсного электронно-пучкового полирования поверхности металлических изделий, полученных методом селективного лазерного или электронно-пучкового спекания порошка с размером частиц 40-100 мкм, включающий воздействие на обрабатываемую поверхность изделия с исходной шероховатостью до Ra=30 мкм, Rz=150 мкм импульсным электронным пучком в вакууме при давлении (2-5)⋅10-2 Па, причем используют электронный пучок с энергией электронов 15-25 кэВ, длительностью импульсов 150-200 мкс и плотностью энергии в импульсе 40-60 Дж/см2.



 

Похожие патенты:

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки.

Изобретение относится к лакокрасочным покрытиям на металлических поверхностях и может быть использовано при формировании лакокрасочного покрытия на изделиях из древесины и древесных материалах.

Изобретение относится к области термической обработки. Для увеличения долговечности рельса согласно настоящему изобретению устройство термической обработки для снятия напряжений рельса, который сварен, содержит катушку индукционного нагрева, которую размещают на боковой поверхности шейки рельса на расстоянии от центра сварного шва рельса от 20 до 300 мм в продольном направлении рельса.

Изобретение относится к области металлургии и может быть использовано при термической обработке литых изделий, предназначенных для работы при низких температурах до -60°С в районах Сибири и Крайнего Севера.

Изобретение относится к области металлургии. Для обеспечения равномерного нагрева листа из холоднокатаной электротехнической стали, улучшения качества формы листа стали и его магнитных свойств в линии непрерывного отжига листов стали, содержащей зону нагрева, зону выдержки и зону охлаждения, последовательно в передней половине зоны нагрева расположены два или более устройств индукционного нагрева, а в температурной зоне, где температура листа стали между двумя или более устройствами индукционного нагрева составляет от 250°C до 600°C, выполнена область остановки нагрева длиной 1-30 м или область медленного нагрева со скоростью от более 0°C/с до 10°C/с.

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения.

Изобретение относится к области металлургии и может быть использовано в деревообрабатывающей промышленности Для повышения устойчивости полосовых пил в процессе пиления устройство содержит однофазные индукторы переменного тока, включающие магнитопровод, индуцирующий провод, токоподводящие шины, ось, корпус устройства; источник питания, при этом однофазные индукторы расположены по ширине пильного полотна в зонах создания теплового следа, имеют возможность поворота вокруг оси, закрепленной в корпусе.

Изобретение относится к области металлургии, в частности к термической обработке стального изделия, проката различной формы, в т.ч. листового проката, фасонного проката, в частности железнодорожных рельсов.

Изобретение относится к металлургии, а именно к оборудованию для термической обработки железнодорожных колес, и может быть использовано в черной металлургии и машиностроении в линиях термической обработки колес.
Изобретение относится к области термомеханической обработки сортового горячекатаного проката из конструкционных сталей перлитного класса и может быть использовано при изготовлении из него высокопрочных крепежных изделий.

Изобретение относится к обработке материалов шлифованием и может быть использовано для оценки режущих свойств абразивного материала шлифовальных кругов. Осуществляют закрепление кольца, имеющего базовую наружную поверхность, на планшайбе шлифовального круга соосно с его рабочей поверхностью Обрабатываемый образец устанавливают на поверхности стола станка, используемой в качестве дополнительной базовой поверхности, и шлифуют.

Изобретение относится к машиностроению и может быть использовано при плоском шлифовании деталей. Шпиндель с абразивным кругом вращают с обеспечением крутильных колебаний вокруг его оси.
Изобретение относится к комбинированным методам обработки, сочетающим механическое и электрохимическое воздействие на обрабатываемую заготовку, и может быть использовано при алмазно-электрохимическом шлифовании деталей из труднообрабатываемых сталей и сплавов.

Изобретение относится к области технологии обработки оптических деталей и может быть использовано для финишной магнитореологической обработки прецизионных поверхностей оптических деталей.
Изобретение относится к полирующей композиции, применяющейся для полировки объекта, который необходимо отполировать, состоящего из твердого и хрупкого материала, обладающего твердостью по Викерсу, равной 1500 Hv или более.

Изобретение относится к области абразивной обработки и может быть использовано при обработке металлических заготовок. Осуществляют контакт постоянно вращающегося связанного абразивного круга диаметром как минимум 150 мм с металлической заготовкой, средняя температура которой не превышает 500°С.
Изобретение относится к области абразивной обработки трущихся поверхностей сапфировых деталей, предназначенных для плунжерных пар, являющихся составными частями, в частности, насосных и/или дозирующих устройств, и может быть использовано в фармацевтической, пищевой, химической, парфюмерной, косметической, машиностроительной и других областях промышленности.

Изобретение относится к приборостроению и может быть использовано при производстве оптических компонентов для обработки и заострения краев, кромок, граней, фасок, а также для изготовления элементов точной механики, метрологических поверочных пластин, щупов и калибров.

Изобретение относится к машиностроению и может быть использовано на операциях круглого наружного шлифования заготовок из различных материалов. Перед шлифованием заготовку устанавливают на оправку-излучатель для наложения ультразвуковых колебаний (УЗК) между излучателем УЗК и отражающей гайкой.

Изобретение относится к обработке оптических элементов полированием с использованием магнитореологической чистовой обработки (MRF). Способ включает закрепление оптического элемента в оптическом держателе, имеющем множество проверочных точек, накладываемых на оптический элемент, и получение первой метрологической карты для оптического элемента и множества проверочных точек.

Изобретение относится к лазерной технологии и может быть использовано для обработки поверхности драгоценных металлов. Осуществляют напыление на поверхность изделия пленки из окисляющегося металла.
Наверх