Способ получения наночастиц типа сердцевина/оболочка, способ получения спеченной массы с использованием этого способа и материал для термоэлектрического преобразования, полученный этим способом

Группа изобретений относится к получению наночастиц типа сердцевина/оболочка и материалам для термоэлектрического преобразования. Способ получения наночастиц включает генерирование плазмы в растворе, содержащем два типа растворенных солей металлов, с обеспечением высаживания первого металла и второго металла. Сначала генерируют плазму путем приложения первой мощности с обеспечением селективного высаживания упомянутого первого металла, который имеет больший окислительно-восстановительный потенциал, чем упомянутый второй металл, для формирования сердцевин наночастиц. Затем генерируют плазму путем приложения второй мощности, которая больше первой мощности, с обеспечением высаживания упомянутого второго металла, который имеет меньший окислительно-восстановительный потенциал, чем упомянутый первый металл, на поверхности упомянутых сердцевин из первого металла для формирования оболочек наночастиц. Материал для термоэлектрического преобразования получают спеканием наночастиц. Обеспечивается предотвращение испарения легкоиспаряющегося элемента в процессе спекания, а также отсутствие примесей от восстановителя. 3 н. и 6 з.п. ф-лы, 10 ил., 3 табл., 3 пр.

 

Область техники, к которой относится изобретение

[0001] Настоящее изобретение относится к способу получения наночастиц типа сердцевина/оболочка, к способу получения спеченной массы с использованием этого способа и к материалу для термоэлектрического преобразования, который получен этим способом.

Уровень техники

[0002] В прошлом при получении материала для термоэлектрического преобразования (сплав Bi2Te3 и т.п.) практика заключалась в добавлении восстановителя (BaBH4 и т.п.) в раствор соединения составляющих элементов (BiCl3, TeCl4 и т.п.), чтобы вызвать высаживание составляющих элементов в виде композитных наночастиц (размер частиц: десятки нанометров или где-то около того, или меньше), в сплавлении композитных наночастиц с помощью гидротермального синтеза и в спекании порошка сплава с получением материала для термоэлектрического преобразования (сплав Bi2Te3 и т.п.).

[0003] Однако этот способ имеет проблемы по следующим пунктам 1, 2 и 3:

1. Примеси (Na, B и т.п.), которые происходят из восстановителя (BaBH4 и т.п.), остаются и влияют на ухудшение характеристик термоэлектрического преобразования конечного продукта. Для удаления примесей необходимо промывать композитные наночастицы перед гидротермическим синтезом, но полное удаление является сложным. Уровень примесей после промывки не является постоянным, так что неизбежны флуктуации характеристик термоэлектрического преобразования в конце.

[0004] 2. В процессе спекания, среди составляющих элементов (Bi, Te и т.п.), легко испаряющиеся элементы (Te и т.п.) теряются из-за испарения, так что целевой состав сплава (Bi2Te3 и т.п.) не может быть реализован, и присущие ему свойства термоэлектрического преобразования не могут быть получены. В качестве меры противодействия этому можно рассматривать добавление большего количества легко испаряющегося элемента, соответствующего ожидаемому количеству потерь на испарение. Однако, например, Te является дорогостоящим, так что падение выхода должно исключаться с точки зрения затрат. По сути, степень потерь, связанных с испарением, не является постоянной, так что при конечном анализе сложно получать стабильно целевой состав.

[0005] 3. Кроме того, имеется тот недостаток, что гидротермальная обработка, которая требуется для сплавления композитных частиц, предусматривает повышение энергии и усложнение способа получения.

[0006] С другой стороны, известно использование плазменно-растворного способа получения наночастиц. PLT 1 описывает способ осуществления генерирования плазмы в водном растворе соли металла для того, чтобы сформировать металлические наночастицы с размером частиц 500 нм или менее. Сформированные наночастицы представляют собой золото, серебро, родий и платину. Кроме того, PLT 2 описывает способ распыления микрочастиц, которые сформированы с использованием плазменно-растворного способа, вместе со струей многодуговой плазмы для того, чтобы покрывать объекты (не наночастицы).

[0007] Кроме того, PLT 3 описывает материал для термоэлектрического преобразования, который состоит из структуры сердцевина/оболочка, которая имеет множество сердцевинных частей и части оболочки, которые покрывают эти сердцевинные части. Примеры показывают материал для термоэлектрического преобразования типа сердцевина/оболочка, состоящий из сердцевинных частей из наночастиц (3 нм) оксидов ZnO, которые покрыты оболочечной частью из материала для термоэлектрического преобразования CoSb3. Сердцевины функционируют в качестве рассеивающих фононы частиц, которые повышают характеристики термоэлектрического преобразования. Плазменно-растворный способ не рассматривается.

[0008] Ни один из них не может решить рассмотренные выше проблемы 1-3.

Список цитирований

[0009] Патентная литература

PLT 1: JP 2008-013810 A

PLT 2: JP 2002-045684 A

PLT 3: JP 2005-294478

Сущность изобретения

Техническая проблема

[0010] Настоящее изобретение имеет своей целью применить плазменно-растворный способ для создания способа получения наночастиц типа сердцевина/оболочка, в то же время решая указанные выше проблемы 1, 2 и 3 уровня техники, способ получения спеченной массы с использованием этого способа и материал для термоэлектрического преобразования, который получен этим способом.

Решение проблемы

[0011] Авторы участвовали в интенсивных исследованиях и в результате пришли к следующему изобретению.

<1> Способ получения наночастиц типа сердцевина/оболочка плазменно-растворным способом, причем способ получения наночастиц типа сердцевина/оболочка включает процесс вызывания генерирования плазмы в растворе так, чтобы восстановить два типа солей металлов, которые растворены в этом растворе, и вызвать высаживание первого металла и второго металла,

причем этот процесс включает следующие стадии:

первую стадию приложения первой мощности, чтобы вызвать генерирование упомянутой плазмы с тем, чтобы селективно вызвать высаживание упомянутого первого металла для того, чтобы сформировать наночастицы в качестве сердцевин, и

вторую стадию приложения второй мощности, которая больше, чем упомянутая первая мощность, чтобы вызвать генерирование упомянутой плазмы с тем, чтобы вызвать высаживание упомянутого второго металла, который имеет меньший окислительно-восстановительный потенциал, чем упомянутый первый металл, на поверхности упомянутых сердцевин для того, чтобы сформировать оболочки, которые состоят из упомянутого второго металла, которые покрывают упомянутые сердцевины, которые состоят из упомянутого первого металла.

[0012] <2> Способ получения наночастиц типа сердцевина/оболочка в соответствии с <1>, при этом упомянутую приложенную мощность увеличивают до упомянутой второй мощности, в то время как приложение упомянутой первой мощности заставляет коэффициент пропускания (%) упомянутого раствора уменьшаться линейно в зависимости от времени.

[0013] <3> Способ получения наночастиц типа сердцевина/оболочка в соответствии с <1> или <2>, при этом упомянутую прикладываемую мощность увеличивают от упомянутой первой мощности до упомянутой второй мощности, когда коэффициент пропускания (%) упомянутого раствора находится в интервале от [начального коэффициента пропускания - 3%] или менее и до [начального коэффициента пропускания - 5%] или более.

[0014] <4> Способ получения наночастиц типа сердцевина/оболочка в соответствии с любым из <1>-<3>, при этом упомянутый первый металл и второй металл представляют собой соответственно Te и Bi, и сердцевины, которые состоят из Te, покрывают оболочками, которые состоят из Bi.

[0015] <5> Способ получения наночастиц типа сердцевина/оболочка в соответствии с любым из <1>-<3>, при этом упомянутый первый металл представляет собой Au, а упомянутый второй металл представляет собой Cu или Co.

[0016] <6> Способ получения материала для термоэлектрического преобразования, который спекает наночастицы типа сердцевина/оболочка, которые получены по любому из <1>-<5>.

[0017] <7> Материал для термоэлектрического преобразования, который получен способом по <6>.

Преимущественные эффекты изобретения

[0018] В соответствии с настоящим изобретением указанные проблемы 1, 2 и 3 уровня техники решаются следующим образом:

1. Вместо использования восстановителя для восстановления используют плазменно-растворный способ, так что нет примесей (Na, B и т.п.), происходящих из восстановителя (BaBH4 и т.п.), и нет ухудшения свойств термоэлектрического преобразования конечного продукта из-за примесей, остающихся подобно тому, как было в прошлом. По этой причине промывка для удаления примесей не является необходимой, и способ получения может быть упрощен.

[0019] 2. Легко испаряющийся составляющий элемент (Te и т.п.) составляет сердцевины, и он заключен в оболочках из составляющего элемента, который не является легко испаряющимся (Bi и т.п.), так что он не теряется из-за испарения в процессе спекания. Целевой состав сплава (Bi2Te3 и т.п.) может быть надежно реализован, и присущие ему свойства термоэлектрического преобразования получаются стабильно. Нет необходимости в добавлении большего количества легко испаряющегося элемента, соответствующего количеству потерь на испарение, и может обеспечиваться высокий выход, так что это выгодно с точки зрения затрат.

[0020] 3. Кроме того, сплавление осуществляют во время спекания, так что не требуется гидротермальной обработки, которая существенна в уровне техники, и можно предотвратить увеличение потребления энергии и усложнение процесса получения.

Краткое описание чертежей

[0021] Фиг. 1 представляет собой схематический вид, который показывает устройство для осуществления плазменно-растворного способа.

Фиг. 2 представляет собой вид, который показывает изменения коэффициента пропускания раствора, сопровождающие высаживание Bi и Te плазменно-растворным способом и рост частиц.

Фиг. 3 представляет собой схематический вид, который показывает процедуру получения материала для термоэлектрического преобразования Bi2Te3 в соответствии с уровнем техники (Сравнительный пример 1).

Фиг. 4 представляет собой схематический вид, который показывает процедуру получения материала для термоэлектрического преобразования Bi2Te3 в соответствии с плазменно-растворным способом (Сравнительные примеры 2 и 3 и Пример 1).

Фиг. 5 представляет собой график, который показывает соотношение между истекшим временем и коэффициентом пропускания раствора в Сравнительных примерах 2 и 3 и в Примере 1 при плазменно-растворном способе.

Фиг. 6 представляет собой вид, который показывает вместе изображения, полученные методом сканирующей электронной микроскопии в режиме полевой эмиссии (FE-SEM), изображения, полученные методом просвечивающей электронной микроскопии (ПЭМ), и графики анализа методом энергодисперсионной рентгеновской спектроскопии (EDX) для наночастиц типа сердцевина/оболочка, которые получены с помощью Сравнительных примеров 1, 2, и 3 и Примера 1.

Фиг. 7 представляет собой вид, который показывает вместе графики рентгенофазового анализа (РФА) и значения анализа методом индуктивно связанной плазмы (ИСП) материалов для термоэлектрического преобразования Bi2Te3, которые получены с помощью Сравнительных примеров 1, 2 и 3 и Примера 1.

Фиг. 8 представляет собой вид, который показывает окислительно-восстановительные потенциалы для элементов, которые используют в примерах и сравнительных примерах.

Фиг. 9 представляет собой схематический вид, который показывает сравнение хода реакций в Сравнительных примерах 2 и 3 и в Примере 1 в соответствии с плазменно-растворным способом.

Фиг. 10 представляет собой вид, который показывает ПЭМ-изображения наночастиц типа сердцевина/оболочка, которые получены плазменно-растворным способом в (1) Примере 2 и (2) Примере 3.

Описание вариантов осуществления

[0022] В настоящем изобретении, при осуществлении плазменно-растворного способа в растворе, в котором растворены несколько типов (как правило, два типа) солей металлов, сначала используют малую мощность для генерирования плазмы и вызывают селективное высаживание первого металла с большим окислительно-восстановительным потенциалом (легко восстанавливающегося) с формированием сердцевинных частиц, затем мощность генерирования плазмы увеличивают и вызывают высаживание второго металла с малым окислительно-восстановительным потенциалом (не восстанавливающегося легко). Второй металл высаживается на поверхностях сердцевинных частиц первого металла, которые были высажены и сформировались первыми, образуя оболочки. Благодаря этому получают наночастицы типа сердцевина/оболочка, состоящие из сердцевин из первого металла, заключенных внутри оболочек из второго металла.

[0023] Раствор по настоящему изобретению должен всего лишь представлять собой такой раствор, в котором растворено множество различных типов солей металлов. Это связано с тем, что когда типы металлов различаются, различаются и окислительно-восстановительные потенциалы, поэтому возможно восстановление ионов металлов в растворе по стадиям. По этой причине типы выбранных металлов должны только отличаться друг от друга. Ограничений относительно выбора металлов нет.

[0024] Настоящее изобретение является пригодным для получения материала для термоэлектрического преобразования, так что предпочтительно выбирать металлы, которые образуют материал для термоэлектрического преобразования. Например, предпочтительны металлы, которые образуют материалы для термоэлектрического преобразования на основе селена, материалы для термоэлектрического преобразования на основе теллура и материалы для термоэлектрического преобразования на основе сурьмы. В дополнение к материалам для термоэлектрического преобразования, предпочтительными являются металлы, которые образуют металлические катализаторы. Ниже они будут пояснены.

[0025] В качестве материалов для термоэлектрического преобразования на основе селена имеются Bi2Se3, PbSe, Sb2Se3 и AgSe. При этом имеется материал не для термоэлектрического преобразования, в качестве материала на основе селена, который используют для оптических устройств и т.п., то есть ZnSe. Среди этих материалов, например, в случае Bi2Se3, среди Bi и Se, металл с более высоким окислительно-восстановительным потенциалом становится первым металлом, в то время как металл с меньшим окислительно-восстановительным потенциалом становится вторым металлом.

[0026] В качестве материалов для термоэлектрического преобразования на основе теллура имеются Bi2Te3, PbTe, Ag2Te и La2Te3. При этом имеется материал не для термоэлектрического преобразования, в качестве материала на основе теллура, который используют для светодиодов и т.п., то есть ZnTe. Кроме того, в качестве материала на основе теллура, который используют для ИК линз и т.п., имеется CdTe. Среди этих материалов на основе теллура, Bi2Te3 является типичным, так что это будет объясняться подробно далее.

[0027] В качестве материалов для термоэлектрического преобразования на основе сурьмы имеются Zn4Sb3 и PbSb. При этом имеется материал не для термоэлектрического преобразования, в качестве материала на основе сурьмы, который используют в качестве устройства на эффекте Холла, то есть InSb. Среди этих материалов, например, в случае Zn4Sb3, среди Zn и Sb, металл с более высоким окислительно-восстановительным потенциалом становится первым металлом, в то время как металл с меньшим окислительно-восстановительным потенциалом становится вторым металлом.

[0028] В качестве иных примеров применения, чем материалы для термоэлектрического преобразования, имеются металлический катализатор типа сердцевина из Au/оболочка из Cu и металлический катализатор типа сердцевина из Au/оболочка из Co. Эти металлические катализаторы будут объясняться далее подробно.

[0029] Кроме того, будет объясняться случай, когда присутствуют три или более типов солей металлов. В качестве материалов для термоэлектрического преобразования имеются, например, AgSbTe2, BiSbTe, BiSbTeSe, Zn4(Sb0,97Sn0,03)3, InxCo4Sb12 (0<x<1) и другие материалы для термоэлектрического преобразования.

[0030] Далее будет пояснен способ переключения с приложения первой мощности на приложение второй мощности. При высаживании частиц металлов и росте частиц коэффициент пропускания раствора падает. Это используют для получения данных о состоянии высаживания металла и росте частиц вследствие приложения мощности.

[0031] Способ измерения коэффициента пропускания не является как-либо ограниченным, но анализ методом УФ-Вид (спектрометрия видимого и ультрафиолетового излучения) является предпочтительным с точки зрения точности и т.п.

[0032] Критерии оценки для переключения можно определить на основе идеи прекращения высаживания первого металла и начала высаживания второго металла, когда сердцевина, которая образована первым металлом, вырастает до размера, достаточно большого для начала формирования оболочки вторым металлом. Для начала формирования оболочки вторым металлом размер сердцевины, которая образована первым металлом, предпочтительно находится в пределах больше нескольких нм.

[0033] Пока размер сердцевины, которая образована первым металлом, не достиг величины больше нескольких нм, во время приложения первой мощности, коэффициент пропускания падает медленно и линейно с практически постоянной скоростью падения, так что предпочтительно переключаться с первой мощности на вторую мощность в течение этого периода.

[0034] Такой период, в большинстве случаев, представляет собой тот, где коэффициент пропускания представляет собой значение в интервале от [начального коэффициента пропускания - 3%] до [начального коэффициента пропускания - 5%]. По этой причине тот факт, что коэффициент пропускания находится в этом периоде, можно использовать в качестве критерия оценки для переключения.

[0035] Далее будут использованы типичные аспекты для дополнительного объяснения того, что объяснялось до сих пор.

[0036] В одном из типичных аспектов настоящее изобретение может применяться при получении материала для термоэлектрического преобразования Bi2Te3. То есть плазменно-растворный способ осуществляют в растворе, в котором растворены соли Bi и соли Te, с помощью двух стадий значений мощности: малого значения и большого значения. Сначала, при использовании малого значения мощности, чтобы вызвать генерирование плазмы, среди Bi и Te, легко восстанавливающийся Te с большим окислительно-восстановительным потенциалом высаживается в качестве первого металла с образованием сердцевинных частиц. Далее, при использовании большего значения мощности, чтобы вызвать генерирование плазмы, среди Bi и Te, не восстанавливающийся легко Bi с малым окислительно-восстановительным потенциалом высаживается в качестве второго металла. Это высаживание Bi происходит предпочтительно на уже присутствующих сердцевинных частицах из Te. Благодаря этому получают наночастицы типа сердцевина/оболочка, состоящие из сердцевин из Te, заключенных внутри оболочек из Bi.

[0037] Благодаря этой структуре «сердцевина из Te/оболочка из Bi» предотвращаются потери легко испаряющегося Te на испарение во время спекания и стабильно обеспечивается изначальный состав Bi2Te3. Фиг. 1 схематически показывает плазменно-растворное устройство, которое используют для настоящего изобретения. Прикладывая напряжение между электродами в растворе, раствор локально нагревают между электродами, и происходит пробой изоляции в мелкодисперсных пузырьках, которые образуются, при этом начинается плазменный разряд.

[0038] Фиг. 2 показывает изменения коэффициента пропускания раствора, сопровождающие высаживание Bi и Te в соответствии с плазменно-растворным способом и рост частиц. Bi и Te высаживаются в растворе, который показан на левом краю фигуры. Три фотографии, размещенные в ряд слева направо, показывают состояние падения коэффициента пропускания раствора в соответствии с увеличением величины высаживания с течением времени (числа и размера осадков). В настоящем изобретении малое значение мощности на первой стадии для осуществления высаживания сердцевин переключают на большое значение мощности на второй стадии для осуществления высаживания оболочек в тот момент времени, когда коэффициент пропускания раствора, который используют для мониторинга величины высаживании, достигает заданного коэффициента пропускания. Ниже будут использоваться примеры для более подробного объяснения настоящего изобретения.

Примеры

Сравнительный пример 1

[0039] Для сравнения использовали уровень техники с применением восстановителя для получения материала для термоэлектрического преобразования Bi2Te3. Приготавливали следующие исходный раствор и раствор восстановителя.

[0040] Исходный раствор

BiCl3: 0,170 г

TeCl4: 0,214 г

Этанол: 100 мл

[0041] Раствор восстановителя

NaBH4: 0,218 г

Этанол: 100 мл

[0042] Фиг. 3 показывает процедуру приготовления. Сначала, как показано в (1), раствор восстановителя добавляли к исходному раствору для того, чтобы вызвать высаживание Bi и Te. Полученный смешанный порошок Bi и Te, как показано в (2), сплавляли с помощью гидротермального синтеза. Далее, продукт фильтровали (3) и промывали (4) для удаления примесей. Полученный сплавленный порошок наблюдали в СЭМ, наблюдали в ПЭМ и анализировали методом EDX. Наконец, порошок сплава спекали (5) с получением материала для термоэлектрического преобразования Bi2Te3. Этот материал для термоэлектрического преобразования Bi2Te3 анализировали методами РФА и ИСП.

Сравнительный пример 2

[0043] Для сравнения, плазменно-растворный способ использовали для получения материала для термоэлектрического преобразования Bi2Te3 без переключения мощности в соответствии с настоящим изобретением. Использовали следующие исходный раствор, напряжение и мощность.

[0044] Исходный раствор

BiCl3: 0,170 г

TeCl4: 0,214 г

Этанол: 200 мл

[0045] Напряжение и мощность

Прикладываемое напряжение: 1,5 кВ

Подводимая мощность: 50 Вт (постоянная)

[0046] Фиг. 4 показывает процедуру приготовления. Сначала, как показано в (1), прикладывали напряжение 1,5 кВ к исходному раствору между электродами и подводили постоянную мощность 50 Вт, чтобы вызвать высаживание Bi и Te. Полученный смешанный порошок Bi и Te фильтровали (2) и промывали (3) для удаления примесей, затем наблюдали с помощью СЭМ, наблюдали с помощью ПЭМ и анализировали с помощью EDX. Наконец, смешанный порошок спекали (4) с получением материала для термоэлектрического преобразования Bi2Te3. Этот материал для термоэлектрического преобразования Bi2Te3 анализировали методами РФА и ИСП.

Сравнительный пример 3

[0047] Для сравнения плазменно-растворный способ использовали для получения материала для термоэлектрического преобразования Bi2Te3 без переключения мощности в соответствии с настоящим изобретением. Использовали следующие исходный раствор, напряжение и мощность.

[0048] Исходный раствор

BiCl3: 0,170 г

TeCl4: 0,214 г

Этанол: 200 мл

[0049] Напряжение и мощность

Прикладываемое напряжение: 1,5 кВ

Подводимая мощность: 140 Вт (постоянная)

[0050] Фиг.4 показывает процедуру приготовления. Сначала, как показано в (1), прикладывали напряжение 1,5 кВ к исходному раствору между электродами и подводили постоянную мощность 140 Вт, чтобы вызвать высаживание Bi и Te. Полученный смешанный порошок Bi и Te фильтровали (2) и промывали (3) для удаления примесей, затем его наблюдали с помощью СЭМ, наблюдали с помощью ПЭМ и анализировали с помощью EDX. Наконец, смешанный порошок спекали (4) с получением материала для термоэлектрического преобразования Bi2Te3. Этот материал для термоэлектрического преобразования Bi2Te3 анализировали методами РФА и ИСП.

Пример 1

[0051] Плазменно-растворный способ использовали для получения материала для термоэлектрического преобразования Bi2Te3, переключая при этом мощность в соответствии с настоящим изобретением. Использовали следующие исходный раствор, напряжение и мощность.

[0052] Исходный раствор

BiCl3: 0,170 г

TeCl4: 0,214 г

Этанол: 200 мл

[0053] Напряжение и мощность

Прикладываемое напряжение: 1,5 кВ

Подводимая мощность: 50 Вт → 140 Вт (переключение)

[0054] Фиг. 4 показывает процедуру приготовления. Сначала, как показано в (1), прикладывали напряжение 1,5 кВ к исходному раствору между электродами, причем сначала подводили мощность 50 Вт, чтобы вызвать высаживание Te с формированием сердцевинных частиц, затем подводимую мощность увеличивали до 140 Вт, чтобы вызвать высаживание Bi с формированием оболочек. Полученный порошок «сердцевина из Te/оболочка из Bi» фильтровали (2), промывали (3) для удаления примесей, затем наблюдали с помощью СЭМ, наблюдали с помощью ПЭМ и анализировали с помощью EDX. Наконец, этот порошок сердцевина/оболочка спекали (4) с получением материала для термоэлектрического преобразования Bi2Te3. Этот материал для термоэлектрического преобразования Bi2Te3 анализировали методами РФА и ИСП.

[0055] Обращаясь к Фиг. 5, будет пояснен временной график переключения значения мощности. Фиг. 5 показывает изменения коэффициента пропускания раствора в зависимости от истекшего времени.

[0056] Сравнительный пример 2 осуществляли без изменения подводимой мощности при малом значении мощности 50 Вт от начала до конца. По этой причине легко восстанавливающийся Te с большим окислительно-восстановительным потенциалом селективно высаживался. Увеличение величины высаживании с течением времени вызывало падение коэффициента пропускания. На фигуре коэффициент пропускания медленно падал линейно с течением времени до 90 минут истекшего времени (то есть с практически постоянной малой скоростью падения), коэффициент пропускания падал на кривой зависимости от времени около 90 минут истекшего времени (то есть с практически непрерывно увеличивающейся скоростью падения), затем коэффициент пропускания быстро падал линейно с течением времени (то есть с практически постоянной большой скоростью падения). Как предполагается, это связано с тем, что примерно до 90 минут число первичных частиц Te увеличивалось, а затем первичные частицы агломерировались и размер частиц увеличивался.

[0057] В противоположность этому, Сравнительный пример 3 осуществляли без изменения подводимой мощности при большом значении мощности 140 Вт от начала до конца. В этом случае, разумеется, высаживались Te, а также не восстанавливающийся легко Bi с малым окислительно-восстановительным потенциалом, так что коэффициент пропускания быстро падал за короткое время.

[0058] Пример 1 в соответствии с настоящим изобретением осуществляли, сначала вызывая селективное высаживание Te при малом значении мощности 50 Вт, с переключением затем на большое значение мощности 140 Вт. Временными рамками этого переключения может быть тот момент времени, когда коэффициент пропускания раствора (%) становится равным значению в интервале от [начального коэффициента пропускания - 3%] до [начального коэффициента пропускания - 5%]. В этом примере, как показано на Фиг.5, начальный коэффициент пропускания составляет 80%, так что момент времени, когда коэффициент пропускания падает от [80%-3%] до [80%-5%], то есть, попадает в диапазон от 77% до 75%, соответствует временным рамкам переключения.

[0059] То есть, до того как легко восстанавливающийся элемент образует сердцевины и вырастет до протяженности, превышающей наноразмер (десятки нм), удобно переключиться с малой мощности на большую мощность, чтобы начать формирование оболочек. На временном графике переключения мощности, который используется в настоящем примере, это показано как "время переключения" в верхней части Фиг.5. Как правило, не ограничиваясь составом на основе Te-Bi, но и при других составах, прикладываемую мощность увеличивают с малой мощности до большой мощности в тот период, когда коэффициент пропускания медленно падает линейно с течением времени при малой мощности (то есть при практически постоянной скорости падения).

[0060] Коэффициент пропускания раствора может измеряться с помощью анализа УФ-Вид (спектрометрии ультрафиолетового и видимого света).

Наблюдение и анализ порошка

[0061] Фиг. 6 показывает вместе результаты наблюдения в СЭМ, наблюдения в ПЭМ и EDX-анализа образцов порошка (перед спеканием), которые получили в Сравнительных примерах 1, 2 и 3 и Примере 1.

[0062] Сравнительный пример 1 представляет собой образец порошка, который приготовили согласно уровню техники с использованием восстановителя. Два наблюдаемых местоположения сходным образом анализировали с помощью EDX, при этом обнаружили пик Bi и пик Te. Выяснили, что Bi и Te однородно смешаны друг с другом.

[0063] Сравнительный пример 2 представляет собой образец порошка, который приготовили плазменно-растворным способом при подводе постоянной малой мощности (50 Вт) от начала до конца. Из сравнения интенсивностей пиков Bi и Te при EDX-анализе выяснили, что легко восстанавливающийся Te с большим окислительно-восстановительным потенциалом высажен с приоритетом.

[0064] Сравнительный пример 3 представляет собой образец порошка, который приготовили плазменно-растворным способом при подводе постоянной большой мощности (140 Вт) от начала до конца. Два наблюдаемых местоположения сходным образом анализировали с помощью EDX, при этом обнаружили пик Bi и пик Te. Выяснили, что не только легко восстанавливающийся Te, но и не восстанавливающийся легко Bi с малым окислительно-восстановительным потенциалом высаживались одновременно. Выяснили, что таким же образом, как и в Сравнительном примере 1 согласно уровню техники, Bi и Te были однородно смешаны друг с другом.

[0065] Пример 1 показывает образец порошка, который приготовили посредством переключения подводимой мощности с малого значения мощности на большое значение мощности плазменно-растворным способом в соответствии с настоящим изобретением. То есть, богатая Te область (местоположение 2 на фотографии FE-SEM), полученная посредством подвода малой мощности (50 Вт) на первой стадии, так что селективно высаживался легко восстанавливающийся Te с большим окислительно-восстановительным потенциалом, и богатая Bi область (местоположение 1 на фотографии FE-SEM), полученная посредством подвода большой мощности (140 Вт) на второй стадии, так что высаживался не восстанавливающийся легко Bi с малым окислительно-восстановительным потенциалом, четко существуют в виде отдельных фаз.

[0066] На второй стадии с большой мощностью Te уже селективно высажен на первой стадии и остается в растворе лишь в малом количестве, так что величина высаживания на второй стадии была небольшой. Bi вообще не высаживался на первой стадии и остается в большом количестве, так что величина его высаживания на второй стадии является преобладающе большой. Кроме того, из изображения FE-SEM и ПЭМ-изображения выяснили, что богатая Bi фаза 1 окружала богатую Te фазу 2 и что образовалась структура сердцевины из Te/оболочка из Bi.

Анализ материала для термоэлектрического преобразования

[0067] Фиг. 7 показывает вместе результаты РФА-анализа и ИСП-анализа материалов для термоэлектрического преобразования (спеченных масс), которые получили в Сравнительных примерах 1, 2 и 3 и Примере 1.

[0068] По результатам РФА-анализа, Сравнительный пример 1 (согласно уровню техники с использованием восстановителя), Сравнительный пример 3 (плазменно-растворный способ с большой мощностью от начала до конца) и Пример 1 (плазменно-растворный способ с мощностью, переключаемой с малой на большую в соответствии с настоящим изобретением) демонстрировали четкие пики от кристаллической решетки Bi2Te3. Может быть подтверждено образование сплава материала для термоэлектрического преобразования Bi2Te3. В противоположность этому, в Сравнительном примере 2 кристаллическая решетка Bi2Te3 была нечеткой (Te преимущественно высаживался плазменно-растворным способом с использованием малой мощности от начала до конца), и образование сплава Bi2Te3 является неполным.

[0069] По результатам ИСП-анализа, в Примере 1 согласно настоящему изобретению значение, самое близкое к стехиометрическому отношению компонентов смеси Te/Bi=1,5 (загруженные значения), стабильно получали для трех наблюдаемых точек. Выяснили, что во время спекания можно эффективно предотвратить потери на испарение Te.

[0070] В противоположность этому, все отношения Te/Bi в Сравнительных примерах 1–3 были хуже, чем в Примере по настоящему изобретению.

[0071] В Сравнительном примере 1 способа по уровню техники выяснили, что среднее значение для трех наблюдаемых точек было самым низким, а величина испарения Te во время спекания была большой.

[0072] Фиг. 8 показывает сравнение окислительно-восстановительных потенциалов элементов, которые использованы в сравнительных примерах и примерах. Кроме того, Таблица 1 показывает характеристику давления насыщенных паров, в то время как Таблица 2 показывает температуру плавления и температуру кипения для Bi и Te.

[0073]

Таблица 1
Характеристика давления насыщенных паров
Температура (°C)
1 мм рт. ст. 100 мм рт. ст. 760 мм рт. ст.
Bi 1021 1271 1420
Te 520 838 1087

[0074]

Таблица 2
Температура плавления и температура кипения
Температура (°C)
Температура плавления Температура кипения
Bi 271,5 1564
Ti 449,51 988

[0075] Сравнительные примеры 2 и 3 и Пример 1, которые применяли плазменно-растворный способ, сравнили по процессу образования композитных частиц и поведению во время спекания, ссылаясь при этом на Фиг. 9.

[0076] Как показано на Фиг. 9(1), в Сравнительном примере 2 подводили постоянную малую мощность от начала до конца, так что сначала восстанавливался и высаживался Te и частицы Te росли, затем восстанавливался Bi и росли частицы композита BiTe. Однако "композит" в данном случае представляет собой просто тот случай, когда частицы Bi и частицы Te просто смешаны друг с другом в соприсутствии. Структура сердцевина/оболочка не сформировалась.

[0077] В случае этого Сравнительного примера 2, в результате анализа методом ИСП по Фиг. 7, среднее значение для трех наблюдаемых точек было близким к загружаемому значению 1,5, но в трех наблюдаемых точках имелся большой разброс от максимального значения 1,721 до минимального значения 1,289. Как предполагается исходя из РФА-анализа по Фиг. 7, полагают, что образование сплава в процессе спекания было неполным.

[0078] Как показано на Фиг. 9(2), в Сравнительном примере подводили постоянную большую мощность от начала до конца, так что сразу после того, как Te начал восстанавливаться и высаживаться, начинал восстанавливаться и высаживаться Bi, и росли частицы композита BiTe. Однако и в этом случае также, даже если упоминается "композит", частицы Bi и частицы Te были просто смешаны друг с другом в соприсутствии. Структура сердцевина/оболочка не сформировалась.

[0079] В случае Сравнительного примера 3, как объясняться выше, при РФА-анализе по Фиг. 7 четко распознавался пик от кристаллической решетки Bi2Te3 и образовывался сплав, но, как объясняться выше, структура сердцевина/оболочка не сформировалась, так что отношение Te/Bi падало из-за испарения Te в процессе спекания.

[0080] Как показано на Фиг. 9(3), в Примере 1 сформировалась структура сердцевина/оболочка, состоящая из сердцевин из Te, которые образовались на первой стадии подвода малой мощности, покрытых оболочками из Bi, которые образовались на второй стадии подвода большой мощности, так что в процессе спекания предотвращалось испарение Te, но при этом достигалось сплавление и можно было стабильно обеспечивать отношение Te/Bi, близкое к стехиометрическому отношению компонентов смеси.

Пример 2

[0081] Плазменно-растворный способ использовали для получения наночастиц типа сердцевина/оболочка с сердцевиной из Au/оболочкой из Cu, пригодных для применения в качестве металлического катализатора, с переключением мощности в соответствии с настоящим изобретением. Использовали следующие исходный раствор, напряжение и мощность.

[0082] Исходный раствор

Тетрахлорзолотая (III) кислота [HAuCl4⋅4H2O]: 1,2 ммоль

Ацетат меди (II) [Cu(CH3COO)2⋅H2O]: 4,8 ммоль

NaI: 5 ммоль

Этанол: 200 мл

[0083] Напряжение и мощность

Прикладываемое напряжение: 1,5 кВ

Подводимая мощность: 50 Вт→140 Вт (переключение)

[0084] Фиг. 10(1) показывает ПЭМ-изображение образца порошка. Будет понятно, что сформировалась структура сердцевина/оболочка с сердцевиной из Au/оболочкой из Cu.

Пример 3

[0085] Плазменно-растворный способ использовали для получения наночастиц типа сердцевина/оболочка с сердцевиной из Au/оболочкой из Co, пригодных для применения в качестве металлического катализатора, с переключением мощности в соответствии с настоящим изобретением. Использовали следующие исходный раствор, напряжение и мощность.

[0086] Исходный раствор

Тетрахлорзолотая (III) кислота [HAuCl4⋅4H2O]: 1,2 ммоль

Ацетат кобальта (II) [Co(CH3COO)2⋅4H2O]: 4,8 ммоль

NaI: 5 ммоль

Этанол: 200 мл

[0087] Напряжение и мощность

Прикладываемое напряжение: 1,5 кВ

Подводимая мощность: 50 Вт→140 Вт (переключение)

[0088] Фиг. 10(2) показывает ПЭМ-изображение образца порошка. Будет понятно, что сформировалась структура сердцевина/оболочка с сердцевиной из Au/оболочкой из Co.

[0089] Выше пояснены примеры применения способа по настоящему изобретению для получения материала для термоэлектрического преобразования Bi2Te3 (Пример 1) и получения металлического катализатора типа сердцевина из Au/оболочка из Cu (или Co) (Примеры 2 и 3), но настоящее изобретение не ограничивается ими. Например, оно может также применяться к следующему:

[0090]

Таблица 3
Состав Материалы Примеры применения
На основе селена BiSe3 Термоэлектрическое преобразование
PbSe Термоэлектрическое преобразование
Sb2Se3 Термоэлектрическое преобразование
ZnSe Оптические компоненты, инфракрасные датчики, приборы ночного видения, ИК- оптика, сцинтилляторы, подложки, модуляторы
AgSe Термоэлектрическое преобразование
На основе теллура PbTe Термоэлектрическое преобразование
Ag2Te Термоэлектрическое преобразование
(AgSbTe2) Термоэлектрическое преобразование
La2Te3 Термоэлектрическое преобразование
ZnTe Светодиод или лазерный диод, ИК-оптика, подложки, ТГц детекторы, ТГц излучатели
CdTe ИК-оптика, электрооптические модуляторы, подложки, кристаллические детали детекторов для вакуумного осаждения
На основе сурьмы Zn4Sb3 Термоэлектрическое преобразование
InSb Элементы на эффекте Холла и магниторезистивные элементы
PdSb Термоэлектрическое преобразование
На основе серы ZnS Фотодатчики, ИК-оптика, ИК-оптика, поляризаторы, расщепители луча, 1/2- и 1/4-волновые пластинки, подложки
CdS Элементы с фотопроводимостью, фотодатчики
PdS Солнечные батареи
На основе множества
элементов
BiSbTe Термоэлектрическое преобразование
BiSbTeSe Термоэлектрическое преобразование
Zn4(Sb0,97Sn0,03)3 Термоэлектрическое преобразование
InxCo4Sb12 (0<x<1) Термоэлектрическое преобразование

Промышленная применимость

[0091] В соответствии с настоящим изобретением плазменно-растворный способ можно использовать для формирования наночастиц типа сердцевина/оболочка. Благодаря этому, как правило, при получении материала для термоэлектрического преобразования, можно предотвратить испарение легко испаряющегося элемента в процессе спекания с тем, чтобы обеспечить целевой химический состав, можно легко достичь высокой чистоты, поскольку нет загрязнения происходящими из восстановителя примесями, и можно уменьшить затраты на получение, поскольку не требуется гидротермальной реакции для сплавления.

1. Способ плазменно-растворного получения наночастиц типа сердцевина/оболочка, включающий генерирование плазмы в растворе, содержащем два типа растворенных солей металлов, с обеспечением высаживания первого металла и второго металла, причем сначала генерируют плазму путем приложения первой мощности с обеспечением селективного высаживания упомянутого первого металла, который имеет больший окислительно-восстановительный потенциал, чем упомянутый второй металл, для формирования сердцевин наночастиц, а затем генерируют плазму путем приложения второй мощности, которая больше первой мощности, с обеспечением высаживания упомянутого второго металла, который имеет меньший окислительно-восстановительный потенциал, чем упомянутый первый металл, на поверхности упомянутых сердцевин из первого металла для формирования оболочек наночастиц.

2. Способ по п. 1, отличающийся тем, что упомянутую приложенную мощность увеличивают до упомянутой второй мощности, при этом приложение упомянутой первой мощности обеспечивает линейное уменьшение коэффициента пропускания (%) упомянутого раствора.

3. Способ по п. 1 или 2, отличающийся тем, что упомянутую прикладываемую мощность увеличивают от упомянутой первой мощности до упомянутой второй мощности с обеспечением коэффициента пропускания (%) упомянутого раствора, измеренного спектрометрией видимого и ультрафиолетового излучения, в интервале от [начального коэффициента пропускания - 3%] или менее и до [начального коэффициента пропускания - 5%] или более.

4. Способ п. 1 или 2, отличающийся тем, что упомянутые первый металл и второй металл представляют собой соответственно Те и Bi, и сердцевины, которые состоят из Те, покрываются оболочками, которые состоят из Bi.

5. Способ по п. 3, отличающийся тем, что упомянутые первый металл и второй металл представляют собой соответственно Те и Bi, и сердцевины, которые состоят из Те, покрывают оболочками, которые состоят из Bi.

6. Способ п. 1 или 2, отличающийся тем, что упомянутый первый металл представляет собой Au, а упомянутый второй металл представляет собой Cu или Со.

7. Способ по п. 3, отличающийся тем, что упомянутый первый металл представляет собой Au, а упомянутый второй металл представляет собой Cu или Со.

8. Способ получения материала для термоэлектрического преобразования, включающий спекание наночастиц типа сердцевина/оболочка, полученных способом по любому из пп. 1-7.

9. Материал для термоэлектрического преобразования, который получен способом по п. 8.



 

Похожие патенты:

Изобретение относится к области термоэлектрического преобразования энергии. Сущность: термоэлектрический материал содержит полупроводниковую подложку, полупроводниковую оксидную пленку, образованную на полупроводниковой подложке, и термоэлектрический слой, выполненный на полупроводниковой оксидной пленке.

Изобретение может быть использовано в электронике при получении прозрачных электродов, дисплеев, беспроводных электронных устройств, элементов памяти, микропроцессоров, электронных паспортов, карточек, сенсоров, биосовместимых электронных имплантов.

Изобретение относится к области приборостроения и может быть использовано при проведении измерений теплофизических и/или структурных параметров образца. Предложен блок держателей нанокалориметрических сенсоров, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике).

Изобретение относится к области приборостроения и может быть использовано для нанокалориметрических измерений. Заявляемое термостатирующее устройство для нанокалориметрических измерений на чипе со сверхбыстрыми скоростями нагрева и охлаждения обеспечивает стабильную передачу аналогового сигнала от нанокалориметрического сенсора до аналого-цифрового преобразователя, размещенного в электронном контроллере; обеспечивает жесткое закрепление нанокалориметрического сенсора в активной области сканирования дифрактометра или любого другого прибора по измерению структурных характеристик образцов; а также позволяет использовать при измерениях дополнительный (эталонный) нанокалориметрический сенсор для снятия базовой линии эксперимента, используемой при дальнейшей обработке полученных экспериментальных данных.

Изобретение относится к области сельского хозяйства. В способе на поверхность почвы предварительно наносят структуроформирующую добавку, в качестве которой используют наноглауконит, который наносят на поверхность почвы в количестве (30,0-40,0) кг на 1 га посевной площади.

Группа изобретений относится к области медицины и может быть использована для изучения процесса накопления магнитных наночастиц в заданном участке сосудистой системы под воздействием внешнего магнитного поля.

Изобретение относится к способу изготовления содержащей наночастицы маточной смеси в каучуках высокой вязкости с помощью триовальцов. Порошкообразные наночастицы смешивают по меньшей мере с одним полимерным латексом, нагревают до температур от 100°С до 200°С, а после удаления воды диспергируют на триовальцах.

Изобретение относится к нефтяной промышленности, в частности к способам переработки тяжелых нефтей и/или природных битумов. Способ переработки тяжелой нефти и/или природного битума включает разделение сырья на дистиллят и остаточные фракции путем подачи нагретого до 360°С сырья в испаритель под давлением и распыливания его через форсунку по направлению снизу вверх.

Изобретение относится к получению многофункциональных защитных покрытий на лакокрасочной основе, обладающих водоотталкивающими, антифрикционными, противоизносными, противообрастающими свойствами, и может быть использовано в судостроении и судоремонте, в строительстве при возведении металлических конструкций и сооружений, в различных областях машиностроения.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Углеродный наноматериал - нанотрубки или графен, частицы которых содержат на поверхности кислородсодержащие группы, обрабатывают раствором водорастворимого резольного фенолформальдегидного полимера при воздействии механической энергии.

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов.

Изобретение относится к коллоидному раствору наносеребра в органическом растворителе - метилцеллозольве и способу его получения. Предложенный коллоидный раствор содержит метилцеллозольв и наночастицы серебра и имеет концентрацию наночастиц серебра от 0,29 до 0,30 мас.%, при следующем долевом распределении наночастиц серебра по размеру: 80% - наночастиц размером 50-75 нм, 20% - наночастиц размером от 80 нм до 100 нм.

Изобретение может быть использовано в медицине, косметологии и пищевой промышленности. Для получения наночастиц серебра сначала готовят водный раствор стабилизатора.

Изобретение относится к порошковой металлургии и может быть использовано для производства паяльных паст. Электролизер для получения порошка припоя содержит ванну, заполненную электролитом, анод, выполненный в виде кольцевого цилиндра, соосно помещенный в анод катод, выполненный в виде пакета электроизолированных игл, установленных остриями в направлении анода.

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра.

Предлагаемое изобретение относится к получению коллоидного раствора наносеребра в этиленгликоле. Коллоидный раствор содержит этиленгликоль и наночастицы серебра в концентрации от 1 до 100 мг/л.

Изобретение относится к области нанотехнологий и нанохимии, а точнее к цитратам металлов, и может быть использовано в парфюмерной, пищевой промышленности, в медицине, в сельском хозяйстве, в биологии и в других областях науки, промышленности и экологии.

Изобретение относится к способу получения кристаллических нанопорошков металлов с размером кристаллитов менее ≤10 нм и может быть использовано в химической промышленности, для производства полупродуктов для мелкозернистых керамических материалов.

Группа изобретений относится к получению наночастиц типа сердцевинаоболочка и материалам для термоэлектрического преобразования. Способ получения наночастиц включает генерирование плазмы в растворе, содержащем два типа растворенных солей металлов, с обеспечением высаживания первого металла и второго металла. Сначала генерируют плазму путем приложения первой мощности с обеспечением селективного высаживания упомянутого первого металла, который имеет больший окислительно-восстановительный потенциал, чем упомянутый второй металл, для формирования сердцевин наночастиц. Затем генерируют плазму путем приложения второй мощности, которая больше первой мощности, с обеспечением высаживания упомянутого второго металла, который имеет меньший окислительно-восстановительный потенциал, чем упомянутый первый металл, на поверхности упомянутых сердцевин из первого металла для формирования оболочек наночастиц. Материал для термоэлектрического преобразования получают спеканием наночастиц. Обеспечивается предотвращение испарения легкоиспаряющегося элемента в процессе спекания, а также отсутствие примесей от восстановителя. 3 н. и 6 з.п. ф-лы, 10 ил., 3 табл., 3 пр.

Наверх