Способ переработки нефтесодержащих отходов на основе нефтешламов, мазута или их смеси с получением водоэмульсионного топлива

Изобретение относится к переработке нефтесодержащих отходов (нефтешламов или мазута) и может быть использовано для их утилизации с целью получения водоэмульсионного (гидратированного) топлива. Способ переработки нефтесодержащих отходов на основе нефтешлама, мазута или их смеси с получением водоэмульсионного топлива включает подогрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси в виброкавитационном гомогенизаторе с одновременной подачей угольной фракции от 15 до 30% от расхода подаваемой жидкости с получением гидратированного топлива при относительном центробежном ускорении ротора не менее 1200g и с зазором между ротором и статором не более 0,25 мм. Способ отличается тем, что в процессе трехкратной гомогенизации смеси углеводородов в виброкавитационный гомогенизатор равномерно подают мелкодисперсный порошок в качестве угольной фракции, порошок представляет собой твердые отходы, полученные при термической переработке отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С. Одновременно при первом проходе виброкавитационного гомогенизатора к твердым отходам добавляют 0,1-2% оксида магния и 0,1-1,0% низших спиртов от общего количества твердых отходов. Технический результат – получение стабильной топливной эмульсии, которую используют как котельное топливо, топливо при сгорании обеспечивает пониженное содержание оксида углерода и окислов азота, способ обеспечивает утилизацию пиролизного отхода. 1 табл., 4 пр.

 

Изобретение относится к области нефтедобывающей и нефтеперерабатывающей промышленности, в частности к технологическим процессам переработки нефтесодержащих отходов (нефтешламов или мазута), и может быть использовано для их утилизации с целью получения водоэмульсионного (гидратированного) топлива.

Известен способ переработки жидких нефтешламов в гидратированное топливо по патенту №2535710 от 27.09.2014, который заключается в том, что очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два потока. Разделенные потоки для их гомогенизации непрерывно подают в виброкавитационный гомогенизатор с разницей величины расхода одного из потоков по отношению к другому не менее 1,5. Гомогенизацию проводят в виброкавитационном гомогенизаторе с вращающимся ротором с перфорированной поверхностью и неподвижным статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с. Обработку проводят троекратно: первичную обработку ведут до полученния топливной эмульсии гидратированного топлива с размером капель воды не более 15 мкм, повторные обработки проводят до получения капель воды с размером не более 5 мкм. Изобретение позволяет повысить стабильность эмульсии гидратированного топлива.

Известен способ переработки жидких нефтесодержащих отходов по патенту №2566306 от 20.10 2015 года.

Сущность способа заключается в том, что осуществляют подогрев обводненного нефтешлама до температуры 60-95°С, очистку путем фильтрации с помощью вибросита с размером ячеек 1-4 мм, отделением песка в гидроциклоне или путем отстаивания и подачи полученной смеси углеводородов с водой в рабочую емкость. Из рабочей емкости смесь непрерывно подается в виброкавитационный гомогенизатор с вращающимся рабочим ротором и перфорированной поверхностью, и неподвижным рабочим элементом статором, при этом циркуляция смеси углеводородов с водой через виброкавитационный гомогенизатор составляет не менее трех раз. Одновременно с жидкой смесью во входной патрубок гомогенизатора равномерно подают мелкую фракцию угля с размером частиц не более 3 мм. При этом при первом проходе через виброкавитационный гомогенизатор подают угольную фракцию в количестве 5-10% от расхода подаваемой жидкой смеси, при втором проходе добавляют такое же количество угольной фракции и также аналогичное количество угольной фракции подают при третьем проходе через виброкавитационный гомогенизатор.

Таким образом, циркуляция полученной смеси через виброкавитационный гомогенизатор составляет не менее трех раз, а содержание угольной фракции до 15-30% гидратированного топлива. Высокая скорость вращения ротора создает центробежную силу, которая отбрасывает смесь жидкой и твердой фаз на стенки статора с большим ускорением, не менее 1200g. При этом происходит первичное дробление твердой фазы на мелкие фракции, менее 0,25 мм в зазоре между ротором и статором, который составляет не более 0,25 мм, обеспечивая формирование пленки жидкости, содержащей угольную пыль, толщина этой пленки не превышает 0,25 мм. В этой пленке и происходит интенсивное дробление смеси жидкой и твердой фазы, которая циркулирует по контуру между виброкавитационным гомогенизатором и емкостью исходной смеси до образования тонкодисперсной эмульсии, с размером частиц воды и угля в пределах 3-5 мкм. Наличие частиц твердой фазы в эмульсии способствует ее устойчивости, так как они препятствуют коагуляции мелких капель воды.

Предложенный способ обработки смеси жидкости с помощью виброкавитационного гомогенизатора, с перечисленными выше параметрами работы, позволяет получить стабильные и структурированные тонкодисперсные эмульсии на основе тяжелых топлив и нефтешламов с малым размером капель воды и частиц угольной фракции, равномерно распределенных по объему водоэмульсионного топлива.

К недостаткам разработанного способа относятся наличие двух сложных операций по подготовке угольной крошки, а именно очистка от неорганических составляющих, измельчение до требуемых размеров и отделение требуемой фракции.

Задачей изобретения является разработка способа получения высокоэффективного водоэмульсионного топлива из нефтесодержащих отходов на основе нефтешламов, мазута или их смеси с использованием угольной фракции на основе твердых отходов резины и шин.

Техническим результатом от использования изобретения является упрощение технологии для получения водоэмульсионного топлива с улучшенными эксплуатационными, экологическими параметрами и возможность утилизации отходов.

Задача решается и технический результат достигается тем, что способ переработки нефтесодержащих отходов на основе нефтешламов, мазута или их смеси с получением водоэмульсионного топлива включает подогрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси в виброкавитационном гомогенизаторе с одновременной подачей угольной фракции в количестве от 15 до 30% от расхода подаваемой жидкости с получением гидратированного топлива при относительном центробежном ускорении ротора не менее 1200g и с зазором между ротором и статором не более 0,25 мм.

Одновременно в процессе трехкратной гомогенизации смеси углеводородов в виброкавитационный гомогенизатор подают равномерно угольную фракцию, представляющую собой твердые отходы (кокс), полученные при термической переработке отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С, при одновременном добавлении при первом проходе гомогенизатора к твердым отходам 0,1-2% оксида магния и 0,1-1,0% низших спиртов от общего количества твердых отходов.

Широкое распространение получили термические методы утилизации отходов резины и шин, к которым относятся пиролиз и сжигание. http://www.tkomplex.ru/ru/products/pirotex на пиролизной установке утилизации "Пиротекс": переработка шин, покрышек, РТИ, пластмасс, ПЭТ, полиэтилена, нефтешламов, отработанных масел.

В результате пиролиза получаются вещества, напоминающие продукты крекинга нефти и, следовательно, являющиеся ценным исходным сырьем нефтехимических производств.

В зависимости от конструкции технологического оборудования пиролизу могут подвергаться как измельченные резиновые отходы (отделенные от металла), так и целые автопокрышки. Пиролиз происходит в отсутствие кислорода при температуре 500-1000°С. Полученный продукт представляет собой мелкодисперсный порошок, который при использовании в качестве угольной фракции не требует дополнительного измельчения.

Ниже в таблице 1 приведена характеристика твердых отходов, полученных при термическом методе утилизации резиновых отходов.

В настоящее время продукты утилизации отходов резины и шин практически не находят квалифицированного применения в связи с тем, что имеют довольно много примесей и непостоянный состав. Наши исследования показали, что такие вещества с успехом могут использоваться в качестве компонентов котельного топлива при условии их равномерного распределения в композиции и размера частиц не более 50 мкм. Оба эти условия успешно решаются при использовании виброкавитационной технологии приготовления топливных композиций, учитывая, что в большинстве случаев размер частиц продукта не превышает несколько мкм.

При использовании в качестве компонентов топлива углерод и нефтесодержащих отходов в композицию попадает значительное количество серы и ее соединений. Учитывая возрастающие требования экологических стандартов, желательно провести их нейтрализацию, чтобы уменьшить содержание оксидов серы в дымовых газах. Наше внимание привлек метод использования присадок оксида магния при сжигании мазута. Согласно расчетам, его содержание в топливе зависит от содержания серы в исходном топливе и режимов работы котельной установки и составляет 0,1-2% от массы топлива. Необходимое количество оксида магния в композиции зависит от вида топлива и конструктивных особенностей котельной установки и уточняется в процессе эксплуатации по результатам анализа топочных газов.

Процесс приготовления суспензий включает разделение агломератов и агрегатов частиц порошков на первичные частицы, вытеснение поглощенного воздуха, смачивание и обволакивание частиц дисперсной средой, равномерное распределение компонентов по объему композиции. В идеальном случае каждая первичная частица, выделяемая при диспергировании, также стабилизируется против повторной агрегации. Преимущества, заложенные в порошок при его производстве (истинная дисперсность), могут быть утеряны, если частицы порошка должным образом не диспергированы и не стабилизированы в основе.

Из всего многообразия технологий получения суспензий, по нашему мнению, оптимальной является виброкавитационная технология. В этом случае достигается не только разрушение связей в агрегатах, но и удаление частиц друг от друга на значительные расстояния. При этом несколько снижаются требования к надежности стабилизации частиц порошка ввиду образования стерических препятствий из сольватных слоев молекул дисперсионной среды, препятствующих слипанию. Следует отметить, что такие системы не пригодны для длительного хранения. Однако и в этом случае дополнительный эффект по качеству диспергирования, сокращение времени рабочего цикла могут быть достигнуты при введении в систему поверхностно-активных веществ, улучшающих лиофилизирующее и стабилизирующее действие дисперсионной среды.

В настоящее время для повышения устойчивости суспензий применяют разнообразные способы модифицирования поверхности дисперсной фазы: облучения, стрессовые воздействия, прививка органических радикалов на активных центрах, измельчение в присутствии ПАВ, тепловлажностная обработка и др. При этом исследователи стремятся к созданию оптимальных с точки зрения того или иного технологического процесса условий изменения природы поверхности твердой фазы, прежде всего ее лиофильности, учитывая смачивающую способность дисперсионной среды, ее полярности, особенно образование коагуляцинных контактов между частичками полидисперсных и полиминеральных компонентов.

1. При ручном перемешивании исследованных компонентов суспензии остается значительное количество агрегатов частиц.

2. Использование виброкавитационной технологии приготовления суспензий позволяет дезагрегировать конгломераты частиц и улучшить распределение дисперсной фазы по объему композиции.

Проведенные эксперименты показали, что качество исследованных композиций можно улучшить при использовании дополнительных компонентов, например низших спиртов. Указанный эффект проявляется при содержании спирта в количестве не менее 0,1% от количества углеродной составляющей. Увеличение процентного содержания спирта более 1% практически не приводит к улучшению дисперсности твердой фазы.

Ниже приведены примеры приготовления водоэмульсионного топлива с применением разработанной технологии.

ПРИМЕР 1.

В качестве нефтесодержащего отхода - НСО использовали обводненный нефтешлам, взятый из карты №2, куст 56 Южно-Сургутского месторождения, поверхностный слой. Нефтешлам (вязкость кинематическая по ГОСТ 33-2000 составляет 64 сСт, содержание нефтепродуктов 82,7% (масс.), воды 9,2% (масс.), механические примеси 8,1% (масс.)) нагревают до 65°С, подвергают очистке через сетку с ячейками размером 1 мм и гидроциклон.

Затем эту смесь углеводородов с водой, в количестве 6000 кг, направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами при первом проходе подают 0,1% оксида магния и 1,0% низших спиртов от общего количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

ПРИМЕР 2.

В качестве нефтесодержащего отхода - НСО использовали обводненный нефтешлам, взятый из карты №2, куст 56 Южно-Сургутского месторождения, поверхностный слой. Нефтешлам (вязкость кинематическая по ГОСТ 33-2000 составляет 64 сСт, содержание нефтепродуктов 82,7% (масс.), воды 9,2% (масс.), механические примеси 8,1% (масс.)) нагревают до 65°С, подвергают очистке через сетку с ячейками размером 1 мм и гидроциклон.

Затем эту смесь углеводородов с водой, в количестве 6000 кг, направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 1,0% оксида магния и 0,5% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

ПРИМЕР 3.

В качестве нефтесодержащего отхода - НСО использовали обводненный нефтешлам, взятый из карты №1-2, г. Нефтегорск (вязкость кинематическая 86 сСт, содержание нефтепродуктов 68% (масс.) содержание воды 32% (масс.)). Влажность композиции довели до влажности 20% путем добавления мазута марки М-100 (ГОСТ 10585-99 г.) (вязкость кинематическая по ГОСТ 33-2000 составляет 98 сСт).

Затем эту эмульсию в количестве 6000 кг направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 0,1% оксида магния и 1,0% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 12 мкм, что подтверждает получение стабильной топливной эмульсии, содержащей угольную фракцию.

ПРИМЕР 4

В качестве нефтесодержащего компонента использовали водоотливную эмульсию на основе мазута марки М-100 (ГОСТ 10585-99 г. (вязкость кинематическая по ГОСТ 33-2000 составляет 98 сСт, содержание нефтепродуктов 80% (масс.), воды 20% (масс.)).

Затем эту эмульсию в количестве 6000 кг направляют в рабочую емкость и далее подают с расходом 6000 кг в час в виброкавитационный гомогенизатор при скорости вращения ротора, создающего центробежное ускорение 1600g, и зазоре между ротором и статором, который составляет 0,25 мм. Толщина пленки, в которой происходит диспергирование в указанном зазоре, составит 0,25 мм. При этом в трубопровод, подающий смесь углеводородов с водой в гомогенизатор, вводят твердые отходы (кокс), полученные при термических методах утилизации отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С (состав твердых отходов приведен в таблице 1), в количестве до 30% от количества подаваемой жидкой смеси. Одновременно с твердыми отходами подают 2,0% оксида магния и 1,0% низших спиртов от количества подаваемых отходов. Процесс эмульгирования осуществляют в три прохода. При первом проходе угольную фракцию вводят в количестве -10% от расхода подаваемой жидкой смеси, т.е. - 600 кг/ч. При втором проходе добавляют такое же количество, т.е. еще 600 кг/ч. Аналогичное количество подают и при третьем проходе смеси через виброкавитационный гомогенизатор. Таким образом, общее количество угольной фракции, введенной в жидкую смесь за три прохода, составляет 1800 кг.

После четырех месяцев хранения максимальный размер капель не превышает 10 мкм, что позволяет получить стабильную топливную эмульсию и использовать полученное топливо как котельное.

В ходе предварительных испытаний топливных композиций, получены следующие результаты:

Оборудование устойчиво функционировало на всех режимах работы.

Переключение топливной системы котельной из штатного режима в режимы работы на гомогенизированном водоэмульсионном топливе не приводило к срыву факела в котле.

Анализ концентрации компонентов вредных выбросов в отходящих газах показал следующее снижение концентраций:

СО - на 33%;

NO - на 65%; NOx - на 70%.

Концентрации остальных компонентов оказались ниже порога чувствительности газоанализатора.

Таким образом, из приведенных выше примеров можно сделать вывод о получении стабильного водоэмульсионного топлива по более простой технологии по сравнению с прототипом, не требующей дополнительного измельчения и выделения определенной угольной фракции для подачи в виброкавитационный гомогенизатор. Полученное водоэмульсионное топливо обладает улучшенными эксплуатационными и экологическими параметрами.

Способ переработки нефтесодержащих отходов на основе нефтешлама, мазута или их смеси с получением водоэмульсионного топлива, включающий подогрев жидких нефтесодержащих отходов, очистку с последующей подачей очищенной смеси углеводородов с водой на трехкратную гомогенизацию смеси в виброкавитационном гомогенизаторе с одновременной подачей угольной фракции от 15 до 30% от расхода подаваемой жидкости с получением гидратированного топлива при относительном центробежном ускорении ротора не менее 1200g и с зазором между ротором и статором не более 0,25 мм, отличающийся тем, что одновременно в процессе трехкратной гомогенизации смеси углеводородов в виброкавитационный гомогенизатор подают равномерно угольную фракцию, представляющую собой твердые отходы, полученные при термической переработке отходов резины и шин в процессе пиролиза в отсутствие кислорода при температуре 500-1000°С, при одновременном добавлении при первом проходе виброкавитационного гомогенизатора к твердым отходам 0,1-2% оксида магния и 0,1-1,0% низших спиртов от общего количества твердых отходов.



 

Похожие патенты:
Изобретение относится к водно-топливным эмульсиям легкого топлива, а именно к способу получения эмульсионного состава дизельного топлива, включающему постепенное введение при перемешивании воды в количестве 10 мас.% от массы всей эмульсии в анионное поверхностно-активное вещество (ПАВ), в качестве которого используется диоктилсульфосукцинат натрия в ароматическом растворителе, при массовом соотношении ПАВ в системе с водой 1:1, и добавление полученной системы в дизельное топливо, взятое в количестве 80 мас.% от массы всей эмульсии.

Изобретение относится к области топливной энергетики, а именно к способу приготовления водосодержащей топливно-угольной суспензии, включающему диспергирование мазута марки М40, содержащего 1 мас.% воды, в количестве 60 мас.%, измельчение сухого угля в количестве 40 мас.% или отсева его в дробилке до фракции менее 10 мм, подачу смеси вода-мазут и измельченного угля в смеситель, смешение их в смесителе, при последующем направлении смеси на следующий этап диспергирования крупного помола, доизмельчение суспензии в измельчителе тонкого помола, после чего суспензия приобретает гомогенность и стабильные реологические свойства, благодаря выделенным из угля гуминовым кислотам и гуматам.

Изобретение описывает способ получения композиционного топлива, включающий измельчение твердого компонента, смешивание измельченных частиц с жидким компонентом, при этом в качестве твердого компонента используют горючий сланец, измельчение осуществляют ударно-скалывающим воздействием ударом со сдвигом с ультратонким измельчением частиц до размеров 10,0-15,0 мкм, в качестве жидкого компонента используют водоуглеводородную эмульсию, полученную из нагретых до 60-95°C воды и тяжелого нефтяного остатка, затем производят смешивание измельченного твердого компонента с водоуглеводородной эмульсией, смесь подвергают гидроударному воздействию в кавитационном поле до получения размеров частиц твердого компонента 5,0-15,0 мкм.

Изобретение относится к экологичным способам производства органических веществ, таких как нефтяные вещества и ароматические кислоты, фенолы и алифатические поликарбоновые кислоты, с использованием процесса окислительного гидротермического растворения (ОГР).

Изобретение относится к нефтедобывающей промышленности, в частности к подготовке товарной нефти. Установка подготовки продукции скважин включает подводящий трубопровод, устройство подогрева, узел разрушения бронирующих оболочек, соединенный с концевым делителем фаз, трехфазный сепаратор с линией отвода воды, нефтяную и водяную буферные емкости, линию выхода воды, соединенную посредством кустовой насосной станции с входом узла разрушения бронирующих оболочек, при этом концевой делитель фаз снабжен двумя дозвуковыми соплами с возбудителями акустических колебаний в виде упругих пластин, закрепленных на соплах поперек потока воды, первый из которых с постоянной настройкой, а второй - с возможностью изменения длины активной части, при этом сопла соединены с кустовой насосной станцией патрубком.

Изобретение раскрывает водоуглеродное топливо, включающее углеродсодержащий компонент, гумат натрия и воду, при этом в качестве углеродсодержащего компонента используется твердый углеродный остаток пиролиза автошин с исходной зольностью 11,40-11,66%, сернистостью 1,2% мас., предварительно измельченный до крупности частиц 0,1 мм и обогащенный методом масляной агломерации, где в качестве реагента для обогащения используется жидкая фракция пиролиза автошин в количестве 4,0-6,0% к массе воды, используемой для обогащения, при следующем соотношении компонентов, мас.
Изобретение раскрывает топливную композицию, которая включает этиловый спирт, бутиловый спирт и бензин, при этом композиция содержит смесь этилового и бутилового спиртов, взятых в соотношении, об.

Изобретение раскрывает способ получения топливной композиции, включающий смешение бензина с бутиловым и этиловым спиртами, при этом этиловый спирт предварительно смешивают с бутиловым спиртом в соотношении 1:1 - 1:0,2, осуществляют гомогенизацию полученной смеси в виброкавитационном гомогенизаторе с вращающимся рабочим элементом ротором с перфорированной поверхностью и неподвижным рабочим элементом статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с, после чего полученную смесь этилового спирта с бутиловым спиртом смешивают с бензином в соотношении : смесь этилового спирта с бутиловым спиртом (90-30) об.

Изобретение описывает устройство для переработки нефтеотходов, включающее узел подготовки сырьевой смеси, диспергатор, резервуар готовой эмульсии, соединенный трубопроводом через обратный клапан с узлом подготовки сырьевой смеси, при этом резервуар готовой эмульсии снабжен обогревом, в частности резервуар готовой эмульсии обмотан нихромом, по которому пропускают электрический ток.
Изобретение описывает жидкий концентрат для защиты жидких топлив от загрязнения водой, по существу состоящий из: (A) от 0,5 до 5% масс. одного или нескольких жирно-(C8-C24)-амидо-(C1-С6)-алкилбетаиновых эмульгирующих агентов; (B) от 45 до 75% масс.

Изобретение относится к способу регенерации вулканизатов на основе сшитого серой каучука с получением регенерированных продуктов. Способ регенерации включает применение регенерирующего вещества, выбранного из группы, состоящей из дитиофосфорил-полисульфидов и силанов, содержащих полисульфановую группу.

Изобретение относится к области переработки полимерных отходов. Осуществляют способ утилизации полимерных отходов методом низкотемпературного каталитического пиролиза, при этом осуществляют термическую переработку полимерных отходов в шнековом реакторе без доступа кислорода в присутствии катализатора на основе цеолита ZSM-5, способ отличается тем, что в качестве катализатора используют катализатор на основе оксида железа, импрегнированного в матрицу цеолита ZSM-5, переработку отходов проводят при температуре 498-502°С в течение 59-61 минут, при использовании 1-5% от массы сырья, при этом перерабатывают полимерные отходы крупностью не более 80 мм.

Настоящее изобретение относится к способу извлечения лактида из полилактида (ПЛ), в котором а) ПЛ приводят в контакт с гидролизирующей средой в расплаве и гидролитически разлагают в олигомеры ПЛ, имеющие среднечисленную молярную массу Mn от 162 до 10000 г/моль, измеренную с помощью кислотно-основного титрования карбоксильных групп, причем гидролизирующую среду добавляют в количестве от 50 ммоль до 10 моль на кг массы ПЛ, и б) олигомеры ПЛ затем подвергают циклической деполимеризации в лактид.

Изобретение может быть использовано в химической и резиновой промышленности. Способ получения сажи из резиновых отходов включает их термическое разложение, разделение продуктов разложения на парогазовые продукты и твердый углеродный остаток, измельчение углеродного остатка до размеров частиц 0,1-2,0 мм, сжигание парогазовых продуктов с измельченным твердым углеродным остатком в весовом соотношении 1:(0,1-2).

Изобретение относится к области получения и использования регенерированной резины из вулканизированной резиновой крошки, такой как резина из отходов. Способ регенерации включает стадии увеличения скорости вала ротора для повышения температуры смеси, состоящей из вулканизированной резиновой крошки и смазочного материала до достижения температуры девулканизации; понижения температуры смеси до более низкой температуры в течение второго периода времени.

Изобретение относится к горной и нефтяной промышленности, в частности к способам утилизации отработанного полисахаридсодержащего бурового раствора, накапливаемого при строительстве нефтяных и газовых скважин.

Изобретение относится к области переработки политетрафторэтилена (ПТФЭ) и утилизации его отходов и может найти применение для получения растворов, содержащих ионы фтора (электролитов) и используемых для проведения электролиза и химических реакций в растворах с участием ионов фтора с выделением товарных продуктов, в частности водорода, ультрадисперсных оксидов металлов и других соединений.

Изобретение относится к технологии переработки промышленных и бытовых отходов. Устройство для переработки резиновых отходов включает бункер с измельченными резиновыми отходами, камеру загрузки, содержащую контейнер, заполненный отходами, который перемещают в реактор термолиза и опрокидывают, реактор термолиза выполнен в виде камеры с газоходами для вывода и подачи парогазовой смеси, устройство снабжено патрубком подачи газов в контейнер, соединенным с газоходом подачи парогазовой смеси.

Изобретение относится к получению нанодисперсного фторорганического материала, который может быть использован в качестве твердой смазки, а также в составе композиций для приборов, устройств, машин и механизмов, в том числе, масляных композиций для двигателей и трансмиссий автомобилей.

Изобретение относится к улучшенному способу химической утилизации отходов поликарбонатов путем их взаимодействия с аминами. При этом в качестве аминов берут алифатические амины, реакцию ведут при температуре от 25 до 170°C в течение 25-140 минут при массовом соотношении алифатический амин:поликарбонат не менее 0,9:1, в образовавшийся продукт аминолиза добавляют соляную кислоту до достижения pH не более 3, из образовавшейся суспензии выделяют осадок дифенилолпропана, а маточный раствор подвергают реакции с фосфористой кислотой и формалином, причем формалин представляет собой водометанольный раствор формальдегида, при температуре не менее 90°C в течение не менее 2 часов при соотношении на 1 моль аминогрупп 1-2 моля фосфористой кислоты и 1-2 моля формальдегида, с последующей нейтрализацией водным раствором аммиака.
Наверх