Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и жидкость - водный 30-60% раствор фосфата магния, при следующем соотношении компонентов, масс. %: порошок кальцита - 40-60%; водный 30-60% раствор MgHPO4⋅3H2O и/или Mg(H2PO4)2⋅4H2O - 40-60%. При этом полученный материал характеризуется прочностью при сжатии не менее 8 МПа, пористостью 40-60% с размером пор до 1000 мкм, время схватывания 6-12 минут, основная фаза - кальцит. 1 табл., 1 пр.

 

Изобретение относится к медицине, а именно для пластической реконструкции поврежденных костных тканей.

Наиболее перспективными для быстрого восстановления костных тканей человека являются керамические и цементные материалы с высокой скоростью биорезорбции. К таким материалам можно отнести кальцийсодержащие материалы, состоящие из карбоната кальция (КК), представленные в виде 3-х основных фаз - кальцита, арогонита и фатерита (В.В. Смирнов, Н.В. Бакунова, С.М. Баринов и др. Влияние времени старения порошков СаСО3 на спекание и свойства керамики. Неорганические материалы, 2012, т. 48, №4, с. 631-636). Использование цементных материалов имеет ряд существенных преимуществ. В отличие от керамики, цементами можно быстро в ходе операции заполнить костный дефект практически любой формы. Это связано с возможностью получать вязкие цементные растворы в результате смешения цементного порошка с жидкостью. Образующаяся в ходе процесса схватывания цементного раствора пластичная масса легко заполняет костный дефект, схватывается затем за определенное время в прочный цементный камень.

Сложность получения цементов связана с необходимостью прохождения процесса схватывания в определенный период времени, достаточный для смешения компонентов цемента и введения полученного раствора в зону дефекта. При этом важным является, чтобы сроки схватывания также не были велики, так как это приводит к увеличению продолжительности проведения хирургического операционного вмешательства. Кроме того, важным является структура материала. Так, например, присутствие крупных пор (от 50 до 500-1000 мкм) способствует повышению скорости биорезорбии и более равномерному образованию костной ткани по всему объему вводимого цементного материала за счет прорастания кровеносных сосудов в поровое пространство, возможности течения физиологических потоков органических жидкостей и миграции костных клеток.

Наиболее близким по техническому решению и достигаемому эффекту являются КК цементы С. Combes, В. Miao, R. Bareille, С. Rey Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements Biomaterials V. 27, №9, 2006, P. 1945-1954. Схватывание цементов происходит в результате прохождения процесса растворения КК в жидкости (вода или 0,9% водный раствор хлорида) с последующей кристаллизацией цемента и образованием цементного камня. КК в данных цементах представляет собой смесь аморфного КК и метастабильной кристаллической фазы КК - фатерита. В результате растворения фатерита и аморфного КК, образуется насыщенный раствор, из которого происходит кристаллизация другой фазы КК - арагонита. В результате схватывания получают цементный материал, состоящий в основном КК в виде арагонита. К недостаткам материала относится отсутствие крупных пор, присутствуют только мелкие поры размером около 1-3 мкм, а также использование технологически сложно получаемого цементного порошка, состоящего из аморфного карбоната кальция и кристаллического фатерита.

Задача, на решение которой направлено настоящее изобретение, заключается в создании цементного пористого карбонаткальциевого материала.

Техническим результатом изобретения является получение карбонаткальциевого цемента для регенеративной костной медицины, характеризующегося высокой пористостью до 60% с размерами пор до 1000 мкм, прочностью при сжатии не менее 8 МПа, содержанием основной фазы -кальцита, временем схватывания 6-12 минут.

Технический результат достигается тем, что карбонаткальциевый цемент для заполнения костных дефектов согласно изобретению получают, используя порошок кристаллической фазы карбоната кальция – кальцита, и жидкость - водный 30-60% раствор фосфата магния, при следующем соотношении компонентов, масс. %:

- порошок кальцита - 40-60%;

- водный 30-60% раствор MgHPO4⋅3H2O и/или Mg(H2PO4)2⋅4H2O - 40-60%,

при этом полученный материал характеризуется прочностью при сжатии не менее 8 МПа, пористостью 40-60% с размером пор до 1000 мкм, время схватывания 6-12 минут, основная фаза - кальцит.

Цементный материал указанного состава неизвестен.

При смешении порошка с жидкостью происходит взаимодействие между карбонатом кальция и кислой жидкостью, в результате реакции выделяется углекислый газ, что приводит к вспениванию образующегося цементного раствора. После прохождения процесса схватывания поры внутри затвердевшего цемента остаются, а углекислый газ выделяется во внешнюю среду. Схватывание происходит за счет образования аморфной фазы, которая является продуктом реакции между жидкостью и порошком карбоната кальция. Образующаяся аморфная фаза цементирует частицы карбонаткальциевого цемента между собой, образуя прочный каркас, в котором распределены поры, оставшиеся после вспенивания раствора. При использовании жидкости менее 40% цементный раствор становится очень вязким, что не позволяет его использовать как пластичную массу для формования. При использовании жидкости более 60% время схватывания сильно увеличивается - более 20 минут, прочность образующихся цементных образцов резко снижается - менее 5 МПа при сжатии. Полученные значения выходят за пределы заявленных. При использовании жидкости с концентрацией фосфата магния менее 30% прочность образцов меньше 6 МПа, а пористость снижается до 30%, что ниже заявленных значений. При использовании жидкости с концентрацией фосфата магния более 60% цементные образцы не образуются вследствие быстрого схватывания массы.

Пример. Цементы получали при смешении 3 г (60%) порошка кальцита с 2 г (40%) цементной жидкости (60% раствор фосфата магния (Mg(H2PO4)2⋅4H2O) в течение 2 минут до образования цементного раствора. После смешения полученный раствор помещали в тефлоновую форму диаметром 8 мм для придания цементным образцам формы. После схватывания полученные образцы вынимали из формы. В результате получали цементные образцы, содержащие кристаллическую фазу 100% кальцит, диаметр образцов 8 мм. Образцы характеризовались 50% пористостью и прочностью при сжатии 12 МПа, размером пор от 50 до 600 мкм, временем схватывания 7 минут. Были изготовлены образцы цементов, имеющие составы в пределах заявленных, и определены их свойства в сравнении с прототипом. Полученные результаты сведены в таблицу.

5

Карбонаткальциевый цемент для заполнения костных дефектов, отличающийся тем, что для его получения используют порошок кристаллической фазы карбоната кальция - кальцита, и жидкость - водный 30-60% раствор фосфата магния, при следующем соотношении компонентов, масс. %:

- порошок кальцита - 40-60%;

- водный 30-60% раствор MgHPO4⋅3H2O и/или Mg(H2PO4)2⋅4H2O - 40-60%,

при этом полученный материал характеризуется прочностью при сжатии не менее 8 МПа, пористостью 40-60% с размером пор до 1000 мкм, время схватывания 6-12 минут, основная фаза - кальцит.



 

Похожие патенты:
Группа изобретений относится к медицине. Описан композиционный имплантат для компенсации костных дефектов, который выполнен из пористого композиционного материала, содержащего углеродную матрицу, армирующий каркас из углеродных волокон и открытые поры, объем которых не менее 5% от объема материала, а поры композиционного материала частично или полностью заполнены раствором органического йодсодержащего вещества, не вызывающим токсического действия на организм человека в количестве 0,01-0,1 г на 1 кг массы человека, при этом содержание вещества составляет не менее 3 мг в 1 см3 композиционного материала.

Изобретение относится к медицине и представляет собой способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов, включающий приготовление текучего гидрогеля, содержащего альгинат натрия и кальцийфосфатный наполнитель, нанесение гидрогеля на платформу, формирование трехмерного каркаса с последующей фиксацией структуры.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.
Группа изобретений относится к медицине, конкретно к пористому двухфазному материалу фосфата кальция/гидроксиапатита (ФК/ГАП) в качестве заменителя кости, содержащему спеченный ФК стержень и по меньшей мере один однородный и замкнутый эпитаксически выращенный слой нанокристаллического ГАП, нанесенный поверх спеченного ФК стержня, при этом эпитаксически выращенные нанокристаллы имеют такой же размер и структуру, как и костный минерал человека, т.е.

Группа изобретений относится к медицине и характеризует пористую структуру для использования в медицинских имплантатах. Данная структура содержит ряд ветвей, причем одна ветвь или ряд ветвей имеют: первый конец, второй конец и непрерывное удлиненное тело между указанными первым и вторым концами, причем указанное тело имеет толщину, длину и изогнутую часть, также содержит ряд соединений, причем по меньшей мере одно соединение содержит пересечение по касательной двух из указанных изогнутых частей, и содержит ряд узлов, причем по меньшей мере один узел имеет три или большее количество указанных соединений.

Изобретение относится к медицине, конкретно к заменителю кости, включающему сердечник на основе гидроксиапатита (ГАП), полученный по меньшей мере из одного вида пористой древесины, или на основе волокон коллагена и гидроксиапатита, и оболочку на основе гидроксиапатита (ГАП) или карбида кремния (SiC), полученную из древесины по меньшей мере одного вида, имеющей более низкую пористость, чем по меньшей мере один вид древесины для сердечника.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой.

Группа изобретений относится к медицине. Описан композитный материал, подходящий для имплантации в тело человека, содержащий полимерный гель и множество поверхностно обработанных добавок, причем указанные добавки подвергнуты поверхностной обработке молекулой, выбранной из группы, состоящей из жирной кислоты с длинной цепью, полистиролов, органофункциональных силанов, цирконатов и титанатов, где указанные поверхностно обработанные добавки содержат поверхность, характеризуемую реактивной сшивающей группой для сшивания с указанным гелем, так что указанные поверхностно обработанные добавки поперечно связываются с указанным гелем; где указанный полимерный гель содержит по меньшей мере две реактивные сшивающие группы на полимерную молекулу указанного полимерного геля для сшивания с указанными добавками и указанным гелем.

Изобретение может быть использовано при получении комбинированных пористо-монолитных имплантатов на основе никелида титана для применения в медицине. Шихта на основе порошка никелида титана содержит активирующую добавку в количестве 10-20 вес.% от общего веса шихты, включающую от 60 до 65 ат.% порошка титана электролитического с размерами частиц в интервале 40-70 мкм и от 40 до 35 ат.% порошка никеля карбонильного с размерами частиц в интервале 10-40 мкм.

Группа изобретений относится к медицине и касается пористой структуры для медицинских имплантатов. Пористая структура содержит ряд ветвей, причем каждая ветвь имеет: первый конец, второй конец и непрерывное удлиненное тело между указанными первым и вторым концами, причем указанное тело имеет толщину и длину; и содержит ряд узлов, причем каждый узел содержит пересечение одного из концов первой ветви с телом второй ветви, при этом в каждом узле пересекаются не более двух ветвей.

Изобретение относится к медицине и раскрывает биоактивный композиционный материал для замещения костных дефектов, а также способ получения такого материала. Композиционный материал обладает повышенной биосовместимостью с костной тканью, обеспечивает более качественную замену дефектов сложной формы, что достигается путем изготовления указанного материала в виде цементной жидкости, содержащей воду, фосфат магния, оксид магния, оксид цинка и дигидрофосфат натрия, и реакционно-твердеющего порошка, содержащего гидроксиапатит, трикальцийфосфат и брушит, при соответствующем соотношении компонентов.
Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементную пасту распределяют внутри пористого резорбируемого полилактидного каркаса, который повышает прочность цемента.

Изобретение относится к области медицины. Описан кальций-фосфатный цемент (КФЦ) для регенерации костной ткани, который представляет собой пасту на водной основе, полученную в результате смешения цементного порошка, содержащего β-трикальцийфосфат (β-ТКФ) и монокальцийфосфат моногидрата (МКФМ), с затворяющей жидкостью, содержащей водный раствор сульфата магния и фосфата натрия, композицию неколлагеновых белков костной ткани и G1-гликопротеин, при определенном соотношении компонентов (мас.%).

Изобретение относится к медицине и представляет собой способ получения композиционного трехмерного каркаса для замещения костно-хрящевых дефектов, включающий приготовление текучего гидрогеля, содержащего альгинат натрия и кальцийфосфатный наполнитель, нанесение гидрогеля на платформу, формирование трехмерного каркаса с последующей фиксацией структуры.

Изобретение относится к медицине. Описан способ получения биоактивного гидроксиапатита, включающий очистку костей кипячением в растворе хлорида кальция концентрацией 5-50% масс.

Изобретение относится к медицине и биотехнологии. Описан способ получения композиционного материала для замещения костных дефектов, включающий: подготовку порошковой смеси, содержащей порошок альфа-Ca3(PO4)2; подготовку пасты при добавлении жидкости затворения в виде водного раствора, содержащего карбонат-ионы; формование образцов или изделий из пасты; гидролитическую обработку образцов или изделий в водном растворе, содержащем карбонат-ион, и сушку.

Группа изобретений относится к области изготовления керамических материалов для замещения дефектов костных тканей в области ортопедии, стоматологии, челюстно-лицевой хирургии, нейрохирургии, онкологии.
Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани.

Изобретение может быть использовано в производстве медицинских материалов, стимулирующих восстановление дефектов костной ткани, в том числе в стоматологии, и в качестве сорбентов для адсорбции ионов тяжелых металлов.

Изобретение относится к медицине, конкретно к заменителю кости, включающему сердечник на основе гидроксиапатита (ГАП), полученный по меньшей мере из одного вида пористой древесины, или на основе волокон коллагена и гидроксиапатита, и оболочку на основе гидроксиапатита (ГАП) или карбида кремния (SiC), полученную из древесины по меньшей мере одного вида, имеющей более низкую пористость, чем по меньшей мере один вид древесины для сердечника.

Изобретение относится к медицине. Описана композиция костного наполнителя, содержащая смесь отверждаемого костного наполнителя на основе фосфата кальция, который образуется из жидкого компонента и порошкового компонента на основе фосфата кальция, и композицию, содержащую бисфосфонат в виде частиц. Частицы бисфосфоната внедрены в частицы полимерного материала, который рассасывается после имплантации композиции. Механические свойства композиции костного наполнителя улучшены. 14 з.п. ф-лы, 4 ил., 2 табл.
Наверх