Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой



Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой
Способ хрусталева е.н. определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой

 

G01L7/00 - Измерение постоянного или медленно меняющегося давления газообразных и жидких веществ или сыпучих материалов с помощью элементов, чувствительных к механическому воздействию или давлению упругой среды (передача и индикация перемещений элементов, чувствительных к механическому воздействию, с помощью электрических или магнитных средств G01L 9/00; измерение разности двух или более величин давления G01L 13/00; одновременное измерение двух или более величин давления G01L 15/00; измерение давления в полых телах G01L 17/00; вакуумметры G01L 21/00; полые тела, деформируемые или перемещаемые под действием внутреннего давления, как таковые G12B 1/04)

Владельцы патента RU 2620025:

Хрусталев Евгений Николаевич (RU)

Изобретение относится к области «Физика материального контактного взаимодействия» и касается способа определения по данным удельного сцепления Сстр, угла внутреннего трения и удельного веса материальной структурированной среды, и по показателю угла внутреннего трения среды в нарушенном состоянии показателя удельного сцепления и удельного веса среды в нарушенном состоянии. Технический результат – повышение точности определения удельного сцепления и удельного веса массива материальной среды с нарушенной структурой. 1 ил.

 

Изобретение относится к области «Физика материального контактного взаимодействия» частиц связной материальной среды с нарушенной структурой в массиве в условиях гравитационного воздействия Земли.

Известен способ определения физических параметров прочности нарушенной структуры материальной среды, заключающийся в том, что определяют при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угол внутреннего трения и удельное сцепление С=Сстр среды ненарушенной структуры при построении графика Кулона-Мора предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, отличающийся тем, что для определения угла внутреннего трения среды с нарушенной структурой, образующейся при достижении под штампом давления, равного бытовому давлению на отметке h массива ее естественного сложения, определяют угол и по полученным значениям определяют угол внутреннего трения среды с нарушенной структурой по выражению , а удельное сцепление материальной среды с нарушенной структурой определяют по зависимости [1].

Недостатком известного способа определения удельного сцепления среды с нарушенной структурой является его низкая точность в области материальных сред с малым углом внутреннего трения.

Известен способ определения гравитационного давления среды в массиве и ее природной плотности, заключающийся в том, что на заданной глубине h (см) массива материальной среды полевыми методами инженерных изысканий определяют угол внутреннего трения и удельное сцепление Сстр среды ненарушенной структуры в условиях гравитационного (бытового) давления pб., отличающийся тем, что величину гравитационного давления в массиве упруговязкопластичной грунтовой среды определяют по зависимости , а удельный вес грунтовой среды рассчитывают как [2].

Недостатком известного способа определения удельного веса структурированной материальной среды в массиве является отсутствие возможности определения удельного веса среды с нарушенной структурой.

Цель изобретения - получение определяющих аналитических зависимостей для определения удельного сцепления и удельного веса материальной среды в нарушенном состоянии.

Технический результат по способу определения удельного сцепления и удельного веса материальной среды с нарушенной структурой, заключающемуся в определении при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угла внутреннего трения и удельного сцепления С=Сстр среды ненарушенной структуры при построении графика Кулона-Мора предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, расчете угла внутреннего трения среды в нарушенном состоянии как , достигается тем, что величину удельного сцепления материальной среды с нарушенной структурой определяют по зависимости , а удельный вес материальной среды с нарушенной структурой определяют по зависимости , где ратм - атмосферное давление на глубине испытания среды, рср.атм≈1,033 (кГ/см2).

Изобретение поясняется графическими материалами, где на фиг. 1 представлены графики предельного состояния материальной среды в массиве и .

На графике предельного состояния структурированной материальной среды (фиг. 1) по Ш. Кулона-Мора величина давления природной связности среды равно , а гравитационного (бытового) давления . Установлено, что атмосферное давление рср.атм=1,033 (кГ/см2) соответствует величине и эквивалентному сцеплению , где h - глубина исследования массива среды. При pатм=const и h=const из соотношения получаем . При и получаем , откуда , а величина .

Пример реализации способа. Материальная среда в виде грунтового суглинка в массиве находится на глубине h=103 см. Удельное сцепление структурированного суглинка на глубине h составляет величину Cстр=0,16 (кГ/см2), угол внутреннего трения , удельный вес .

По предлагаемому способу для суглинка с нарушенной структурой угол внутреннего трения:

, величина удельного сцепления:

, а удельный вес при атмосферном давлении pср.атм=1,033 (кГ/см2).

По предлагаемому изобретению впервые получают достоверные значения удельного сцепления и удельного веса материальной среды в нарушенном состоянии по данным удельного сцепления и удельного веса структурированной среды.

Источники информации

1. Патент РФ №2537725 «Способ определения физических параметров прочности нарушенной структуры материальной среды» / Хрусталев Е.Н. - БИ №1 за 10.01.2015.

2. Патент РФ №2549533 «Способ определения гравитационного давления материальной среды в массиве и ее природной плотности» / Хрусталев Е.Н. - БИ №12 за 27.04.2015.

Способ определения удельного сцепления и удельного веса материальной среды с нарушенной структурой, заключающийся в определении при лабораторном сдвиге образцов среды ненарушенной структуры в условиях компрессии угла внутреннего трения и удельного сцепления С=Сстр среды ненарушенной структуры при построении графика Кулона-Мора предельного состояния среды под давлением pi, где τi - напряжение сдвига среды под давлением сжатия pi, расчете угла внутреннего трения среды в нарушенном состоянии как , отличающийся тем, что величину удельного сцепления материальной среды с нарушенной структурой определяют по зависимости , а удельный вес материальной среды с нарушенной структурой определяют по зависимости , где pатм - атмосферное давление на глубине испытания, .



 

Похожие патенты:

Изобретение относится к физике материального контактного взаимодействия и рассматривает предельное состояние материальной среды под нагрузкой.Сущность изобретения состоит в том, что при испытании материальной среды на сжимаемость и сдвиг истинное предельное состояние растяжения-сжатия массива материальной среды на глубине h от поверхности полупространства под штампами различной формы и жесткости определяют по зависимости: при (структурированная среда); (кГ/см2) при (нарушенная среда);где - главное нормальное сжимающее давление (кГ/см2); - главное отрицательное тангенциальное срезающее напряжение (кГ/см2); - давление связности среды (кГ/см2); - гравитационное (бытовое) давление структурированной среды (кГ/см2); - гравитационное давление среды с нарушенной структурой (кГ/см2);Ратм=1/033 (кГ/см2) - атмосферное давление на поверхности Земли; (кГ/см2) - действующее сжимающее давление в массиве; - действующие в массиве среды отрицательные тангенциальные напряжения (кГ/см2); (кГ/см3) - удельный вес среды в нарушенном состоянии; (кГ/см2) - среднее критическое (разрушающее) для среды давление сжатия, (кГ/см2), а тангенциальные напряжения сдвига в среде под штампом принимают отрицательными по величине, при этом истинное предельное состояние растяжения-сжатия массива материальной среды по данным компрессионно-сдвиговых испытаний ее образцов на сжатие определяют по зависимостям: (кГ/см2) при (структурированная среда); (кГ/см2) при (нарушенная среда);где γстрh=ратм=1,033 (кГ/см2), - главное отрицательное тангенциальное срезающее напряжение в компрессионно-сдвиговом приборе (кГ/см2), - главное нормальное сжимающее давление в компрессионно-сдвиговом приборе (кГ/см2), а тангенциальные напряжения сдвига в среде образца под штампом компрессионного прибора принимают отрицательными по величине, а истинное предельное состояние массива материальной среды по данным одноосного сжатия-растяжения образца среды определяют по зависимостям: - при сжатии; - при растяжении,а тангенциальные напряжения сдвига в образце принимают положительными по величине при растяжении и сжатии.

Изобретение относится к области физики материального контактного взаимодействия и касается способа определения на заданной глубине h>106⋅С/γ (м) массива связной среды гравитационного (бытового) давления по зависимости , (МПа), где Сстр (МПа) - удельное сцепление, γ (Н/м3) - удельный вес структурированной среды, - ее угол внутреннего трения, для среды с нарушенной структурой , .

Изобретение относится к измерительной технике, в частности к измерениям величины давления фундаментной плиты на грунт таких сооружений, как реакторные отделения АЭС, мосты, плотины, высотные и промышленные здания, и может быть использовано в системах мониторинга за напряженно-деформированным состоянием грунтов.

Изобретение относится к устройствам пневмоавтоматики для космической техники и может быть использовано в различных областях промышленности для работы со сжатыми газами при необходимости понижения давления газа до заданной величины и автоматического поддержания этого давления в заданных пределах.

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего воздействия - температуру Т(°С), плотность ρ (кг/см3), ускорение гравитационного притяжения (g, м/с2) и движения материального тела (α, м/с2), световое излучение, радиоактивность, электрическое и магнитное воздействие, устанавливают требуемый механический параметр материальной среды с учетом влияния физических определяющих параметров внешнего воздействия, определяют угол внутреннего трения и удельное сцепление cстр (кГ/см2) структурированной (природной) среды.

Изобретение относится к вакуумметрии и средствам измерения парциальных давлений газов и предназначено для контроля общего давления, плотности и химического состава газа в контролируемом объеме.

Описаны встраиваемые регуляторы давления. Представленный в качестве примера регулятор давления включает корпус, снабженный резьбой для подключения резьбовым соединением к порту другого регулятора давления.

Изобретение относится к области измерительной техники и может быть использовано для измерения давления в гидроприводе или пневмоприводе. Техническим результатом является обеспечение измерения давления в гидроприводе без нарушения целостности трубопровода, а также без нарушения герметичности гидросистемы.

Изобретение относится к способам изготовления датчиков давления и может быть использовано в микро- и наноэлектронике для изготовлении систем для измерения давления окружающей среды.

Изобретение относится к системам мониторинга давления, а конкретнее к системам мониторинга давления с несколькими реле давления в общем корпусе. Техническим результатом является расширение функциональных возможностей системы мониторинга давления.
Наверх