Гидродвигатель внутреннего сгорания с электрическим генератором

Изобретение относится к двигателям внутреннего сгорания с гидравлическим приводом и может быть использовано для выработки электроэнергии и тепла. Гидродвигатель содержит два рабочих цилиндра 1, 2, состоящих из соосно расположенных внутреннего 3 и внешнего 4 цилиндров. Между цилиндрами 3 и 4 расположена теплоизолирующая полость 6, заполненная жидкостью. Нижние части рабочих цилиндров 1, 2 соединены энергообразующей магистралью 7. Внешний цилиндр 4 снабжен дозатором 9 кислорода и дозатором 10 топлива. Верхние части рабочих цилиндров 1, 2 снабжены свечами 11 системы зажигания и форсунками 13 системы распыливания охлажденной жидкости. Вокруг патрубка 8, соединяющего горизонтальные трубопроводы энергообразующей магистрали 7, установлена обмотка 16 линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит 17. При сгорании топлива ферромагнитная жидкость перекачивается через патрубок 8, вокруг которого кольцевым постоянным магнитом 17 создается магнитное поле. Перемещение столба ферромагнитной жидкости создает ЭДС в обмотке 16 линейного электрического генератора. Изобретение обеспечивает упрощение конструкции гидродвигателя с электрическим генератором. 1 ил.

 

Изобретение относится к двигателям внутреннего сгорания с гидравлическим приводом и может быть использовано в энергетике для выработки электроэнергии и тепла, а также в транспортном машиностроении.

Известны ДВС с гидравлическим приводом на выходе, содержащие рабочие цилиндры, частично заполненные жидкостью, систему питания, зажигания и газообмена, в которых гидравлический привод выходного вала выполнен в виде кривошипно-шатунного механизма или в виде гидротурбин [1, 2, 3]. Известные ДВС имеют следующие недостатки: низкий КПД, высокие эксплуатационные затраты, низкий ресурс.

Наиболее близким техническим решением, принятым в качестве прототипа, является гидравлический двигатель внутреннего сгорания [4], содержащий заполненные жидкостью два теплоизолированных рабочих цилиндра, каждый из которых выполнен состоящим из двух соосно расположенных на одном основании внутреннего и внешнего цилиндров с полусферами в верхней части, нижние части рабочих цилиндров соединены энергообразующей магистралью. При этом полость между внутренним и внешним цилиндром заполнена жидкостью и сообщена с полостью внутреннего цилиндра, внешний цилиндр снабжен дозаторами кислорода и водорода. Верхние части рабочих цилиндров снабжены системой зажигания.

Недостатком известного технического решения является сложность конструкции, обусловленная наличием гидродвигателя с механическим приводом к электрическому генератору.

Целью изобретения является упрощение конструкции гидравлического двигателя внутреннего сгорания. Указанная цель достигается тем, что гидродвигатель внутреннего сгорания содержит заполненные жидкостью два теплоизолированных рабочих цилиндра, каждый из которых выполнен состоящим из двух расположенных на одном основании внутреннего и внешнего цилиндров с полусферами в верхней части, нижние части рабочих цилиндров соединены энергообразующей магистралью. Полость между внутренним и внешним цилиндром заполнена жидкостью и сообщена с полостью внутреннего цилиндра. Внешний цилиндр снабжен дозаторами кислорода и водорода, а верхние части рабочих цилиндров снабжены системой зажигания.

Новым в гидродвигателе внутреннего сгорания является выполнение вокруг патрубка между верхним и нижним трубопроводом энергообразующей магистрали обмотки линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит. При этом в качестве жидкости может быть использована ферромагнитная жидкость на водной основе, например, водный раствор сульфата меди или хлорида марганца. Во избежание слипания частиц ферромагнитов может использоваться поверхностно-активное вещество, например олеиновая или лимонная кислоты.

На чертеже представлена схема гидродвигателя внутреннего сгорания с электрическим генератором. Гидродвигатель содержит заполненные жидкостью два теплоизолированных рабочих цилиндра 1 и 2, каждый из которых выполнен состоящим из двух соосно расположенных внутреннего 3 и внешнего 4 цилиндров на основании 5. Между цилиндрами 3 и 4 расположена теплоизолирующая полость 6, заполненная жидкостью и сообщающаяся с полостью внутреннего цилиндра 3. Нижние части рабочих цилиндров 1 и 2 соединены энергообразующей магистралью 7 в виде двух горизонтальных трубопроводов, соединенных патрубком 8. Внешний цилиндр 4 снабжен дозатором кислорода 9 и дозатором топлива 10. Верхние части рабочих цилиндров 1 и 2 снабжены свечами 11 системы зажигания и соединены между собой трубопроводом подачи охлажденной жидкости 12 с форсунками 13 системы распыливания охлажденной жидкости. В трубопровод подачи охлажденной жидкости 12 жидкость поступает из холодильника 14. В трубопроводах энергообразующей магистрали 7 расположены перепускные клапаны 15.

Вокруг средней части патрубка 8 энергобразующей магистрали 7 установлена обмотка 16 линейного электрического генератора, концентричного которой размещен кольцевой постоянный магнит 17.

Полости рабочих цилиндров 1 и 2, не заполненные жидкостью до отметки «max», являются камерами сгорания. Полости рабочих цилиндров 1 и 2, не заполненные жидкостью до отметки уровня «min», являются рабочими камерами (конденсации).

Для запуска гидродвигателя рабочие цилиндры 1 и 2 полностью заполняют с помощью дозатора (не показан) для удаления воздуха. При этом перепускные клапаны 15 энергообразующей магистрали 7 открыты. Затем в межцилиндровую полость 6, заполненную жидкостью, через дозатор кислорода 9 подают кислород во внутреннюю полость рабочих цилиндров 1 и 2. В рабочий цилиндр 1 подают объем кислорода, ровный объему камеры сгорания (отметка «max»), а в рабочий цилиндр 2 подается объем кислорода, равный объему камеры конденсации (отметка «min»). Соответствующие объемы жидкости, вытесняемые кислородом из рабочих цилиндров 1 и 2, удаляются из системы через дозатор (на фиг. не показан).

В результате этих действий система гидродвигателя переходит к рабочему циклу. В теплоизолированную полость 6 через дозатор топлива 10 подается водород, который барботирует через слой жидкости, воспламеняется свечами 11 системы зажигания и горит, создавая давление в камере сгорания рабочего цилиндра 1.

В это время правый перепускной клапан 15 верхнего трубопровода энергообразующей магистрали 7 и левый перепускной клапан 15 нижнего трубопровода закрыты (чертеж), а левый перепускной клапан 15 верхнего трубопровода и правый перепускной клапан 15 нижнего трубопровода открыты. Под давлением жидкость переходит из полости внутреннего цилиндра 3 рабочего цилиндра 1 в полость внутреннего цилиндра 3 рабочего цилиндра 2 через патрубок 8 энергообразующей магистрали 7.

Кольцевой постоянный магнит 17 создает магнитное поле вокруг средней части патрубка 8. Перемещение столба ферромагнитной жидкости в магнитном поле создает ЭДС в обмотке 16 линейного электрического генератора, снимаемую с электрического разъема (не показан).

Часть жидкости под давлением из энергообразующей магистрали 7 проходит через холодильник 14 и после охлаждения распыляется форсункой 13 системы распыливания охлажденной жидкости в рабочий цилиндр 2. По окончании распыливания охлажденной жидкости в камеру конденсации рабочего цилиндра 2 в работу вступает система сброса избыточного давления газов (не показана), которая удаляет избыточное давление газов. Когда жидкость заполнит до отметки «max» полость внутреннего цилиндра 3 рабочего цилиндра 2, открытые перепускные клапаны 15 закрывают, а закрытые - открывают.

Далее процесс продолжается и жидкость под давлением переходит из полости внутреннего цилиндра 3 рабочего цилиндра 2 в полость внутреннего цилиндра 3 рабочего цилиндра 1 через патрубок 8 энергообразующей магистрали 7.

Кольцевой постоянный магнит 17 создает магнитное поле вокруг патрубка 8. Перемещение столба ферромагнитной жидкости в магнитном поле вновь создает ЭДС в обмотке 16 линейного электрического генератора. Далее цикл повторяется.

Во время работы гидродвигателя поступающая из холодильника теплота может быть использована для теплофикации.

Техническим преимуществом предложенного гидродвигателя является отсутствие механического взаимодействия трущихся деталей (за исключением клапанов), что упрощает конструкцию и повышает КПД. Кроме того, в гидродвигателе отсутствует выхлоп отработавших газов, т.к. при сгорании водорода с кислородом образуется вода.

Использование предлагаемого технического решения упрощает конструкцию гидродвигателя с электрическим генератором.

Литература

1. Патент Великобритании №1380739, МКИ F02B 75/32, 1975 г.

2. Патент РФ №2006622, МКИ F02B 71/04, 1994 г.

3. Патент РФ №2198308, МКИ F02B 71/04, 2001 г.

4. Патент РФ №2330166, МКИ F02B 71/04, 2008 г.

Гидравлический двигатель внутреннего сгорания, содержащий заполненные жидкостью два теплоизолированных рабочих цилиндра, каждый из которых выполнен состоящим из двух соосно расположенных на одном основании внутреннего и внешнего цилиндров с полусферами в верхней части, нижние части рабочих цилиндров соединены энергообразующей магистралью, полость между внутренним и внешним цилиндрами заполнена жидкостью и сообщена с полостью внутреннего цилиндра, внешний цилиндр снабжен дозаторами кислорода и топлива, верхние части рабочих цилиндров снабжены системой зажигания, отличающийся тем, что вокруг патрубка между верхним и нижним трубопроводами энергообразующей магистрали установлена обмотка линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит, при этом в качестве жидкости используется ферромагнитная жидкость на водяной основе.



 

Похожие патенты:

Изобретение относится к энергомашиностроению. Способ управления температурой поршневых групп и цилиндров свободнопоршневого с внешней камерой сгорания энергомодуля с приводом насоса системы охлаждения выхлопными газами, включающего клапан подачи воздуха на турбину, вентилятор, насос, радиатор, поршневые группы энергомодуля с каналами для прокачки охлаждающей жидкости, цилиндр энергомодуля с каналом для прокачки охлаждающей жидкости и датчик температуры охлаждающей жидкости, при этом коллектор выхлопных газов энергомодуля с приводом насоса системы охлаждения выхлопными газами соединен с выхлопными каналами газораспределительных клапанов энергомодуля для пуска системы охлаждения поршневых групп и цилиндров, система управления энергомодулем открывает клапан подачи выхлопных газов на турбину и приводит ее во вращение, турбина соединена валами с вентилятором и насосом, насос прокачивает охлаждающую жидкость по каналам поршневых групп энергомодуля для прокачки охлаждающей жидкости и по каналам цилиндров для прокачки охлаждающей жидкости энергомодуля, через радиатор и снова к насосу, охлаждающая жидкость переносит тепло от поршневых групп и цилиндров энергомодуля в радиатор, вентилятор обдувает радиатор, который отдает тепло окружающей среде, система управления датчиком температуры воздуха контролирует температуру охлаждающей жидкости, и если температура охлаждающей жидкости меньше оптимальной величины, система управления закрывает клапан подачи выхлопных газов на турбину.

Способ уменьшения сопротивления магнитного потока воздушного зазора между якорями линейного электрогенератора свободнопоршневого энергомодуля с внешней камерой сгорания достигается следующим образом.

Изобретение относится к области энергомашиностроения. Способ управления температурой поршней и штоков свободнопоршневого с внешней камерой сгорания энергомодуля шунтированием радиатора осуществляется следующим образом.

Изобретение относится к энергомашиностроению. Способ управления температурой поршневых групп свободнопоршневого с внешней камерой сгорания энергомодуля электропомпой, содержащего систему управления энергомодуля, электропомпу, поршневые группы энергомодуля с каналами прокачки охлаждающей жидкости, радиатор и датчик температуры охлаждающей жидкости, при этом электропомпа прокачивает охлаждающую жидкость через каналы поршневых групп энергомодуля, охлаждающая жидкость отбирает тепло от поршневых групп энергомодуля и через радиатор возвращается к электропомпе, система управления энергомодулем по сигналу датчика температуры охлаждающей жидкости контролирует температуру охлаждающей жидкости, при понижении температуры охлаждающей жидкости ниже оптимальной величины датчик температуры охлаждающей жидкости подает сигнал системе управления на прекращение подачи напряжения на электропомпу, в результате чего температура охлаждающей жидкости и поршневых групп повышается, а при понижении температуры поршневых групп система управления подает напряжение на электропомпу.

Изобретение относится к свободнопоршневым энергомодулям. Способ управления температурой поршневых групп свободнопоршневого с внешней камерой сгорания энергомодуля состоит в следующем.

Изобретение относится к электротехнике, а именно к системам двигатель-генератор, и может быть использовано при проектировании и производстве источников переменного электрического тока.

Изобретение относится к области энергомашиностроения. Способ охлаждения внешней камеры сгорания двухцилиндрового однотактного свободнопоршневого энергомодуля, включающего общую внешнюю камеру сгорания энергомодуля с рубашкой охлаждения, две расширительные машины с поршнями и штоками энергомодуля, систему охлаждения поршней и штоков энергомодуля, состоит в том, что рубашка охлаждения внешней камеры сгорания энергомодуля соединяется трубопроводами с системой охлаждения поршней и штоков расширительных машин энергомодуля, при этом охлаждающая жидкость, прокачиваемая системой охлаждения поршней и штоков расширительных машин энергомодуля и охлаждаемая в радиаторе, последовательно охлаждает сначала поршни и штоки расширительных машин энергомодуля, а затем общую внешнюю камеру сгорания энергомодуля, или рубашка охлаждения внешней камеры сгорания энергомодуля соединяется трубопроводами с системой охлаждения поршней и штоков расширительных машин энергомодуля так, что охлаждающая жидкость, прокачиваемая системой охлаждения поршней и штоков расширительных машин энергомодуля и охлаждаемая в радиаторе, сначала охлаждает общую внешнюю камеру сгорания энергомодуля, а затем поршни и штоки расширительных машин энергомодуля.

Изобретение относится к области тепловых двигателей, а именно к свободнопоршневым двигателям внутреннего сгорания. Свободнопоршневой двигатель содержит размещенный в цилиндре поршень, одним торцом взаимодействующий с камерой сгорания, а другим - с демпферной камерой, систему клапанов и устройство подачи топлива в камеру сгорания.

Изобретение относится к электротехнике, а именно к системам двигатель-генератор, и может быть использовано при проектировании и производстве источников переменного электрического тока и мотокомпрессоров со свободнодвижущимися поршнями.

Изобретение относится к силовым установкам средней и большой мощности. Силовая установка, включающая в себя замкнутый гидравлический контур, содержащий два двигательно-насосных устройства, взаимодействующие с гидравлическим двигателем, каждое двигательно-насосное устройство снабжено оппозитными свободными дифференциальными поршнями, двигателями внутреннего сгорания жидкого охлаждения с газовыми цилиндрами, рабочими цилиндрами и гидравлическими полостями цилиндров дифференциальных поршней, турбокомпрессор и турбину на выхлопных газах, соединенный с полезной нагрузкой гидравлический двигатель, связанный гидравлическими линиями с гидравлическими полостями цилиндров дифференциальных поршней двигательно-насосных устройств, устройствами управления движениями жидкости в одном направлении, подачи топлива, стартером, при этом двигательно-насосное устройство снабжено картером с перекладной заслонкой, образующим гидравлическую полость с цилиндрами дифференциальных поршней, и двумя противоположными отверстиями, к картеру примыкают гидравлические линии замкнутого контура с двух сторон, взаимодействующие с отверстиями входа и выхода гидравлического двигателя.

Устройство относится к области тепловых машин. Паровая машина включает заполненные рабочим телом вертикальные цилиндры, нагреватели/испарители, расположенные в верхних частях цилиндров, холодильники/конденсаторы, расположенные в нижних частях цилиндров, и поршни.

Тепловой двигатель включает парогенератор и гидромотор. Гидромотор приводится в действие напором жидкости, вытесняемой паром.

Изобретение относится к двигателям, использующим жидкость. Способ создания многоцилиндрового жидкостного двигателя внутреннего сгорания, содержащего гидросистему, состоящую из турбины и цилиндров, подающих на турбину из внешней камеры сгорания жидкость под давлением газов сгорающей топливной смеси и системы подготовки и воспламенения горючей смеси, при этом жидкостные двигатели объединены в один агрегат, цилиндры которого спарены в проточные блоки, закольцованы на общую турбину, поочередно заполняемыми жидкостью, отсекаемой от потока, отклоненного в спаренный цилиндр, при этом истечение жидкости под давлением газов из внешней камеры сгорания из первого цилиндра, поток снова возвращается в него, вытесняя газы, пока извергается спаренный цилиндр, а последующий блок четырехцилиндрового двигателя включается в действие при снижении давления в цилиндре предыдущего блока вдвое, значит обратно-пропорционально числу блоков двигателя.

Изобретение относится к области двигателестроения, в частности к двухтактным свободнопоршневым двигателям внутреннего сгорания (ДВС), и может быть использовано в качестве силовых установок для привода стационарных и мобильных машин.

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателям внутреннего сгорания, использующим жидкость в качестве подвижного элемента. .

Изобретение относится к области двигателей объемного вытеснения, используемых для предотвращения относительного смещения элементов конструкций, и может быть использовано в машиностроении для прижима и фиксации длинномерных заготовок.

Изобретение относится к машиностроению и может быть использовано при проектировании поршневых машин, например компрессоров, насосов или двигателей. .

Изобретение относится к двигателям внутреннего сгорания с электрическим генератором и может использоваться для выработки электроэнергии и перекачки жидкости. Двигатель содержит цилиндр 1 с поршнями 2 объемного насоса, соединенными между собой штоком 3. На концах цилиндра 1 расположены уплотнительные поршни 4 и камеры сгорания 5. Объемный насос разделен перегородкой 7 на камеры 8, 9 со всасывающими 10 и нагнетательными клапанами 11. Камеры 8, 9 заполнены рабочей жидкостью, в качестве которой используется ферромагнитная жидкость на водяной основе. Всасывающий 12 и нагнетательный 13 патрубки объемного насоса соединены энергосберегающей магистралью 14, вокруг которой установлена обмотка 15 линейного электрического генератора, концентрично которой размещен кольцевой постоянный магнит 16. При воспламенении смеси в камерах сгорания 5 происходит возвратно-поступательное движение поршней 2, перекачивающих жидкость по энергосберегающей магистрали 14. Кольцевой магнит 16 создает магнитное поле, перемещение столба ферромагнитной жидкости генерирует ЭДС в обмотке 15 линейного электрического генератора. Изобретение обеспечивает расширение функциональных возможностей двигателя, а также генерацию электрической энергии. 1 ил.
Наверх