Способ контроля процесса плавки в вакуумной дуговой печи

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка. Способ включает измерение собственной резонансной частоты колебательного контура, возбужденного электромагнитными колебаниями, и содержащего плавящийся электрод с дугой, с учетом которой определяют межэлектродный промежуток и по величине которого контролируют процесс плавки. При этом возбуждение электромагнитных колебаний осуществляют в колебательном контуре, представляющем собой открытый резонатор, в качестве отражателей которого используют торец плавящегося электрода, выполненного со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами в металлургической промышленности.

Известен способ контроля процесса вакуумной дуговой плавки (см. RU 2215959 С2, 11.2003), при котором возбуждают высокочастотные колебания на резонансной частоте кристаллизатора с плавящимся электродом как коаксиального резонатора и по изменению частоты в процессе плавки судят об уровне заполнения кристаллизатора жидким металлом, а по изменению амплитуды высокочастотных колебаний судят о межэлектродном промежутке (расстоянии) и капельном замыкании.

Недостатком этого известного способа является низкое качество контроля межэлектродного промежутка (расстояние) из-за нестабильности амплитуды высокочастотных колебаний.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ контроля процесса плавки в вакуумной дуговой печи. Согласно этому способу (RU 2556249 С2, 06.2015) для контроля процесса плавки организуют колебательный контур на базе последовательно соединенных кристаллизатора, навесного конденсатора и расходуемого электрода с дугой. В этом колебательном контуре возбуждают высокочастотные колебания и при текущем значении длины дуги в вакуумной дуговой печи судят по измеренной резонансной частоте колебательного контура. Недостатком данного способа можно считать низкую точность измерения межэлектродного промежутка ввиду температурного перепада между навесным конденсатором и расходуемым электродом с дугой.

Техническим результатом заявляемого технического решения является повышение точности измерения межэлектродного промежутка.

Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем измерение собственной резонансной частоты колебательного контура, возбужденного электромагнитными колебаниями и содержащего плавящийся электрод с дугой, с учетом которой определяют межэлектродный промежуток и по величине которого контролируют процесс плавки, возбуждение электромагнитных колебаний осуществляют в колебательном контуре, представляющем собой открытый резонатор, в качестве отражателей которого используют торец плавящегося электрода, выполненного со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение собственной резонансной частоты возбужденного электромагнитными колебаниями открытого резонатора, образованного плавящимися электродом со сквозным отверстием и ванной жидкого металла в кристаллизаторе, дает возможность измерить расстояние межэлектродного промежутка.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу измерения межэлектродного промежутка на основе измерения собственной резонансной частоты открытого резонатора с плавящимся электродом и ванной жидкого металла, используемыми как отражатели с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Данное устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с первым плечом микроволнового циркулятора 2, плоский отражатель 3, вогнутый отражатель 4, измеритель амплитудно-частотных характеристик 5.

Предлагаемый способ работает следующим образом. Суть предлагаемого технического решения заключается в образовании на базе объекта контроля (вакуумной дуговой печи) колебательной системы, использующей резонансные свойства открытого резонатора, отражателями которого могут являться торец плавящегося электрода со сквозным отверстием и поверхность ванны жидкого металла. В рассматриваемом случае торец плавящегося электрода используется как плоский отражатель открытого резонатора, а поверхность ванны жидкого металла - как вогнутый отражатель открытого резонатора. При этом сквозное отверстие плавящегося электрода используется для ввода электромагнитных колебаний в полость открытого резонатора и вывода этих колебаний из полости открытого резонатора.

Пусть электромагнитные колебания с помощью сквозного отверстия поступают в полость открытого резонатора. Тогда при резонансе для собственной резонансной частоты (круговой) с данного открытого резонатора можно записать

где q - целое число (практически q>3), с - скорость распространения электромагнитной волны между отражателями (свободное пространство), l - расстояние между вогнутым (ванной жидкого металла) и плоским (торцом расходуемого электрода) отражателями открытого резонатора.

Принимая во внимание то, что в процессе переплава жаропрочных сплавов оптимальная (допустимая) длина межэлектродного промежутка может колебаться в диапазоне между минимумом и максимумом длины межэлектродного промежутка, принимаем какое-нибудь среднее значение расстояния между отражателями и обозначим как lcp. Тогда уравнение (1) можно переписать как

Отсюда следует, что измерением резонансной частоты данного открытого резонатора, при постоянных значениях q и с, можно судить об уменьшении и увеличении длины межэлектродного промежутка.

Как показывает практика, при переплаве межэлектродный промежуток заполняется ионизированным паром, например, алюминия, который может оказать влияние на характеристики распространения электромагнитной волны между отражателями. В данном случае к основным параметрам ионизированного газа, оказывающим непосредственное влияние на характеристики распространения электромагнитных волн, можно отнести диэлектрическую и магнитную проницаемости указанной среды. При этом магнитную проницаемость этого пара μп можно принимать равной единице (случай вакуума).

Как известно, диэлектрическая проницаемость ионизированного газа 8 отличается от единицы, и она может быть выражена как

ε=1-80,8Nэ/f2,

где Nэ - электронная плотность, см-1, f - используемая частота электромагнитной волны. Из приведенной формулы вытекает условие распространения электромагнитной волны, при котором собственная частота ионизированного газа (f0=80,8Nэ) должна быть больше используемой частоты f (коэффициент преломления имеет мнимую величину). В соответствии с этим для диэлектрической проницаемости ионизированного пара можно принимать

εп=1-f02/f2.

Как видно из последней формулы диэлектрическая проницаемость ионизированного пара меньше единицы и зависит от частоты колебаний. Другими словами данный ионизированный пар можно отнести к диспергирующим средам с фазовой скоростью распространения электромагнитных волн. С учетом этого, для фазовой скорости ϑф распространения электромагнитной волны можно записать

Из формулы (3) видно, что при вычислении длины межэлектродного промежутка (см. формулу (2)) необходимо учесть скорость распространения электромагнитной волны, с учетом диэлектрической проницаемости ионизированного пара. Кроме того, эта формула дает возможность при определенных (известных) значениях конструктивных размеров плавящегося электрода и ванны жидкого металла выбрать частоту, обеспечивающую распространение волн между отражателями без особых потерь. Из вышеизложенного следует, что на основе колебательных характеристик данного колебательного контура (открытого резонатора) с учетом диэлектрических свойств ионизированного пара можно измерить длину межэлектродного промежутка.

В устройстве, реализующем данный способ, выходной сигнал микроволнового генератора 1 поступает к первому плечу микроволнового циркулятора 2. После этого микроволновым сигналом, снимаемым со второго плеча циркулятора и прошедшим через сквозное отверстие плавящегося электрода 3, возбуждают электромагнитные колебания в открытом резонаторе (колебательном контуре), организованном плавящимся электродом 3 и ванной жидкого металла 4. В данном техническом решении для подтверждения факта резонанса в данной колебательной системе и его отслеживания сигнал с резонатора поступает во второе плечо циркулятора. Согласно принципу действия циркулятора сигнал, пришедший с резонатора, снимается с третьего плеча циркулятора и далее поступает на вход измерителя амплитудно-частотных характеристик 5. Здесь можно зафиксировать резонанс в данной колебательной системе и произвести измерение собственной резонансной частоты открытого резонатора, связанной длиной межэлектродного промежутка.

Таким образом, в предлагаемом техническом решении на основе измерения собственной резонансной частоты открытого резонатора, образованного на базе объекта контроля посредством плавящегося электрода и ванной жидкого металла, можно обеспечить повышение точности измерения межэлектродного промежутка.

Данный способ успешно может быть применен в металлургической промышленности для управления технологическими процессами в вакуумной дуговой печи.

Способ контроля процесса плавки в вакуумной дуговой печи, включающий измерение собственной резонансной частоты возбужденного электромагнитными колебаниями колебательного контура, с учетом которой определяют межэлектродный промежуток и осуществляют контроль процесса плавки, отличающийся тем, что возбуждение электромагнитных колебаний осуществляют в колебательном контуре в виде открытого резонатора, в качестве отражателей которого используют торец плавящегося электрода со сквозным отверстием, через которое вводят электромагнитные колебания, и ванну жидкого металла в кристаллизаторе.



 

Похожие патенты:

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых емкостях, например, оно может быть применено для определения уровня жидкого металла.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений.

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее.

Изобретение может быть использовано для измерения уровня границы жидкостей с разными плотностями и электропроводностями, диэлектрическими проницаемостями от 1,5 единиц, границы жидкость - осадок на предприятиях нефтегазовой отрасли в атомной энергетике.

Заявленная группа изобретений относится к средствам для измерения уровня заполнения на основе времени распространения сигнала. Предложенное устройство измерения уровня заполнения содержит передающий блок для отправки передаваемого сигнала, который отражается на поверхности загруженного продукта заполняющей среды и по меньшей мере одном втором отражателе; приемный блок для регистрации отраженного переданного сигнала, который является эхо-кривой, которая имеет множество эхо-сигналов; блок оценки для выполнения способа отслеживания для группировки соответственно вызванных идентичными отражателями эхо-сигналов эхо-кривых, зарегистрированных в различные моменты времени, причем блок оценки выполнен с возможностью выполнения следующих этапов: (а) определение первого трека первой группы эхо-сигналов, которые вызваны первым отражателем, и второго трека второй группы эхо-сигналов, которые вызваны вторым отражателем, причем каждый трек описывает время распространения соответствующего переданного сигнала от передающего блока до ассоциированного с треком отражателя и обратно в приемный блок в различные моменты времени; (b) определение линейного отношения между первым треком и вторым треком, задаваемое линейным уравнением; (c) определение одной или нескольких неизвестных из линейного отношения между первым треком и вторым треком.

Предложенная группа изобретений относится к средствам для мониторинга и эксплуатации радиолокационной системы измерения уровня для определения уровня наполнения резервуара.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др.

Изобретение относится к технической области измерения уровня заполнения. В частности, настоящее изобретение относится к устройству измерения уровня заполнения, к способу определения и читаемому компьютером носителю.

Предложенная группа изобретений относится к средствам, предназначенным для определения уровня заполнения емкости с учетом изменчивости эхо-сигналов. Уровнемер для определения значений изменчивости эхо-сигналов кривой эхо-сигналов и для выполнения способа отслеживания с учетом по меньшей мере одного из значений изменчивости содержит: блок вычисления для определения первого значения изменчивости первого эхо-сигнала первой кривой эхо-сигналов с учетом позиционного сдвига первого эхо-сигнала и позиционного сдвига другого эхо-сигнала первой кривой эхо-сигналов; при этом блок вычисления дополнительно предназначен для выполнения способа отслеживания, чтобы группировать эхо-сигналы последовательных кривых эхо-сигналов, которые вызваны одной и той же точкой отражения; при этом блок вычисления назначает второй эхо-сигнал второй кривой эхо-сигналов, которая получена после первой кривой эхо-сигналов, определенной трассе с учетом изменчивости.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, а именно уровня материала, в том числе и при экстремальных температурах.

Изобретение относится к области металлургии и может быть использовано при изготовлении стали в электродуговых печах с регулированием показателей фликера. В способе создают посредством запоминающего устройства банк данных по фликеру, в котором сохраняются временные динамики моментального фликера (MF) в зависимости от характеристик состояния и рабочих характеристик, выполняют посредством регистрирующего устройства измерение временной динамики MF во время начальной фазы расплавления и определяют имеющие к ней отношение характеристики состояния и рабочие характеристики, выполняют посредством вычислительного устройства сравнение измеренных временных динамик MF во время начальной фазы расплавления с сохраненными временными динамиками фаз расплавления общих динамик банка данных по фликеру с учетом характеристик состояния и рабочих характеристик, выполняют посредством вычислительного устройства выбор временной общей динамики с максимальным совпадением MF, а также характеристик состояния и рабочих характеристик в качестве спрогнозированной общей динамики фликера, выполняют посредством управляющего устройства упреждающее динамическое согласование дальнейшего управления процессом производства стали при сравнении спрогнозированной общей динамики с заранее заданными предельными показателями для фликера.

Изобретение относится к области металлургии и может быть использовано для регулирования длины электрической дуги в электродуговой печи. В способе измеряют колебания в стенке металлоприемника печи, посредством которых определяют высоту (Hrel) шлака расплава, причем при отклонениях определенного фактического значения высоты (Hrel) шлака от заданного значения (S) выдают сигналы управления и/или регулирования, посредством которых настраивают длину электрической дуги по меньшей мере одного электрода посредством регулирования импеданса по меньшей мере одного электрода.

Изобретение относится к области подачи шихты к металлургическим печам. Технический результат - повышение точности отслеживания порций шихты.

Изобретение относится к металлургии. Технический результат - повышение точности управления.

Изобретение относится к металлургии. Технический результат - повышение производительности и уменьшение износа футеровки.

Изобретение относится к электрометаллургии стали с подачей металлизованных окатышей через полые электроды в зону электрических дуг и на поверхность менисков при контакте электрических дуг с жидким металлом под шлаком.

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи.

Изобретение относится к металлургии и может быть использовано для автоматического регулирования теплового режима нагревательных печей периодического действия. Система автоматического регулирования нагрева металла в нагревательных печах периодического действия, содержащая блок формирования задания по теплопоглощению металла, блок определения теплопоглощения металла, состоящий из тепломера и дифференциатора, три блока сравнения, регулятор расхода воздуха, блок формирования задания по скорости и изменения температуры футеровки, блок определения скорости изменения температуры футеровки, регулятор расхода топлива; первые входы первого и второго блоков сравнения соединены с выходом блока определения теплопоглощения металла, а вторые выходы подключены к выходу блока формирования задания по теплопоглощению металла, выход второго блока сравнения соединен с регулятором расхода воздуха, выход первого блока сравнения подключен к блоку формирования задания по скорости изменения температуры футеровки, выход которого соединен с первым входом третьего блока сравнения, второй вход которого подключен к блоку определения скорости изменения температуры футеровки, а выход третьего блока сравнения соединен с регулятором расхода топлива, дополнительно содержит блок определения скорости роста толщины окалины, блок задания по минимуму окалины, четвертый блок сравнения, при этом выход блока определения теплопоглощения соединен с входом блока определения скорости роста толщины окалины, выход которого подключен к первому входу четвертого блока сравнения, второй вход которого соединен с выходом блока задания по минимуму окалины, а выход четвертого блока сравнения подключен к регулятору расхода воздуха.

Изобретение относится к металлургии. Технический результат - повышение точности измерения.

Изобретение относится к электродуговой печи, устройству обработки сигналов, носителю для хранения данных, машиночитаемому программному коду и способу для определения момента времени загрузки для загрузки, в особенности дозагрузки, расплавляемого материала (9), в особенности скрапа, в электродуговую печь (1), причем электродуговая печь (1) имеет по меньшей мере один электрод (3a, 3b, 3c) для нагрева находящегося в электродуговой печи (1) расплавляемого материала (G) посредством электрической дуги.

Изобретение относится к области металлургии и может быть использовано при изготовлении расходуемых электродов для электрошлаковой или электродуговой переплавки для изготовления отливок из циркониевых сплавов.
Наверх