Способ получения высококачественной синтетической нефти

Изобретение относится к способу получения синтетической нефти из твердых горючих сланцев. Способ получения высококачественной синтетической нефти из горючих сланцев включает: предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до фракций до 0,5 мм и сушку при температуре 80-150°C в течение 1-5 суток; смешивание полученного горючего сланца с вакуумным газойлем в массовых соотношениях от 1:10 до 10:1; введение каталитической добавки, включающей нафтенат кобальта и гексакарбонил молибдена из расчета 0,5-25 г каталитической добавки на 1 кг смеси газойля и горючего сланца, при этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас. %, а гексакарбонил молибдена - от 0 до 90 мас. %; гомогенизацию полученной смеси в перемешивающем устройстве при температуре не ниже 60°C до получения однородной смеси; гидрирование при температурах 300-550°C в течение 0,05-6 часов с избыточным давлением Н2, при объемном соотношении Н2 : полученная смесь от 2:1 до 20:1; термоэкстракцию полученного продукта в течение 0,5-6 часов с использованием растворителя в количестве 1-10 л на 1 кг полученной смеси; отделение экстракта от сухого остатка и упаривание жидкой части. Технический результат - способ обеспечивает выход светлых фракций и уменьшение содержания сернистых соединений. 4 з.п. ф-лы, 3 пр.

 

Область техники

Изобретение относится к области нефтепереработки и нефтехимии, в частности, к способам получения синтетической нефти из твердых горючих сланцев, которая обладает высоком качеством. Изобретение может быть использовано в нефтяной и нефтеперерабатывающей промышленности.

Уровень техники

Для переработки горючих сланцев в жидкие продукты (сланцевая смола, сланцевая нефть) используют различные способы, к которым относятся пиролитические процессы, совместная термическая переработка с гудроном, полукоксование с последующим термокаталитическим крекингом образующейся сланцевой смолы или экстракция органических веществ из сланцев в сверхкритических условиях бензолом. Все получаемые из сланцев жидкие продукты подвергаются дальнейшей переработке в светлые углеводородные фракции. Повышение полноты превращения и увеличения качества получаемой нефти на данном этапе гидропереработки керогена материнских пород является очень важной задачей.

Из уровня техники - RU 2184763 (С2) (опубл. 10.07.2002, кл. С10В 53/06; C10G 11/04; C10G 49/06) известен способ переработки сланцев, заключающийся в их термическом разложении с получением парогазовой смеси жидких и газообразных компонентов, с использованием каталитической обработки, конденсации и фракционировании компонентов по температурам выкипания, при этом каталитической обработке подвергают суммарную парогазовую смесь в псевдоожиженном или стационарном слое катализатора, в качестве которого используют железосодержащий контакт кислотного типа - полифосфат железа ксерогельной структуры. Данный способ направлен на увеличение выхода синтетической нефти, при этом выход светлых фракций остается на низком уровне, содержание серы не уменьшается, что негативно отражается на качестве получаемой нефти.

Из уровня техники известен способ извлечения нефти из твердой материнской породы - прототип (RU 2572634 С2, кл. C10G 1/04, опубл. 20.01.2016). Способ извлечения нефти из твердой материнской породы включает: измельчение указанной твердой материнской породы с получением частиц размером не более 5 мм; денсиметрическое разделение указанных частиц, включающее: смешивание указанных частиц с водой и по меньшей мере одним дефлокулянтом с получением первой смеси твердое вещество-жидкость; разделение указанной первой смеси твердое вещество-жидкость с получением надосадочной жидкости, обогащенной указанной нефтью, и осажденного остатка, обедненного указанной нефтью; экстракцию указанной надосадочной жидкости путем смешивания ее по меньшей мере с одним органическим растворителем, имеющим температуру кипения не выше 160°С, при температуре от 5°С до 40°С и при атмосферном давлении 0,1 МПа (1 атм) с получением второй смеси твердое вещество-жидкость; разделение указанной второй смеси твердое вещество-жидкость с получением жидкой фазы, содержащей указанную нефть и указанный органический растворитель, и твердой фазы, содержащей остаток указанной твердой материнской породы; извлечение указанного органического растворителя из указанной жидкой фазы. Твердая материнская порода представляет собой нефтеносные пески или нефтеносные горные породы или битуминозные сланцы. Технический результат - повышение эффективности извлечения нефти. Однако важно отметить, что вышеуказанный способ не направлен на снижение общей серы и на повышение выходов светлых нефтепродуктов.

Раскрытие изобретения

Задачей настоящего изобретения является разработка способа получения высококачественной синтетической нефти.

Техническим результатом предлагаемого способа является увеличение выхода синтетической нефти и одновременное улучшение качества получаемого продукта за счет увеличения выхода светлых фракций и уменьшение содержания сернистых соединений.

Технический результат достигается за счет того, что способ получения высококачественной синтетической нефти из горючих сланцев включает предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до фракций до 0,5 мм и сушку при температуре 80-150°С в течение 1-5 суток; смешивание полученного горючего сланца с вакуумным газойлем в массовых соотношениях от 1:10 до 10:1; введение каталитической добавки, включающей нафтенат кобальта и гексакарбонил молибдена из расчета 0,5-25 г каталитической добавки на 1 кг смеси газойля и горючего сланца, при этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас. %, а гексакарбонил молибдена - от 0 до 90 мас. %; гомогенизацию полученной смеси в перемешивающем устройстве при температуре не ниже 60°С до получения однородной смеси; гидрирование при температурах 300-550°С в течение 0,05-6 часов с избыточным давлением Н2, при объемном соотношении Н2 : полученная смесь от 2:1 до 20:1; термоэкстракцию полученного продукта в течение 0,5-6 часов с использованием растворителя в количестве 1-10 л на 1 кг полученной смеси; отделение экстракта от сухого остатка и упаривание жидкой части.

Растворителем могут быть хлорированные алканы, такие как, хлороформ или дихлорметан или дихлорэтан.

Термоэкстракцию возможно провести в аппарате Сокслета или кипячением в реакторе.

Отделение экстракта от сухого остатка возможно провести путем фильтрования или центрифугирования или декантации.

В полученную смесь из горючего сланца, вакуумного газойля и каталитической добавки перед гомогенизацией дополнительно возможно ввести растворитель, представляющий собой толуол или тетралин или декалин, в количестве 1-10 л на 1 кг полученной смеси.

Осуществление изобретения

Способ синтеза синтетической нефти включает следующие основные этапы:

1. Предварительная подготовка горючего сланца.

2. Смешение горючего сланца с вакуумным газойлем.

3. Введение каталитической добавки и гомогенизация полученной смеси.

4. Гидрирование полученной смеси в присутствии каталитической добавки.

5. Проведение термоэкстракции с последующим удалением растворителей.

На первом этапе горючий сланец измельчают, избавляются от механических примесей через сита до фракций до 0,5 мм и высушивают при температурах 80-150°С в течение 1-5 суток.

На втором этапе полученный подготовленный горючий сланец смешивают с вакуумным газойлем в массовом соотношении от 1:10 до 10:1. Т.е. содержание горючего сланца в данной смеси варьируется от 9 до 91%. Уменьшение количества горючего сланца ниже 9% вызовет технологические трудности, связанные с необходимостью использования больших количеств вакуумного газойля, что в свою очередь приведет к увеличению аппаратного оформления и соответственно капитальных вложений. Увеличение количества горючего сланца более 91% горючего сланца затруднит переработку вследствие повышенной вязкости получаемой смеси.

На третьем этапе в смесь горючего сланца и вакуумного газойля вводят каталитическую добавку, которая включает нафтенат кобальта и гексакарбонил молибдена, причем на 1 кг смеси горючего сланца и вакуумного газойля берут 0,5-25 г каталитической добавки. При этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас. %, а гексакарбонил молибдена от 0 до 90 мас. %, соответственно. Таким образом, при содержании нафтената кобальта в каталитической добавке 100%, а гексакарбонил молибдена - 0% - заявляемый способ также будет осуществим, при этом будет достигаться заявляемый технический результат.

В полученную смесь из горючего сланца, вакуумного газойля и каталитической добавки дополнительно возможно ввести растворитель, предпочтительно содержащий ароматический фрагмент (например, толуол, тетралин) либо декалин, в количестве 1-10 л на 1 кг полученной смеси. Данный выбор диапазона (1-10 л) основан на том, что при количестве растворителя менее 1 л на 1 кг полученной смеси от растворителя не будет эффекта, а выбор количества растворителя более 10 л приведет к увеличению аппаратного оформления и соответственно капитальных вложений.

После этого полученную смесь в присутствии каталитической добавки гомогенизируют в перемешивающем устройстве при температуре не ниже 60°С до получения однородной смеси.

На четвертом этапе проводят гидрирование полученной смеси с каталитической добавкой при температурах 300-550°С в течение 0,05-6 часов с избыточным давлением Н2, при объемном соотношении Н2: полученная смесь от 2:1 до 20:1. Данный выбор диапазона (от 2:1 до 20:1) основан на том, что при соотношении Н2 : полученная смесь <2:1 не приводит к должному эффекту, а при соотношении >20:1 ведет к нетехнологичности процесса.

На пятом этапе проводят термоэкстракцию полученного продукта в течение 0,5-6 часов с использованием растворителя в количестве 1-10 л на 1 кг полученной смеси. В качестве растворителя предпочтительно используют хлорированные алканы, такие как: хлороформ, или дихлорметан, или дихлорэтан. Данный выбор диапазона (1-10 л) основан на том, что при количестве растворителя менее 1 л на 1 кг полученной смеси от растворителя не будет эффекта, а выбор количества растворителя более 10 л приведет к увеличению аппаратного оформления и соответственно капитальных вложений.

Термоэкстракцию проводят в аппарате Сокслета или кипячением в реакторе. Затем отделяют экстракт от сухого остатка. Далее упаривают жидкую часть (например, на роторном испарителе и масляном насосе), тем самым избавляясь от растворителей, введенных на пятом и третьем этапе (если они были введены соответственно). Отделение экстракта от сухого остатка (осадка) возможно провести путем фильтрования, или центрифугирования, или декантации.

Возможность осуществления изобретения подтверждается примерами. Приведенные ниже примеры конкретного осуществления изобретения приведены для предоставления специалистам в данной области техники полного описания проведения анализа по изобретению и подразумевают, что приведенные примеры не ограничивают предполагаемый авторами изобретения объем изобретения.

Пример 1

Горючий сланец предварительно измельчали, очищали от неорганических/механических примесей путем просеивания через сита до фракций до 0,5 мм и просушивали при температуре 95°С в течение суток. Далее 1,5 г сланца, 0,5 г вакуумного газойля смешивали с 25 мг нафтената кобальта - (полученная смесь). Полученную смесь вместе с металлическим якорьком погружали в стальной автоклав, снабженный магнитной мешалкой, и объемом 50 мл. Смесь перемешивали до получения однородной смеси в течение 30 минут при температуре не ниже 60°C. Далее автоклав закручивался и в него подавали 70 атм. Н2, при объемном соотношении Н2 : полученная смесь 20:1. После чего автоклав ставили в печь на 1 час до достижения температуры 450°С. Процесс проводился при постоянном перемешивании. По окончании реакции автоклав остужали, спускали водород и газообразные продукты и открывали автоклав. Далее смесь выгружали и отправляли в аппарат Сокслета для экстракции хлороформом 10 мл (из расчета 5 л на 1 кг полученной смеси) в течение 6 часов. Отделяли экстракт от сухого остатка центрифугированием (скорость центрифугирования до 40000 об/мин). После чего из экстракта отгоняли растворитель на роторном испарителе. Полученный продукт массой 0,76 г содержал 4700 ppm общей серы. Методом имитированной дистилляции был определен фракционный состав смеси. Процент светлых нефтепродуктов составлял 31%.

Пример 2

Горючий сланец предварительно измельчали, очищали от неорганических/механических примесей путем просеивания через сита до фракций до 0,5 мм и просушивали при температуре 95°С в течение суток. Далее 3 г сланца и 1 г вакуумного газойля смешивали с 50 мг нафтената кобальта и 4 мл толуола - (полученная смесь). Полученную смесь вместе с металлическим якорьком погружали в стальной автоклав, снабженный магнитной мешалкой, и объемом 50 мл. Смесь перемешивали до получения однородной смеси в течение 30 минут при температуре не ниже 60°C. Далее автоклав закручивался и в него подавали 70 атм H2, при объемном соотношении Н2 : полученная смесь 20:1. После чего автоклав ставили в печь на 1 час до достижения температуры 500°С. Процесс проводили при постоянном перемешивании. По окончании реакции автоклав остужали, спускали водород и газообразные продукты, и автоклав открывали. Далее смесь выгружали и отправляли в аппарат Сокслета для экстракции хлороформом 10 мл (в количестве 5 л на 1 кг полученной смеси) в течение 6 часов. Отделяли экстракт от сухого остатка декантацией. После чего из экстракта отгоняли растворитель на роторном испарителе. Полученный продукт массой 0,95 г содержал 5895 ppm общей серы. Методом имитированной дистилляции был определен фракционный состав смеси. Процент светлых нефтепродуктов составлял 20%.

Пример 3

Горючий сланец предварительно измельчали, очищали от неорганических/механических примесей путем просеивания через сита до фракций до 0,5 мм и просушивали при температуре 105°С в течение суток. Далее 1,5 г сланца и 1 г вакуумного газойля смешивали с 25 мг нафтената кобальта, 25 мг гексакарбонил молибдена, 2 мл толуола - (полученная смесь). Полученную смесь вместе с металлическим якорьком погружали в стальной автоклав, снабженный магнитной мешалкой, и объемом 50 мл. Смесь перемешивали до получения однородной смеси в течение 30 минут при температуре не ниже 60°C. Далее автоклав закручивали и в него подавали 70 атм Н2, при объемном соотношении Н2 : полученная смесь 20:1. После чего автоклав ставили в печь на 1 час до достижения температуры 450°С. Процесс проводился при постоянном перемешивании. По окончании реакции автоклав остужали, спускали водород и газообразные продукты, автоклав открывали. Далее в смесь дополнительно добавляли 20 мл хлороформа. После чего автоклав закручивали и погружали в печь для кипячения при 110°С на 1 час. Далее автоклав снова остужали, после чего открывали, а все содержимое отфильтровывали на пористом фильтре. В конце из жидкой части удаляли растворители путем отгонки на роторном испарителе. Масса полученного продукта 0,99 г. Процент светлых нефтепродуктов составил 20%. Содержание общей серы 3255 ppm.

Из вышеприведенных примеров следует, что данный способ позволяет увеличить выход синтетической нефти и одновременно снизить содержание общей серы и увеличить процент светлых нефтепродуктов.

1. Способ получения высококачественной синтетической нефти из горючих сланцев включающий:

- предварительную подготовку горючего сланца путем его измельчения, удаления из него механических примесей через сита до фракций до 0,5 мм и сушку при температуре 80-150°C в течение 1-5 суток;

- смешивание полученного горючего сланца с вакуумным газойлем в массовых соотношениях от 1:10 до 10:1;

- введение каталитической добавки, включающей нафтенат кобальта и гексакарбонил молибдена из расчета 0,5-25 г каталитической добавки на 1 кг смеси газойля и горючего сланца, при этом содержание нафтената кобальта в каталитической добавке от 10 до 100 мас. %, а гексакарбонил молибдена - от 0 до 90 мас. %;

- гомогенизацию полученной смеси в перемешивающем устройстве при температуре не ниже 60°C до получения однородной смеси;

- гидрирование при температурах 300-550°C в течение 0,05-6 часов с избыточным давлением Н2, при объемном соотношении Н2 : полученная смесь от 2:1 до 20:1;

- термоэкстракцию полученного продукта в течение 0,5-6 часов с использованием растворителя в количестве 1-10 л на 1 кг полученной смеси;

- отделение экстракта от сухого остатка и упаривание жидкой части.

2. Способ получения высококачественной синтетической нефти по п. 1, отличающийся тем, что растворителем являются хлорированные алканы, такие как хлороформ, или дихлорметан, или дихлорэтан.

3. Способ получения высококачественной синтетической нефти по п. 1, отличающийся тем, что термоэкстракцию проводят в аппарате Сокслета или кипячением в реакторе.

4. Способ получения высококачественной синтетической нефти по п. 1, отличающийся тем, что отделение экстракта от сухого остатка проводят путем фильтрования, или центрифугирования, или декантации.

5. Способ получения высококачественной синтетической нефти по п. 1, отличающийся тем, что в полученную смесь из горючего сланца, вакуумного газойля и каталитической добавки перед гомогенизацией дополнительно вводят растворитель, представляющий собой толуол, или тетралин, или декалин, в количестве 1-10 л на 1 кг полученной смеси.



 

Похожие патенты:

Изобретение относится к способу получения жидких углеводородов путем конверсии углеродистого материала. Осуществляют непрерывный способ конверсии углеродистого материала, содержащегося в одном или более видах исходного сырья, в жидкий углеводородный продукт, при этом указанные виды исходного сырья включают углеродистый материал, содержащийся в исходной смеси, включающей один или более флюидов, содержащих воду и дополнительно жидкие органические соединения, по меньшей мере частично получаемые с помощью указанного способа, в концентрации, составляющей по меньшей мере 10% по массе, при этом полученная исходная смесь содержит по меньшей мере один гомогенный катализатор в виде соединения калия и/или натрия таким образом, чтобы обеспечить суммарную концентрацию калия и натрия по меньшей мере 0,5% по массе, при этом указанный способ включает: конверсию по меньшей мере части углеродистого материала путем повышения давления исходной смеси до давления в диапазоне от 275 до 350 бар, нагревания исходной смеси до температуры в диапазоне от 380 до 430°С и выдерживания указанной находящейся под давлением и нагретой исходной смеси в реакционной зоне при давлении и температуре в требуемых диапазонах в течение предварительно заданного времени, причем значение рН во время указанной конверсии составляет более 7, при этом значение рН исходной смеси измеряют во время и/или после конверсии, и если результат измерения рН находится за пределами предпочтительного диапазона, состав исходной смеси изменяют таким образом, чтобы скорректировать значение рН при конверсии.

Способ производства биотоплива, который включает обработку органического вещества водным растворителем и по меньшей мере одним дополнительным катализатором, который выбран из группы, состоящей из: кислотного катализатора, катализатора конверсии водяного пара, катализатора на основе алюмосиликата, сульфидного катализатора и основного катализатора, где органическое вещество и водный растворитель предусматривают в форме суспензии, и указанную обработку производят в условиях непрерывного потока с минимальной, независящей от объема скоростью потока суспензии, большей чем скорость оседания твердого вещества в суспензии, при этом указанная обработка включает: нагревание и повышение давления до целевой температуры между примерно 250°С и примерно 400°С и до целевого давления между примерно 100 бар и примерно 300 бар для получения биотоплива; обработку при целевой температуре и целевом давлении в течение определенного промежутка времени; и охлаждение и понижение давления в суспензии, и при этом указанный по меньшей мере один дополнительный катализатор добавляют к органическому веществу после нагревания до указанной температуры и после повышения давления до указанного уровня, но до указанного понижения давления в суспензии, биотопливо представляет собой бионефть, а указанное органическое вещество представляет собой уголь или древесно-волокнистое вещество.

Изобретение относится к способу переработки лигнина в жидкие продукты и касается, в частности, способа переработки гидролизного лигнина в жидкие углеводороды и может быть использовано для получения жидких углеводородов (в т.ч.

Изобретение относится к вариантам способа переработки угля и/или углеродсодержащих отходов в жидкое топливо, заключающийся в том, что в реактор для электроимпульсного измельчения подают уголь и/или углеродсодержащие отходы, органический растворитель при соотношении уголь и/или углеродсодержащие отходы : органический растворитель 1:2 и воду не менее 5 мас.% от угля и/или углеродсодержащих отходов, воздействуют на находящиеся в реакторе для электроимпульсного измельчения уголь и/или углеродсодержащие отходы, органический растворитель и воду электрическим высоковольтным разрядом, измельчают уголь и/или углеродсодержащие отходы в среде органического растворителя и воды, получая водоугольную органическую смесь, подают ее в реактор для электроимпульсного измельчения, повторно измельчают уголь и/или углеродсодержащие отходы в водоугольной органической смеси и выделяют ожиженное топливо из смеси с повторно измельченным углем или углеродсодержащими отходами, при этом водоугольную органическую смесь пропускают через приеморазделительный блок и золоотделитель.

Изобретение относится к способу гидроконверсии тяжелого масла, выбираемого из сырой нефти, тяжелой сырой нефти, битумов из битуминозных песков, остатков перегонки, тяжелых фракций перегонки, деасфальтированных остатков перегонки, растительных масел, масел, полученных из угля и горючих сланцев, масел, полученных термическим разложением отходов, полимеров, биомассы, включающий направление тяжелого масла в зону гидроконверсии, осуществляемой в одном или более реакторов с псевдоожиженным слоем, в которые вводят водород, в присутствии подходящего гетерогенного нанесенного катализатора гидрирования, выполненного из носителя и активной фазы, состоящей из смеси сульфидов, один из которых получен из металла, принадлежащего группе VIB, а по меньшей мере еще один получен из металла, принадлежащего группе VIII, а также подходящего катализатора гидрирования, представляющего собой катализатор на основе сульфида Мо или W, нанодиспергированный в указанном тяжелом масле, и направление потока, поступающего из зоны гидроконверсии, в зону разделения, в которой отделенную жидкую фракцию, содержащую нанодисперсный катализатор, направляют рециклом в реактор(ы) с псевдоожиженным слоем.

Изобретение относится к способу непосредственного термохимического преобразования высокомолекулярных органических исходных продуктов в низкомолекулярные органические продукты, которые при комнатной температуре существуют в виде маловязких жидкостей и являются горючими, включающему следующие стадии: 1) подготовку в реакторе исходного продукта, по меньшей мере одного восстанавливающего газа и труднолетучих фракций продукта, 2) шоковое нагревание подготовленного исходного продукта до температуры реакции, 3) преобразование исходного продукта с использованием температуры, восстанавливающего действия газа и автокаталитического эффекта фракций продукта в парообразные продукты реакции и реакционный газ, 4) отделение реакционного газа при помощи конденсации с отводом конденсирующихся продуктов реакции, 5) кондиционирование отделенного реакционного газа при помощи выпуска по меньшей мере части газовой смеси, дополнительно при помощи подачи водорода и/или другого восстанавливающего вещества, в частности, в форме оксида углерода или тетралина, 6) возврат кондиционированного реакционного газа в реактор, при этом кондиционированный реакционный газ подвергают сжатию и предварительному нагреванию перед его возвратом в реактор.

Изобретение относится к многоэтапному способу ожижения углеродосодержащего твердого топлива, причем такой способ включает следующие этапы: 1) один или несколько видов углеродосодержащего твердого топлива смешивают с мазутом до образования топливо-мазутной суспензии, после чего такую топливо-мазутную суспензию обезвоживают при помощи нагревания и далее частично ожижают путем гидрогенизации при низко-среднем давлении, в результате чего образуются легкие компоненты нефти и мазутные шламы; 2) легкие компоненты нефти, полученные на этапе 1), гидрорафинируют для получения очищенной нефти; 3) мазутные шламы, полученные на этапе 1), газифицируют для получения синтетического газа; 4) синтетический газ, полученный на этапе 3), при помощи обычного процесса синтеза Ф-Т преобразуют в нефть синтеза Ф-Т; 5) нефть синтеза Ф-Т, полученная на этапе 4), далее проходит гидрорафинацию и гидрокрекинг для получения очищенной нефти, которую далее фракционируют для получения высококачественных нефтяных продуктов, включая сжиженный нефтяной газ (СНГ), бензин, авиационный керосин, дизельное топливо и другие соответствующие химические продукты.

Изобретение относится к устройству и способу получения дизельного топлива из углеводородсодержащих отходов, при этом подаваемые вещества - сухие отходы, остаточное масло, нейтрализующее вещество и катализатор - связаны с системой (103) подачи через воронку-смеситель (109) и сборник (104), который граничит с питающей емкостью (102), причем питающая емкость (102) через каналы (110) контура циркуляции масла соединена со сборником (115), высокопроизводительный камерный волновой смеситель (101) на стороне всасывания имеет соединяющий его с питающей емкостью (102) трубопровод, а на напорной стороне соединен с желобом (113) испарителя (114), соединенного с дистилляционной колонной (118), в которой установлен конденсатор (119), который через трубопроводы (124) и (126) соединен с приемником (125) продукта - дизельного топлива, причем ниже испарителя (114) расположен сборник (115), который через регулировочный клапан (130) соединен с нагревательной камерой (132), имеющей на выходной стороне шнековый выпуск (133), соединенный с емкостью (134) для остатков.

Изобретение относится к способам ожижения углей методом гидрогенизации для производства моторных топлив и химических продуктов (нафталин, тетралин-1-ол, -тетралин, изо-бутилфосфат, бензол, ксилолы и др.).

Система для сбора диоксида углерода из технологического газа включает адсорбирующий материал для адсорбции молекул диоксида углерода из технологического газа, диэлектрический нагреватель, ближайший к адсорбирующему материалу, и сосуд, имеющий внутренний объем, который вмещает адсорбирующий материал и, необязательно, диэлектрический нагреватель.

Изобретение относится к экологичным способам производства органических веществ, таких как нефтяные вещества и ароматические кислоты, фенолы и алифатические поликарбоновые кислоты, с использованием процесса окислительного гидротермического растворения (ОГР).

Изобретение относится к способу конверсии сланцевого масла или смеси сланцевых масел, имеющих содержание азота по меньшей мере 0.1 мас. %, содержащему следующие стадии: a) сырье подвергается удалению загрязнений с получением остатка и масла, очищенного от загрязнений, b) масло, очищенное от загрязнений, вводится в часть для гироконверсии в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с кипящим слоем, работающий в режиме газообразного и жидкого восходящего потока и содержащий по меньшей мере один катализатор гидроконверсии на подложке, c) выходящий поток, полученный на стадии b), вводится по меньшей мере частично в зону фракционирования, из которой, посредством атмосферной дистилляции, выходят газообразная фракция, фракция лигроина, фракция газойля и фракция, более тяжелая, чем газойль, d) указанная фракция лигроина обрабатывается по меньшей мере частично в другой части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки, и e) указанная фракция газойля обрабатывается по меньшей мере частично в части для гидрообработки в присутствии водорода, причем указанная часть содержит по меньшей мере один реактор с фиксированным слоем, содержащий по меньшей мере один катализатор гидрообработки.

Изобретение относится к экстракции легких фракций нефти и/или топлива из природного битума из нефтеносного сланца и/или нефтеносных песков. В способе природный битум экстрагируют путем водной сепарации из нефтеносного сланца и/или нефтеносных песков при образовании твердого остатка, летучие углеводороды отгоняют из природного битума перегонкой, при этом остается нерастворимый нефтяной кокс, включающий до 10% серы, газообразные углеводороды от перегонки разделяют путем фракционной конденсации на легкие фракции нефти, сырую нефть и различные топлива.
Изобретение относится к выделению углеводородов из содержащего их грунта, может быть использовано для добычи нефтяных углеводородов из нефтесодержащих пород, а также для отмывки загрязненного углеводородами грунта.

Изобретение относится к извлечению нефти из твердой материнской породы. Способ извлечения нефти из твердой материнской породы включает: измельчение указанной породы с получением частиц размером не более 5 мм, денсиметрическое разделение указанных частиц, включающее: смешивание их частиц с водой и по меньшей мере одним дефлокулянтом с получением первой смеси твердое вещество-жидкость, разделение ее с получением надосадочной жидкости, обогащенной нефтью, и осажденного остатка, обедненного нефтью, экстракцию надосадочной жидкости смешиванием ее по меньшей мере с одним органическим растворителем с температурой кипения не выше 160°C при температуре 5- 40°C и при атмосферном давлении 0,1 МПа (1 атм) с получением второй смеси твердое вещество-жидкость, разделение ее с получением жидкой фазы, содержащей указанную нефть и указанный органический растворитель, и твердой фазы, содержащей остаток указанной породы, извлечение указанного растворителя из указанной жидкой фазы.

Изобретение относится к системам извлечения битума из нефтеносных песков. Система для экстрагирования битума из нефтеносных песков содержит: экстракторный бак, имеющий верхний край и нижний край, при этом экстракторный бак включает в себя реакционную камеру; входное отверстие, расположенное у верхнего края экстракторного бака для введения нефтеносного песка в реакционную камеру, при этом нефтеносный песок содержит битум и песок; множество форсуночных входов, расположенных в заранее определенных местоположениях вокруг нижнего края экстракторного бака; источник жидкого экстрагента, при этом жидкий экстрагент содержит жидкий гидрофобный компонент и жидкий гидрофильный компонент, которые объединяются с образованием композиции, при этом жидкий гидрофильный компонент выбирают из группы, включающей спирты, сложные эфиры и кетоны; насос для создания давления и перемещения жидкого экстрагента от его источника через множество форсуночных входов для инжекции в реакционную камеру с целью суспендирования нефтеносного песка в виде псевдоожиженного слоя в реакционной камере, где реакция нефтеносного песка с экстрагентом выделяет экстракт из песка, и экстракт включает в себя экстрагент и битум; выпускное отверстие, расположенное у нижнего края экстракторного бака для удаления песка из реакционной камеры; средство сепарации, соединенное с нижним выпускным отверстием экстракторного бака, для приема песка из экстракторного бака и удаления остаточного экстрагента из песка; испаритель для приема экстракта из реакционной камеры и для испарения экстрагента из экстракта; и дистилляционную колонну, соединенную с испарителем, для отделения пара экстрагента от битума.

Изобретение относится к способу извлечения углеводородов, содержащихся в нефтеносных песках. Способ включает подачу нефтеносных песков в устройство для нагревания и нагревание нефтеносных песков в устройстве для нагревания, где устройство для нагревания представляет собой экстракционную колонну, где нагревание обеспечивают посредством соответствующей текучей среды-переносчика, нагретой от солнечной энергии, собранной посредством оптических концентрирующих систем, образуя нагретую текучую среду-переносчик, которая действует как горячая экстрагирующая текучая среда.

Изобретение относится к вариантам способа переработки угля и/или углеродсодержащих отходов в жидкое топливо, заключающийся в том, что в реактор для электроимпульсного измельчения подают уголь и/или углеродсодержащие отходы, органический растворитель при соотношении уголь и/или углеродсодержащие отходы : органический растворитель 1:2 и воду не менее 5 мас.% от угля и/или углеродсодержащих отходов, воздействуют на находящиеся в реакторе для электроимпульсного измельчения уголь и/или углеродсодержащие отходы, органический растворитель и воду электрическим высоковольтным разрядом, измельчают уголь и/или углеродсодержащие отходы в среде органического растворителя и воды, получая водоугольную органическую смесь, подают ее в реактор для электроимпульсного измельчения, повторно измельчают уголь и/или углеродсодержащие отходы в водоугольной органической смеси и выделяют ожиженное топливо из смеси с повторно измельченным углем или углеродсодержащими отходами, при этом водоугольную органическую смесь пропускают через приеморазделительный блок и золоотделитель.

Изобретение относится к способу удаления тяжелых углеводородов из потока растворителя, включающему: а) подачу первой партии смеси, содержащей тяжелые углеводороды, растворенные по меньшей мере в одном растворителе; б) экстракцию первой партии смеси путем промывки легкими углеводородами; в) промывку первой партии смеси с помощью первой промывки водой.

Способ производства углеводородных топлив из биомассы, при этом способ включает:(a) гидропереработку биомассы в реакционных условиях гидропереработки с получением продукта гидропереработки, содержащего деоксигенированный углеводородный продукт, содержащий фракции с диапазоном температуры кипения бензина и дизельного топлива.
Наверх