Способ получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины


 


Владельцы патента RU 2619586:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технологический университет" (ФГБОУ ВО "КНИТУ") (RU)

Изобретение относится к способу получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины. Способ включает взаимодействие мочевины с этиленкарбонатом в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно в присутствии синтетических цеолитов, содержащих в своем составе оксид натрия в количестве 0.4-0.9 мас.% или оксид натрия в количестве 0.4-0.9 мас.% и оксид калия в количестве 1.0-5.5 мас.%. Процесс ведут при температуре 140-150°C до окончания выделения двуокиси углерода. Изобретение позволяет увеличить выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины и сократить время ее получения. 4 пр.

 

Изобретение относится к области химии и может быть использовано для получения высокомолекулярных соединений.

Наиболее близким по технической сущности является способ получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины путем взаимодействия мочевины с диэтаноламином в мольном соотношении мочевины и диэтаноламина 1:2 соответственно при температуре 115°С в течение 8 часов, см. US Патент №5858549, МПК6 В32В 27/08; C08G 69/48; C08L 75/00; C08F 283/00, 1999.

Недостатками указанного способа являются недостаточный выход целевого продукта, длительность процесса получения и сложность выделения. Способ позволяет получать смесь, состоящую из 1,1,3,3-тетракис(2-гидроксиэтил)мочевины, мочевины и диэтаноламина. Для получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины без примесей необходимо подвергнуть полученную смесь переосаждению из метанола.

Задачей изобретения является увеличение выхода 1,1,3,3-тетракис(2-гидроксиэтил)мочевины и уменьшение времени его получения.

Техническая задача решается способом получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины путем взаимодействия мочевины с этиленкарбонатом в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно в присутствии синтетических цеолитов, содержащих в своем составе оксид натрия в количестве 0.4-0.9 мас. % или оксид натрия в количестве 0.4-0.9 мас. % и оксид калия в количестве 1.0-5.5 мас. %, процесс ведут при температуре 140-150°С до окончания выделения двуокиси углерода.

Решение технической задачи позволяет увеличить выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины до 98% и сократить время его получения в 1,5-2 раза.

Характеристика веществ, используемых для получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины

Мочевина имеет молекулярную массу 60 г/моль, температура плавления Тпл составляет 132.7°С.

Этиленкарбонат имеет молекулярную массу 88 г/моль, температура кипения Ткип составляет 260.7°С.

Синтетические цеолиты используют с размером пор 8-10 , имеют в своем составе оксид натрия в количестве 0.4-0.9 мас. % или оксид натрия в количестве 0.4-0.9 мас. % и оксид калия в количестве 1.0-5.5 мас. %.

Данное изобретение иллюстрируют следующие примеры конкретного выполнения.

Пример 1 (осуществление способа по прототипу)

В колбу, снабженную обратным холодильником, термометром, помещают 60 г мочевины и 210 г диэтаноламина в мольном соотношении мочевины и диэтаноламина 1:2 соответственно. Взаимодействие ведут при температуре 115°С при перемешивании в инертной атмосфере в течение 8 часов. Получают смесь, состоящую из 1,1,3,3-тетракис(2-гидроксиэтил)мочевины, мочевины и диэтаноламина. Для получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины без примесей необходимо подвергнуть полученную смесь переосаждению из метанола. После переосаждения получают жидкость желтоватого цвета, выход 30%. Вязкость продукта 4000 мПа⋅с при 25°С. Содержание гидроксильных групп 28.8 мас. %.

Примеры 2-4 по заявляемому объекту

Пример 2

В колбу, снабженную обратным холодильником, термометром, помещают 60 г мочевины, 352 г этиленкарбоната в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно, процесс взаимодействия мочевины и этиленкарбоната ведут при перемешивании в присутствии синтетических цеолитов, содержащих в своем составе 0.4 мас. % оксида натрия, при температуре 140°С в инертной атмосфере до окончания выделения двуокиси углерода (длительность процесса 6 часов). Окончание процесса фиксируют по окончанию выделения двуокиси углерода, то есть по прекращению осаждения карбоната бария при барботировании исходящих газов через раствор гидроксида бария. По окончании процесса цеолиты отделяют фильтрованием. Выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины составляет 98%. Вязкость продукта 4000 мПа⋅с при 25°С. Содержание гидроксильных групп 28.8 мас. %.

Пример 3

В колбу, снабженную обратным холодильником, термометром, помещают 60 г мочевины, 352 г этиленкарбоната в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно, процесс взаимодействия мочевины и этиленкарбоната ведут при перемешивании в присутствии синтетических цеолитов, содержащих в своем составе 0.4 мас. % оксида натрия и 1.0 мас. % оксида калия, при температуре 140°С в инертной атмосфере до окончания выделения двуокиси углерода (длительность процесса 5 часов). Окончание процесса фиксируют по окончанию выделения двуокиси углерода, то есть по прекращению осаждения карбоната бария при барботировании исходящих газов через раствор гидроксида бария. По окончании процесса цеолиты отделяют фильтрованием. Выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины составляет 98%. Вязкость продукта 4000 мПа⋅С при 25°С. Содержание гидроксильных групп 28.8 мас. %.

Пример 4

В колбу, снабженную обратным холодильником, термометром, помещают 60 г мочевины, 352 г этиленкарбоната в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно, процесс взаимодействия мочевины и этиленкарбоната ведут при перемешивании в присутствии синтетических цеолитов, содержащих в своем составе 0.9 мас. % оксида натрия и 5.5 мас. % оксида калия, при температуре 150°С до окончания выделения двуокиси углерода (длительность процесса 4 часа). Окончание процесса фиксируют по окончанию выделения двуокиси углерода, то есть по прекращению осаждения карбоната бария при барботировании исходящих газов через раствор гидроксида бария. По окончании процесса цеолиты отделяют фильтрованием. Выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины составляет 98%. Вязкость продукта 4000 мПа⋅С при 25°С. Содержание гидроксильных групп 28.8 мас. %.

Как видно из примеров конкретного выполнения, заявляемый способ получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины по сравнению с прототипом прост в исполнении, позволяет увеличить выход 1,1,3,3-тетракис(2-гидроксиэтил)мочевины до 98% и сократить время его получения в 1,3-2 раза. Цеолиты после их фильтрования вновь используют в процессе получения целевого продукта.

Способ получения 1,1,3,3-тетракис(2-гидроксиэтил)мочевины путем взаимодействия мочевины с этиленкарбонатом в мольном соотношении мочевины и этиленкарбоната 1:4 соответственно в присутствии синтетических цеолитов, содержащих в своем составе оксид натрия в количестве 0.4-0.9 мас. % или оксид натрия в количестве 0.4-0.9 мас. % и оксид калия в количестве 1.0-5.5 мас. %, процесс ведут при температуре 140-150°C до окончания выделения двуокиси углерода.



 

Похожие патенты:

Изобретение относится к способу получения тетраоксиалкилзамещенных мочевин общей формулы (I), где R - -(СН2)8-; -(СН2)10-. Способ включает прибавление диизоцианата к охлажденному раствору диэтаноламина в хлороформе в мольном соотношении компонентов 1:2, выдержку полученной смеси, фильтрование и сушку полученного продукта при давлении.

Изобретение относится к способу получения 1,1-1,6-гексаметилен-3,3,3 ,3 -тетракис(2-оксиэтил)-бисмочевины, которая может быть использована в медицине, заключающемуся во взаимодействии 1,6-гексаметилендиизоцианата с диэтаноламином в водной среде, причем диэтаноламин берут в количестве 1,001÷1,01 от стехиометрического и после проведения синтеза удаляют избыток диэтаноламина на катионообменной смоле, которую добавляют в реакционную смесь в количестве 5-10% от массы исходных компонентов при перемешивании до снижения рН реакционной смеси в интервале 7,0-7,2.

Изобретение относится к области органической химии, конкретно к способу получения тетраоксиалкилзамещенной мочевины, которая может быть использована в медицине. .

Изобретение относится к гетероциклическим соединениям и, в частности, к получению замещенных мочевины формулы (R<SB POS="POST">1</SB>O)(R<SB POS="POST">2</SB>O)CH-CH(OR<SB POS="POST">3</SB>)-N(A)-C(O)-N(A<SB POS="POST">1</SB>)-CH(OR<SB POS="POST">3</SB>)CH(OR<SB POS="POST">1</SB>)(OR<SB POS="POST">2</SB>), где R<SB POS="POST">1</SB> и R<SB POS="POST">2</SB> - C<SB POS="POST">1</SB> - C<SB POS="POST">4</SB>-алкил R<SB POS="POST">3</SB> - H, C<SB POS="POST">1</SB> - C<SB POS="POST">4</SB>-алкил А и А<SB POS="POST">1</SB> - каждый Н или вместе образуют этиленовый радикал, которые могут быть использованы в качестве отделочного агента целлюлозных волокон.

Изобретение относится к получению новых производных димеризованной жирной кислоты, а именно ее полиамидомочевинных производных, которые могут быть использованы в качестве термостойких клеев-расплавов.

Изобретение относится к способу получения Nδ-нитрозо-Nδ-[(2-хлорэтил)карбамоил]-L-орнитина формулы 1, обладающего противоопухолевым действием. Согласно предлагаемому способу Nδ-нитрозо-Nδ-[(2-хлорэтил)карбамоил]-L-орнитин получают из смеси изомеров Nδ-нитрозо-Nδ-[(2-хлорэтил)карбамоил]-L-орнитина и Nδ-[(2-хлорэтил)-N-нитрозокарбамоил]-L-орнитина, при этом раствор смеси изомеров в воде выдерживают в течение 50 ч при +37°С, концентрируют реакционную массу и выдерживают 8 ч при +8°С.
Изобретение относится к способу получения тонкодисперсных частиц полимочевины, необязательно, микронного размера или наночастиц, а также к самим тонкодисперсным частицам полимочевины, необязательно, микронного размера или к наночастицам.

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах Fe2O3@SO3H, с цианатами щелочных металлов при комнатной температуре в водно-спиртовой среде в течение 1 часа.

Изобретение относится к химии производных адамантана, а именно к способу получения 1,3-дизамещенных мочевин производных 1,3-диметиладамантана общей формулы: где n=0, 1 Способ заключается во взаимодействии изоцианата общей формулы: где n=0, 1, с аминами, выбранными из ряда: 1,2-этилендиамин, пиперидин, 1-аминометиладамантан, 2-амино-2-цианоадамантан и 2-аминоэтанол, при температуре 0-25°С, в течение 3-8 часов в диметилформамиде при мольном соотношении изоцианат:амин:диметилформамид = 1:1,1-7,2:65-107.

Изобретение относится к области получения стабильных водных растворов N-аминометиленовых производных амидов карбоновых кислот, в частности получения стабилизированных водных растворов N,N'-бис(диметиламинометил)-мочевины.

Изобретение относится к способу получения мочевиновой консистентной смазки, который осуществляют в устройстве, использующем экструдер и содержащем несколько реакционных зон, смонтированных в ряд и связанных по текучей среде.

Изобретение относится к способу получения соединения формулы I: или его соли, где: у представляет собой 0; R1 и R2 взяты вместе для образования 3-тетрагидрофуранового кольца; R9 представляет собой водород; R10 представляет собой 5-оксазолил; R11 представляет собой метокси-, этокси- или изопропоксигруппу; каждый V1 независимо выбирают из галогена, NO2, CN, OR 12, OC(O)R13, OC(O)R12, OC(O)OR 13, OC(O)OR12, OC(O)N(R13)2 , OP(O)(OR13)2, SR13, SR 12, S(O)R13, S(O)R12, SO2 R13, SO2R12, SO2N(R 13)2, SO2NR12R13 , SO3R13, C(O)R12, C(O)OR 12, C(O)R13, C(O)OR13, NC(O)C(O)R 13, NC(O)C(O)R12, NC(O)C(O)OR13, NC(O)C(O)N(R13)2, C(O)N(R13) 2, C(O)N(OR13)R13, C(O)N(OR13 )R12, C(NOR13)R13, C(NOR 13)R12, N(R13)2, NR 13C(O)R12, NR13C(O)R13 , NR13C(O)OR13, NR13C(O)OR 12, NR13C(O)N(R13)2, NR 13C(O)NR12R13, NR13SO 2R13, NR13SO2R12 , NR13SO2N(R13)2, NR13SO2NR12R13, N(OR 13)R13, N(OR13)R12, P(O)(OR 13)N(R13)2 и P(O)(OR13 )2; где каждый R12 представляет собой моноциклическую или бициклическую кольцевую систему, состоящую из 5-6 членов в каждом кольце, где указанная кольцевая система, необязательно, содержит вплоть до 4 гетероатомов, выбранных из N, О или S, и где CH2, расположенный рядом с указанным N, О или S, может быть замещен посредством С(O); а каждый R12 , необязательно, содержит вплоть до 3 заместителей, выбранных из R11; где каждый R13 независимо выбирают из Н, (С1-С4)-неразветвленного или разветвленного алкила или (С2-С4)-неразветвленного или разветвленного алкенила; и где каждый R13, необязательно, содержит заместитель, представляющий собой R14; где R14 представляет собой моноциклическую или бициклическую кольцевую систему, состоящую из 5-6 членов в каждом кольце, где указанная кольцевая система, необязательно, содержит вплоть до 4 гетероатомов, выбранных из N, О или S, и где CH2 , расположенный рядом с указанным N, О или S, может быть замещен посредством С(O); а каждый R14, необязательно, содержит вплоть до 2 заместителей, независимо выбранных из Н, (С1 -С4)-неразветвленного или разветвленного алкила или (С2-С4)неразветвленного или разветвленного алкенила, 1,2-метилендиокси-, 1,2-этилендиоксигруппы или (CH 2)n-Z; где Z выбирают из галогена, CN, NO 2, CF3, OCF3, ОН, S(С1 -С4)алкила, SO(С1-С4)алкила, SO2(С1-С4)алкила, NH2 , NH(C1-C4)-алкила, N((С1-С 4)алкила)2, СООН, С(O)O(С1-С 4)алкила или O(C1-C4)-алкила; и где любой атом углерода в любом R13, необязательно, заменен на О, S, SO, SO2, NH или N(C1-C4 )алкил; где указанный способ включает стадию приведения во взаимодействие соединения формулы II с соединением формулы III в полярном или неполярном апротонном, практически безводном растворителе или их смеси, и необязательно в приемлемом основании, выбранном из органического основания, неорганического основания или сочетания органического основания и неорганического основания; и при нагревании реакционной смеси приблизительно от 30°С до приблизительно 180°С в течение приблизительно от одного часа до приблизительно сорока восьми часов в практически инертной атмосфере: где: LG представляет собой - OR16; где R16 представляет собой -(С1-С6 )-неразветвленный или разветвленный алкил; -(С2-С 6)-неразветвленный или разветвленный алкенил или алкинил; или моноциклическую кольцевую систему, состоящую из 5-6 членов в каждом кольце, где указанная кольцевая система, необязательно, содержит вплоть до 3 гетероатомов, выбранных из N, О или S, а каждый R16, необязательно, содержит вплоть до 5 заместителей, независимо выбранных из (С1-С4)-неразветвленного или разветвленного алкила, (С2-С4)-неразветвленного или разветвленного алкенила или (CH2)n-Z; n представляет собой 0, 1, 2, 3 или 4; V1, y, Z, R 1, R2, R9, R10 и R 11 являются такими, как указано выше; и при условии, что R16 не является галогензамещенным (С2-С 3)-неразветвленным алкилом.
Изобретение относится к способу получения 1,3-бис(2-гидроксиэтил)мочевины. Способ включает взаимодействие мочевины с этиленкарбонатом в мольном соотношении мочевины и этиленкарбоната 1:2, соответственно, в присутствии синтетических цеолитов, содержащих в своем составе оксид натрия в количестве 0.4-0.9 мас.% или оксид натрия в количестве 0.4-0.9 мас.% и оксид калия в количестве 1.0-5.5 мас.%. Процесс ведут при температуре 140-150°C до окончания выделения двуокиси углерода. Изобретение позволяет увеличить выход 1,3-бис(2-гидроксиэтил)мочевины и сократить время ее получения. 4 пр.
Наверх