Экспрессный способ установления фальсификации молока разбавлением его водой по сигналам массива пьезосенсоров

Изобретение относится к аналитической химии пищевых продуктов и может быть использовано для установления фальсификации молока водой. Способ предусматривает использование детектирующего устройства типа «электронный нос», матрицу которого формируют на основе четырех пьезосенсоров резонансного типа. На обезжиренные электроды пьезосенсоров с частотой колебаний 8-10 МГц наносят пленку определенного сорбента массой 10-15 мкг: родамин 6G (Род6Ж), полиэтиленгликольадипинат (ПЭГА), дициклогексан 18 Краун-6N (18-К-6), пчелиный клей (ПчК). Пьезосенсоры выдерживают до установления стабильной частоты колебания, затем отбирают образцы проб, помещают в стеклянные герметичные сосуды с полимерной мягкой мембраной и выдерживают в течение 10-15 мин при температуре 18-22°С. С помощью одноразового шприца отбирают 2 см3 равновесной газовой фазы и вводят в статическую ячейку детектирующего устройства, регистрируют отклики пьезосенсоров в течение 60 с, выбирают наибольший аналитический сигнал ΔFc, рассчитывают отношения сигналов: и , где ΔFРод6Ж - аналитический сигнал пьезосенсора с сорбентом Род6Ж; ΔF18-K-6 - аналитический сигнал пьезосенсора с сорбентом 18-К-6; ΔFПЭГА - аналитический сигнал пьезосенсора с сорбентом ПЭГА; ΔFПчК - аналитический сигнал пьезосенсора с сорбентом ПчК, и сопоставляют с аналогичными показателями для стандартной пробы, при этом одновременно увеличение отношения сигналов по сравнению со стандартом более чем на 30% и уменьшение отношения сигналов более чем на 10% характеризует завышенное содержание воды в молоке, что свидетельствует о фальсификации молока разбавлением его водой. Достигается высокая экспрессность, точность, объективность измерения и надежность определения факта фальсификации молока водой. 1 пр., 2 табл., 2 ил.

 

Изобретение относится к аналитической химии пищевых продуктов и может быть использовано для установления факта фальсификации молока разбавлением его водой.

Известен способ выявления фальсификации молока разбавлением водой по снижению показателя плотности [опубликовано на сайте http://www.lactoscan.com/articles/milkfalsrussian.html]. Добавление 10% воды снижает плотность на 3°А. Если из молока удален жир и добавлено такое же количество воды, то плотность молока не изменяется. Эту фальсификацию можно установить путем определения содержания жира в молоке.

Известен способ выявления примеси в молоке воды с помощью пробы Похельсона [опубликовано на сайте http://www.spec-kniga.ru/tehnohimicheski-kontrol/veterinarno-sanitarnaya-ekspertiza-produktov-zhivotnovodsva/ocenka-kachestva-moloka.html]. Для исследования в пробирку наливают 1 см3 исследуемого молока, прибавляют 2 капли 10%-ного раствора хромовокислого калия и 1 см3 0,5%-ного раствора азотнокислого серебра. Пробирку с содержимым встряхивают. Нефальсифицированное молоко окрашивается в лимонно-желтый цвет; молоко, разбавленное водой, - в кирпично-красный. Массовую долю добавленной к молоку воды определяют по массовой доле жира.

Известен способ определения массовой доли добавленной в молоко воды (В, %) по формуле:

В=((СОМО-COMOj)/СОМО)⋅100,

где СОМО - сухой обезжиренный остаток натурального молока, %; COMOj - сухой обезжиренный остаток исследуемого молока, % [http://www.lactoscan.com/articles/milkfalsrussian.html].

Известен расчетный способ оценки относительного содержания в молоке добавленной воды по точке замерзания молока, которую определяют криоскопическим способом с помощью термисторного криоскопа (ГОСТ РИСО 5764-2011 Молоко. Определение точки замерзания. Метод с применением термисторного криоскопа (контрольный метод)). В качестве термисторного криоскопа используют криоскоп молочный термоэлектрический КМТ-1 (Россия), миллиосмометр - криоскоп термоэлектрический МТ-5, криоскоп Термоскан мини (http://lmpribor.ru/d/436133/d/termoskan-mini.pdf) или другие аналогичные приборы.

Известен способ установления фальсификации молока водой путем анализа состава молока с помощью ультразвукового анализатора «Лактоскан 90» (Болгария) [Методы анализа фальсификации молока водой / Л.И. Тетерева и др. // Хранение и переработка сельхозсырья: Теорет. журн. - 2011. - №9. - С. 64-67].

Недостатками данных способов являются высокая стоимость используемых приборов, а также субъективность оценки, связанная с влиянием на результаты расчета относительного содержания воды в молоке дневных и сезонных колебаний состава молока сельскохозяйственных животных.

Известен способ установления фальсификации молочных, кисломолочных продуктов для детского и лечебного питания (RU 2334228, G01N 33/04, 20.09.2008), включающий подогрев продукта, перемешивание, отбор пробы, выдержку в бюксе, отбор образца через полиуретановую мембрану, инжектирование в корпус «электронного носа», фиксацию частоты колебаний, при этом матрицу статического электронного носа формируют из трех масс-чувствительных пьезосенсоров, электроды которых модифицированы растворами двух полярных и одного среднеполярного хроматографических сорбентов.

Недостатком способа является невозможность его применения для установления фальсификации молока разбавлением его водой.

Наиболее близкого аналога к заявляемому техническому решению не установлено.

Технической задачей изобретения является разработка экспресс-способа установления фальсификации молока разбавлением его водой с применением статического «электронного носа», обеспечивающего высокую экспрессность, надежность, точность, объективность и простоту определения.

Технический результат заключается в высокой экспрессности, точности, объективности измерения и надежности определения факта фальсификации молока водой, в обеспечении простоты обработки результатов и принятия решения.

Технический результат достигается тем, что экспрессный способ установления фальсификации молока разбавлением его водой по сигналам массива пьезосенсоров предусматривает использование детектирующего устройства типа «электронный нос», матрицу которого формируют на основе четырех пьезосенсоров резонансного типа, для чего на обезжиренные электроды пьезосенсоров с частотой колебаний 8-10 МГц наносят пленку определенного сорбента массой 10-15 мкг: родамин 6 G (Род6Ж), полиэтиленгликольадипинат (ПЭГА), дициклогексан 18 Краун-6N (18-К-6), пчелиный клей (ПчК), сенсоры выдерживают до установления стабильной частоты колебания, затем отбирают образцы проб, помещают их в стеклянные герметичные сосуды с полимерной мягкой мембраной и выдерживают в течение 10-15 мин при температуре 18-22°C, с помощью одноразового шприца отбирают 2 см3 равновесной газовой фазы и вводят в статическую ячейку детектирующего устройства, регистрируют отклики пьезосенсоров в течение 60 с, выбирают наибольший аналитический сигнал ΔFc, рассчитывают отношения сигналов и , где ΔFРод6Ж - аналитический сигнал пьезосенсора с сорбентом Род6Ж; ΔF18-K-6 - аналитический сигнал пьезосенсора с сорбентом 18-К-6; ΔFПЭГА - аналитический сигнал пьезосенсора с сорбентом ПЭГА; ΔFПчК - аналитический сигнал пьезосенсора с сорбентом ПчК, и сопоставляют с аналогичными показателями для стандартной пробы, при этом одновременно увеличение отношения сигналов по сравнению со стандартом более чем на 30% и уменьшение отношения сигналов более чем на 10% характеризует завышенное содержание воды в молоке, что свидетельствует о фальсификации молока разбавлением его водой.

На фиг. 1 представлены полные «визуальные отпечатки» максимальных сигналов пьезосенсоров в РГФ над тестируемыми пробами. По осям указаны номера пьезосенсоров в матрице: проба 1 (проба сравнения) - вода; проба 2 - молоко коровье; проба 3 - молоко козье; проба 4 - козье молоко, разбавленное водой (3:1); проба 5 - смесь коровьего и козьего молока.

На фиг. 2 представлены кинетические «визуальные отпечатки» сигналов пьезосенсоров в РГФ над тестируемыми пробами. По круговой оси указано время измерения, с; по вертикальной - сигналы пьезосенсоров, Гц: проба 1 (проба сравнения) - вода; проба 2 - молоко коровье; проба 3 - молоко козье; проба 4 - козье молоко, разбавленное водой (3:1); проба 5 - смесь коровьего и козьего молока.

Способ осуществляют следующим образом.

Формируют матрицу детектирующего устройства типа «электронный нос» на основе четырех пьезосенсоров. Для подготовки пьезосенсоров на обезжиренные электроды пьезосенсоров с частотой колебаний 8-10 МГц наносят растворы сорбентов: родамин 6G (Род6Ж), полиэтиленгликольадипинат (ПЭГА), дициклогексан 18 Краун-6N (18-К-6), пчелиный клей (ПчК), таким образом, чтобы после удаления растворителя при температуре 40°C в течение 30 мин масса пленки составила 10-15 мкг. Пьезосенсор выдерживают до установления стабильной частоты колебаний, а затем отбирают образцы проб и помещают их в стеклянные сосуды с полимерной мягкой мембраной. Выдерживают в течение 10-15 минут при температуре 18-22°C. С помощью одноразового шприца отбирают 2 см3 равновесной газовой фазы и вводят в статическую ячейку детектирующего устройства, регистрируют отклики пьезосенсоров в течение 60 с. Выбирают наибольший аналитический сигнал ΔFc и рассчитывают отношения сигналов и , где ΔFРод6Ж - аналитический сигнал сенсора с сорбентом Род6Ж; ΔF18-K-6 - аналитический сигнал пьезосенсора с сорбентом 18-К-6; ΔFПЭГА - аналитический сигнал пьезосенсора с сорбентом ПЭГА; ΔFПчК - аналитический пьезосигнал сенсора с сорбентом ПчК. Затем сопоставляют с аналогичными показателями для стандартной пробы, при этом одновременно увеличение отношения сигналов по сравнению со стандартом более чем на 30% и уменьшение отношения сигналов более чем на 10% характеризует завышенное содержание воды в молоке, что свидетельствует о фальсификации молока разбавлением его водой.

Способ иллюстрируется следующим примером.

Пример

Для подготовки пьезосенсоров на обезжиренные электроды пьезокварцевых резонаторов с частотой колебаний 8-10 МГц наносят растворы сорбентов: родамин 6 G (Род6Ж), полиэтиленгликольадипинат (ПЭГА), дициклогексан 18 Краун-6N (18-К-6), пчелиный клей ПчК, таким образом, чтобы после удаления растворителя масса пленки составила 10-15 мкг.

Пьезосенсор устанавливают в статическую ячейку детектирующего устройства и подключают частотомер или компьютер. Затем пьезосенсор выдерживают до установления стабильной частоты колебаний.

Исследуемые образцы помещают в стеклянные герметичные сосуды с полимерной мягкой мембраной. Образцы выдерживают 10-15 мин, после чего приступают к отбору проб, который производят с помощью одноразового шприца объемом 5 см3. В статическую ячейку детектирующего устройства вводят 2 см3 равновесной газовой фазы объекта исследования (молоко коровье, молоко козье, молоко козье, разбавленное водой, смешанное в равных объемных долях молоко коровье с козьим).

Выбирают наибольший аналитический сигнал ΔFc и рассчитывают отношения этих сигналов: и и сопоставляют с аналогичными показателями для пробы- стандарта.

Результаты экспериментов заносятся в таблицы 1-2.

Как видно из примера и таблиц 1-2, положительный эффект заключается в том, что предложенный способ установления фальсификации молока разбавлением его водой позволяет давать объективную оценку о завышенном содержании воды в молоке с помощью детектирующего устройства типа «электронный нос», на основе четырех разнохарактерных пьезосенсоров, обеспечивающего экспрессность, простоту, высокую чувствительность, объективность оценки.

Изменение условий детектирования (массы пленки, изменение природы сорбента, изменение числа сенсоров в матрице) приводит к невозможности осуществления способа: метрологической ошибке, низкой различимости «визуальных отпечатков» компонентов равновесной газовой фазы.

Предложенный экспрессный способ установления факта фальсификации молока водой позволяет:

- существенно сократить общее время проведения анализа;

- значительно увеличить производительность;

- обеспечить простоту обработки результатов и принятия решения.

Экспрессный способ установления фальсификации молока разбавлением его водой по сигналам массива пьезосенсоров, характеризующийся тем, что он предусматривает использование детектирующего устройства типа «электронный нос», матрицу которого формируют на основе четырех пьезосенсоров резонансного типа, для чего на обезжиренные электроды пьезосенсоров с частотой колебаний 8-10 МГц наносят пленку определенного сорбента массой 10-15 мкг: родамин 6 G (Род6Ж), полиэтиленгликольадипинат (ПЭГА), дициклогексан 18 Краун-6N (18-К-6), пчелиный клей (ПчК), пьезосенсоры выдерживают до установления стабильной частоты колебания, затем отбирают образцы проб, помещают их в стеклянные герметичные сосуды с полимерной мягкой мембраной и выдерживают в течение 10-15 мин при температуре 18-22°C, с помощью одноразового шприца отбирают 2 см3 равновесной газовой фазы и вводят в статическую ячейку детектирующего устройства, регистрируют отклики пьезосенсоров в течение 60 с, выбирают наибольший аналитический сигнал ΔFc, рассчитывают отношения сигналов и

где ΔFРод6Ж - аналитический сигнал пьезосенсора с сорбентом Род6Ж;

ΔF18-K-6 - аналитический сигнал пьезосенсора с сорбентом 18-К-6;

ΔFПЭГА - аналитический пьезосигнал сенсора с сорбентом ПЭГА;

ΔFПчК - аналитический сигнал пьезосенсора с сорбентом ПчК, и сопоставляют с аналогичными показателями для стандартной пробы, при этом одновременно увеличение отношения сигналов по сравнению со стандартом более чем на 30% и уменьшение отношения сигналов более чем на 10% характеризует завышенное содержание воды в молоке, что свидетельствует о фальсификации молока разбавлением его водой.



 

Похожие патенты:

Изобретение относится к устройствам для непрерывного контроля процесса структурообразования молочно-белкового сгустка при производстве сыров и другой молочной продукции.

Изобретение относится к биологии, в частности к биохимии и молекулярной биологии, и может найти применение при разделении белков сыворотки крови и молока на фракции в полиакриламидном геле.

Изобретение относится к способу определения горького вкуса в сырах. Способ предусматривает проведение количественного анализа массовой доли общего белка методом Кьельдаля и массовой доли общего растворимого белка сыра с последующим вычислением степени протеолиза (СП) по формуле: , где Браст - массовая доля общего растворимого белка, %, Боб - массовая доля общего белка, %; сравнение полученного значения степени протеолиза с разработанной шкалой оценки, представленной на чертеже, в соответствии с которой в сырах, независимо от продолжительности хранения, при значении степени протеолиза до 21% горький вкус отсутствует, при значениях степени протеолиза от 21 до 22,5% и более сыры имеют горький вкус.
Изобретение относится к области молочной промышленности и касается способа определения содержания жира и белка в молоке, характеризующегося тем, что у пробы молока измеряют динамическое поверхностное натяжение на тензиометре, работающем по принципу максимального давления в пузырьке, по полученным значениям динамического поверхностного натяжения определяют содержание белка и жира в молоке с использованием формул регрессионно-корреляционного анализа, определяющих взаимосвязь между содержанием жира и белка в молоке с его динамическим поверхностным натяжением.

Изобретение относится к аналитической химии, а именно анализу молочных продуктов, и может быть использовано для определения удельной активности стронция-90 (Sr-90) в молоке или молочной сыворотке с концентрацией радионуклида на уровне ПДК и ниже.

Изобретение относится к молочной промышленности. Отбирают пробу НФ-концентрата, измеряют активную кислотность (рН), вносят пробное количество раствора щелочи, определяют величину изменения кислотности и пересчитывают расход щелочи на необходимую величину изменения кислотности по следующей формуле: , где: Vщ - количество раствора щелочи для нейтрализации НФ-концентрата объемом Vк, дм3; Vк - объем НФ-концентрата творожной сыворотки, подлежащий нейтрализации, дм3; pHзад - заданное значение активной кислотности НФ-концентрата; рН0 - исходное значение активной кислотности НФ-концентрата; рН1 - значение активной кислотности пробы НФ-концентрата объемом 1 дм3 после внесения раствора щелочи объемом Vпр; Vпр - количество раствора щелочи, добавленное в пробу НФ-концентрата, дм3.
Изобретение относится к ветеринарно-санитарной экспертизе, а именно к контролю качества молока и молочных продуктов. Для этого определяют содержание каррагинана в молоке и молочных продуктах.

Изобретение относится к области сельского хозяйства, а именно к способу определения термоустойчивости молока. Для этого степень денатурации белков молока осуществляют по данным измерения биоэлектрического потенциала в биологически активных центрах кожи коровы №1, №3, №16, №20, №38, №39, №44 до выдаивания молока, находят среднюю его величину.
Изобретение относится к области ветеринарии и предназначено для диагностики бруцеллеза овец и коз. Изобретение заключается в применении молока в реакции непрямой агглютинации для диагностики бруцеллеза овец и коз.

Группа изобретений относится к биотехнологии. Предложен способ определения наличия штамма молочнокислых бактерий, включающего IS-элемент, в молочном продукте.

Изобретение относится к пищевой промышленности хлебобулочных и кондитерских изделий. Способ предусматривает использование детектирующего устройства «электронный нос» на основе массива из 8 пьезосенсоров с базовой частотой колебаний 10-15 МГц, электроды которых модифицируют покрытиями, чувствительными к спиртам, углекислому газу, для чего на электроды наносят пленки из ацетоновых и толуольных растворов, а также из хлороформной суспензии углеродных нанотрубок с общей массой каждого покрытия после удаления растворителя 4–10 мкг; регистрируют в режиме реального времени сигналы массива пьезосенсоров в виде площади «визуального отпечатка» (S(τ)); для этого взвешивают 2 пробы сухих пекарных дрожжей, переносят анализируемые пробы в пробоотборники, добавляют предварительно нагретую до 37 °С дистиллированную воду и перемешивают получившиеся растворы, далее измерения проводят следующим образом: через 5 мин газовым шприцем отбирают равновесную газовую фазу над одной пробой водной суспензии дрожжей, вкалывают в ячейку детектирования и фиксируют в течение 1 мин сигналы пьезосенсоров и S1(5), после очистки ячейки детектирования и пьезосенсоров в течение 1-2 мин повторно через 5, 10 и 15 мин отбирают по 1 см3 РГФ и фиксируют S1(10), S1(15), S1(20), через 10 минут от момента перемешивания проб во второй пробоотборник с водной суспензией дрожжей вводят раствор сахарозы, через 5 и 10 мин отбирают 1 см3 РГФ над пробой, фиксируют сигналы массива сенсоров и S2(15), S2(20) и рассчитывают изменения площадей «визуальных отпечатков» сигналов массива сенсоров для 15-й и 20-й минуты измерения (∆S(15) = S2(15) – S1(15), ∆S(20) = S2(20) – S1(20)), отражающие различия в общем содержании летучих веществ в РГФ над пробами при активации сухих дрожжей водой и сахарозой; для оценки качества сухих дрожжей рассчитывают показатель качества дрожжей (ПКД) как разность площадей «визуальных отпечатков» на 20-й и 15-й минуте измерения (ПКД = ∆S(20) - ∆S(15)), отражающий изменение содержания легколетучих веществ в РГФ над пробой дрожжей в процессе активации их сахарозой, если ПКД меньше 0 ± 50, делают вывод о низком качестве дрожжей.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении газовых сенсоров. Предложен способ изготовления газовых сенсоров, содержащих корпус, установленную в нем на основании двухслойную наноструктуру ZnO-ZnO:Cu, точечные контакты, соединенные с выводами корпуса, помещенными в изолятор и штуцер, обеспечивающий контакт детектируемого газа с чувствительным элементом.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака, и может быть использовано для экологического мониторинга.

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода.

Изобретение относится к области газового анализа, в частности к устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика.

Изобретение относится к аналитической химии органических соединений. Способ характеризуется тем, что применяются два сенсора на основе пьезокварцевых резонаторов (ПКР) объемных акустических волн с базовой частотой колебания 10,0 МГц, на электроды которых наносят пленки из насыщенного раствора фторида калия в ацетоне, для чего электроды опускают в насыщенный раствор фторида калия в ацетоне и выдерживают в течение 10 и 5 с, после удаления свободного растворителя в течение 10 мин при температуре t = 100°C , наносятся фазы фторида калия массой 4,0 и 1,0 мкг соответственно, выдерживают их 2 мин для установления стабильности исходной частоты колебания каждого сенсора QUOTE (Гц), предварительно анализируемую твердую фазу массой 1 – 5 г измельчают, жидкую фазу объемом 10 QUOTE отбирают и выдерживают в бюксе с полиуретановой пробкой в течение 20 и 10 мин соответственно, анализируемые газовую смесь или равновесные пары над твёрдыми, жидкими пробами объемом 5 QUOTE отбирают газовым шприцем и инжектируют в ячейку детектирования со скоростью 1 QUOTE , при этом вещества взаимодействуют с покрытиями из фторида калия и изменяются частоты колебания обоих сенсоров, фиксируют частоту колебаний сенсора с массой пленки 4,0 мкг через 30 с после инжекции паров QUOTE (Гц) и для сенсора с массой пленки 1,0 мкг через 60 с после инжекции QUOTE (Гц), по полученным данным рассчитывают для каждого сенсора изменение частот колебаний относительно исходной и, если соотношение изменений частот колебаний сенсоров с массой пленок соответственно 4,0 и 1,0 мкг составляет 1,2 ± 0,3, то делают вывод о присутствии в газовой смеси паров моноэтаноламина.

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен пленочный нагреватель из электропроводящего материала, а на нерабочей - измеритель температуры на основе акустической линии задержки, электромеханические пьезоэлектрические преобразователи встречно-штыревого типа которой подключены к генератору и регистратору выходного сигнала, блок управления нагревателем, пленочный нагреватель выполнен в виде набора обособленных протяженных элементов из газочувствительных материалов, выбранных из условия изменения их электросопротивления при адсорбции различных по составу газов, элементы подключены к индивидуальным выходам блока управления нагревателями, при этом каждый упомянутый элемент ограничен по длинным сторонам канавками, заполненными термо- и звукоизолирующим материалом, измеритель температуры на основе акустической линии задержки выполнен многоканальным по числу протяженных элементов, каждый канал размещен по направлению распространения энергетических потоков поверхностных акустических волн и/или пластинчатых упругих мод разных порядков n в подложке, при этом излучение и прием указанных волн и/или мод производится индивидуальными системами генерации-приема на частотах fn, определяемых выражением fn=Vn/λ, где Vn - скорость поверхностных акустических волн или пластинчатых упругих мод, λ - период встречно-штыревых преобразователей, а протяженные элементы размещены вдоль проекций на рабочую поверхность подложки указанных направлений распространения энергетических потоков..

Изобретение относится к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей кислорода и может быть использовано для экологического мониторинга.

Изобретение относится к изготовлению средств выявления примесей газов и определения концентрации газов в воздушной среде. Способ изготовления чувствительных элементов датчиков концентрации газа согласно изобретению включает нанесение диэлектрической пленки на лицевую сторону кремниевой подложки, формирование на пленке структуры чувствительных элементов и создание тонких диэлектрических мембран методом анизотропного травления кремниевой подложки с обратной стороны, проводимого в два этапа, первый до нанесения диэлектрической пленки, а второй после завершения всех операций формирования структуры чувствительных элементов с предварительной защитой от травителя лицевой стороны подложки, при этом первый этап травления проводят сначала в водном растворе смеси этилендиамина с пирокатехином, а затем в водном растворе гидроокиси калия, а второй этап проводят только в водном растворе смеси этилендиамина с пирокатехином.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания довзрывных концентраций метана в атмосферном воздухе, и может быть использовано в угольной, металлургической, коксохимической и атомной промышленности, а также в автомобильной промышленности. Полупроводниковый датчик метана содержит диэлектрическую подложку (1) и чувствительный слой (2) с нанесенными на его поверхность металлическими электродами (3) толщиной до 0,2 мкм. Чувствительный слой (2) выполнен на основе сульфида европия, модифицированного добавкой сульфида самария. Концентрация добавки не превышает 25 мол.%. Датчик имеет пониженную рабочую температуру детектирования метана в атмосферном воздухе. 3 з.п. ф-лы, 3 ил., 1 пр.
Наверх