Способ получения теплоизоляционного материала

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического природного материала, жидкого натриевого стекла, формовании массы в виде плит или блоков, сушке готового продукта, в качестве неорганического природного материала используют песок кварцевый, дополнительно вводят портландцемент, смесь шламовых отходов установок очистки сточных вод водоподготовки промышленных предприятий, дезактивированного катализатора процесса дегидрирования циклогексанола после их совместного измельчения в присутствии 1,5-2,0 мас. % карбамида, а в качестве добавки - базальтовую фибру или базальтовую муку, или их смесь, смешивание компонентов осуществляют в смесителе лопастного типа с последующим их перемешиванием с указанным жидким натриевым стеклом в общей сложности в течение 6-8 мин, формованием в виде плит размером 500×600×50 мм или блоков размером 300×600×200 мм, сушкой при температуре +10-35°С, при этом компоненты смеси берут в следующем соотношении, мас. %: жидкое натриевое стекло 16,0-32,0, портландцемент 18,0-20,0, песок кварцевый 20,0-25,0, смесь шламовых отходов и дезактивированного катализатора дегидрирования циклогексанола 3,5-6,0, карбамид 1,5-2,0, базальтовая фибра или базальтовая мука, или их смесь 25,0-31,0. Технический результат - повышение прочности при сжатии, снижение коэффициента теплопроводности, а также придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот, снижение энергоемкости производства. 1 табл., 3 пр.

 

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при сооружении промышленных зданий, сооружений.

Известен способ получения теплоизоляционного материала, содержащего жидкое стекло, микрокремнезем, бикарбонат натрия, включающий гранулирование исходной смеси, термообработку ее в течение 1 ч при 100°С и 1 ч при 250°С [патент №2128633 РФ, МПК С04В 28/26, С04В 111:20. Сырьевая смесь и способ получения теплоизоляционного материала / Радина Т.Н., Карнаухов Ю.П., Невмержицкий И.П., Евсин А.В., Сазонов Д.С.; заявитель и патентообладатель Братский индустриальный институт. - №96115722/03; заявл. 29.07.1996; опубл. 10.04.1999].

Недостатком данного теплоизоляционного материала является повышенная сорбция влаги и связанные с этим потери механической прочности и теплоизоляционных свойств.

Известен способ получения гранулированных вспененных материалов на основе жидкого стекла для теплоизоляционных материалов с добавками гидроксида кальция, молотого песка, кремнийорганической жидкости, включающий стадии перемешивания компонентов в течение 5-60 минут, формирование гранул путем продавливания через отверстия 1-3 мм, после чего гранулы сушат при температуре 60-100°С в течение 1-15 мин, затем вспенивают при температуре +360-800°С в течение 0,1-15 минут [патент №2087447 РФ, МПК С04В 28/26, С04В 111:40. Смесь для получения теплоизоляционного материала и способ его получения / Малявский Н.И., Генералов Б.В., Крифукс О.В., Павлюковец В.В.; заявитель и патентообладатель Акционерное общество "Интеркварцстрой". - №93040868/03; заявл. 12.08.1993; опубл. 20.08.1997].

Однако данный способ не обеспечивает получение материалов, устойчивых в агрессивных средах газов, кислот, щелочей, нефтепродуктов и органических растворителей.

Наиболее близким по технической сущности и достигаемому результату, то есть прототипом, является способ изготовления огнезащитных теплоизоляционных плит [Патент №2531715 РФ, МПК С04В 28/26, 33/13, 38/00, 40/00, 111/20. Способ получения теплоизоляционного материала / Падохин В.А., Поляков B.C., Кочкина Н.Е., Гущина Т.В., Смирнов А.А.; заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (RU), Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук (ИХР РАН) (RU). - №2013133499/03; заявл. 18.07.2013; опубл. 27,10.2014, Бюл. №30], включающий смешивание неорганического природного материала, жидкого стекла, доломита в виде порошка и добавки, формование смеси и термообработку, в качестве жидкого стекла используют жидкое натриевое стекло плотностью 1,28-1,42 кг/дм3, в качестве неорганического природного материала используют модифицированный органическим веществом монтмориллонит, а в качестве добавки - гидратированное целлюлозное волокно в форме штапелек длиной 5,0-20,0 мм, пропитанное 30% водным раствором сульфатов железа, цинка, меди, алюминия, взятыми в соотношении 1,0:0,5:0,5:1,0 в промывочной ванне в течение 70-80 мин с последующим отжимом до влажности 60-65%, и высушенное при температуре 120-140°С до удаления 95-98% оставшейся влаги, смешивание компонентов осуществляют путем механоактивации в течение 8-10 мин с последующим формованием смеси и обжигом при повышении температуры обжига от 140°С до 1300°С в течение 30-40 мин, причем модифицирование монтмориллонита проводят продуктом взаимодействия капролактама или его олигомеров с бутилстеаратом, при этом компоненты смеси берут в следующем соотношении, мас. %:

Модифицированный
монтмориллонит 20-60
Жидкое натриевое
стекло 20-30
Доломит 10-35
Гидратированное
целлюлозное волокно,
пропитанное сульфатами металлов 10-15

Модифицирование монтмориллонита осуществляют путем его механической обработки органическим веществом в присутствии воды в количестве 3,0% от массы монтмориллонита при соотношении монтмориллонит:органическое вещество 1:0,05 в течение 35-40 мин.

Теплоизоляционный материал по прототипу получают в виде плит размером 500×500×50 мм или брусков размером 100×100×50 мм.

Недостатками прототипа являются:

- повышенный коэффициент теплопроводности;

- низкая устойчивость к воздействию растворов кислот;

- многостадийность и энергозатратность производства.

Техническим результатом изобретения является повышение прочности материала при сжатии, снижение коэффициента теплопроводности, а также придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот, снижение энергоемкости производства.

Указанный результат достигается тем, что в способе получения теплоизоляционного материала, заключающемся в смешивании неорганического природного материала, жидкого натриевого стекла, формовании массы в виде плит или блоков, сушке готового продукта, согласно изобретению в качестве неорганического природного материала используют песок кварцевый, дополнительно вводят портландцемент, смесь шламовых отходов установок очистки сточных вод водоподготовки промышленных предприятий, дезактивированного катализатора процесса дегидрирования циклогексанола после их совместного измельчения в присутствии 1,5-2,0% (мас.) карбамида, а в качестве добавки - базальтовую фибру или базальтовую муку, или их смесь, при этом компоненты смеси берут в следующем соотношении, мас. %:

Жидкое натриевое
стекло 16,0-32,0
Портландцемент 18,0-20,0
Песок кварцевый 20,0-25,0
Смесь шламовых отходов
и дезактивированного катализатора
дегидрирования циклогексанола 3,5-6,0
Карбамид 1,5-2,0
Базальтовая фибра
или базальтовая мука,
или их смесь 25,0-31,0

смешивание компонентов осуществляют в смесителе лопастного типа с последующим их перемешиванием с указанным жидким натриевым стеклом в общей сложности в течение 6-8 мин, формованием в виде плит размером 500×600×50 мм или блоков размером 300×600×200 мм, сушку осуществляют при температуре +10-35°С.

Для реализации изобретения используют следующие вещества и материалы:

1. Жидкое натриевое стекло с силикатным модулем 2,7-3,3 плотностью 1,36-1,50 г/см3, ГОСТ 13078-81 (п. 1.4.).

2. Портландцемент ЦЕМ I 42,5 Н, ГОСТ 31108-2003.

3. Песок кварцевый с модулем крупности Мкр=1,5-2,0 ГОСТ 8736-85.

4. Шламовые отходы установок очистки сточных вод водоподготовки промышленных предприятий со степенью измельчения 70-75 мкм следующего состава, % мас.:

- карбонат кальция 53,0-70,0
- гидроксид железа 6,5-12,5
- гидроксиды кальция и магния 3,8-5,0
- гипс 2,8-5,8
- диоксид кремния 5,3-11,2
- водорастворимые вещества 5,6-8,8
- прочие оксиды металлов 0,05-0,1
- органические вещества 10,0-12,0

(Очистка и использование сточных вод в промышленном водоснабжении. A.M. Когановский, Н.А. Клименко, Т.М. Левченко, P.M. Марутовский, И.Г. Рода. М.: Химия, 1983, с. 246).

5. Дезактивированный катализатор дегидрирования циклогексанола производства капролактама в виде цилиндров размером 4x8 мм или таблеток диаметром 6-8 мм, высотой 3-4 мм (Патент РФ №2447937. Заявка №2010136256/04. Опубл. 20.04.2012. Бюл. №12).

6. Карбамид, ГОСТ 2081-2010 марка А в виде гранул размером 1-4 мм.

7. Базальтовая фибра в виде волокон диаметром 13-17 мкм, длиной 2-8 мм, производства ООО «Русский базальт» (454047 Россия, г. Челябинск) ТУ 5952-002-91341008-2012.

8. Базальтовая мука - отход производства базальтовых сэндвич-панелей ОАО «Теплант» (443004 Россия, г. Самара) в виде аспирационной пыли с размером частиц диаметром 5-12 мкм, длиной 0.5-1,9 мм.

Изобретение осуществляют следующим образом.

Пример 1

Для получения 100 кг формовочной смеси в смеситель лопастного типа загружают 20,0% мас. (20,0 кг) песка кварцевого, 18,0% мас. (18,0 кг) портландцемента марки ЦЕМ 42,5 Н, 3,5% мас. (3,5 кг) смеси шламовых отходов установок водоподготовки и дезактивированного катализатора дегидрирования циклогексанола после их совместного помола в присутствии 1,5% мас. (1,5 кг) карбамида в виде гранул со средним диаметром 1,0-4,0 мм, 25,0% мас. (25,0 кг) базальтовой фибры в виде волокон длиной 2-8 мм, диаметром 13,0-17,0 мм. Далее смешивают компоненты с последующим их перемешиванием в течение 6 мин с жидким натриевым стеклом плотностью 1,36 г/см3 силикатным модулем М=2,7 в количестве 32% мас. (32,0 кг), выгружают и формуют смесь в виде плит размером 500×600×50 мм при виброуплотнении, после чего формы устанавливают на площадку для просушивания при температуре окружающего воздуха 10°С. Через 24 ч изделия вынимают из форм и складируют.

Пример 2

Для получения 100 кг формовочной смеси в смеситель лопастного типа загружают 23,0% мас. (23,0 кг) песка кварцевого, 19,0% мас. (19,0 кг) портландцемента марки ЦЕМ 42,5 Н, 4,2% мас. (4,2 кг) смеси шламовых отходов установок водоподготовки и дезактивированного катализатора дегидрирования циклогексанола после их совместного помола в присутствии 1,8% мас. (1,8 кг) карбамида в виде гранул со средним диаметром 1,0-4,0 мм, 14,0% мас. (14,0 кг) базальтовой муки в виде волокнистой массы с линейным размером частиц 0,5-1,9 мм, 14,0% мас. (14,0 кг) базальтовой фибры в виде волокон длиной 2-8 мм. Далее смешивают компоненты с последующим их перемешиванием в течение 7 мин с жидким натриевым стеклом плотностью 1,45 г/см3 силикатным модулем М=3,0 в количестве 24,0% мас. (24,0 кг), выгружают и формуют смесь в виде плит размером 500×600×50 мм при виброуплотнении, после чего формы устанавливают на площадку для просушивания при температуре окружающего воздуха 22°С. Через 24 ч изделия вынимают из форм и складируют.

Пример 3

Для получения 100 кг формовочной смеси в смеситель лопастного типа загружают 25,0% мас. (25,0 кг) песка кварцевого, 20,0% мас. (20,0 кг) портландцемента марки ЦЕМ 42,5 Н, 6,0% мас. (6,0 кг) смеси шламовых отходов установок водоподготовки и дезактивированного катализатора дегидрирования циклогексанола после их совместного помола в присутствии 2,0% мас. (2,0 кг) карбамида в виде гранул со средним диаметром 1,0-4,0 мм, 31,0% мас. (31,0 кг) базальтовой муки в виде волокнистых частиц размером по длине 0,5-1,9 мм, диаметром 13,0-17,0 мкм. Далее смешивают компоненты с последующим их перемешиванием в течение 8 мин с жидким натриевым стеклом плотностью 1,50 г/см3 силикатным модулем М=3,3 в количестве 16,0% мас. (16,0 кг), выгружают и формуют смесь в виде блоков размером 300×600×200 мм при виброуплотнении, после чего формы устанавливают на площадку для просушивания при температуре окружающего воздуха 35°С. Через 24 ч изделия вынимают из форм и складируют.

Результаты испытаний по примерам 1-3 и по прототипу показаны в таблице.

Испытания прочности материала на сжатие проводили согласно ГОСТ 17177-94.

Теплопроводность, группу горючести материала определяли по ГОСТ 7076-99 и ГОСТ 30244-94 соответственно.

Определение устойчивости материала к действию растворов кислот и величину снижения прочности в результате его частичного растворения в 20% растворе соляной кислоты определяли по ГОСТ 17177-94.

Из представленной таблицы видно, что полученный теплоизоляционный материал по приведенным показателям превосходит материал, полученный по прототипу, а именно: коэффициент теплопроводности прототипа по сравнению с образцами по примерам 1-3 выше в 1,47-1,66 раза; прототип в 1,15-1,29 раза менее устойчив к действию разбавленных растворов минеральных кислот, увеличение прочности материала при сжатии составило 1,64-1,84 раза.

Существенным преимуществом настоящего изобретения по сравнению с прототипом является сокращение стадий производственного процесса, отсутствие необходимости высокотемпературной сушки и обжига формуемых изделий, что позволяет сократить в 3-4 раза энергозатраты на производство готовых теплоизоляционных плит и блоков. Кроме того, использование заявляемого изобретения позволяет расширить сырьевую базу строительных материалов на основе использования техногенных отходов промышленных предприятий, которыми являются базальтовая мука в виде аспирационной пыли производства базальтовых сэндвич-панелей, дезактивированный катализатор дегидрирования циклогексанола производства капролактама, шламовые отходы водоподготовки промышленных предприятий, что в итоге значительно удешевляет технологию получения материалов с повышенными теплоизоляционными и прочностными характеристиками.

Способ получения теплоизоляционного материала, заключающийся в смешивании неорганического природного материала, жидкого натриевого стекла, формовании массы в виде плит или блоков, сушке готового продукта, отличающийся тем, что в качестве неорганического природного материала используют песок кварцевый, дополнительно вводят портландцемент, смесь шламовых отходов установок очистки сточных вод водоподготовки промышленных предприятий, дезактивированного катализатора процесса дегидрирования циклогексанола после их совместного измельчения в присутствии 1,5-2,0 мас. % карбамида, а в качестве добавки - базальтовую фибру или базальтовую муку, или их смесь, смешивание компонентов осуществляют в смесителе лопастного типа с последующим их перемешиванием с указанным жидким натриевым стеклом в общей сложности в течение 6-8 мин, формованием в виде плит размером 500×600×50 мм или блоков размером 300×600×200 мм, сушкой при температуре +10-35°С, при этом компоненты смеси берут в следующем соотношении, мас. %:

Жидкое натриевое
стекло 16,0-32,0
Портландцемент 18,0-20,0
Песок кварцевый 20,0-25,0
Смесь шламовых отходов
и дезактивированного катализатора
дегидрирования циклогексанола 3,5-6,0
Карбамид 1,5-2,0

Базальтовая фибра

или базальтовая мука,
или их смесь 25,0-31,0



 

Похожие патенты:

Изобретение относится к строительным материалам и может быть использовано для футеровки обжиговых вагонеток и при строительстве печей. Технический результат заключается в повышении прочности бетона.
Изобретение относится к неорганическим сухим порошкообразным краскам для архитектурных покрытий. Предложена неорганическая сухая порошкообразная краска для архитектурных покрытий, содержащая силикат щелочного металла, отверждающее средство и органический повторно диспергируемый эмульсионный порошок, полученный сушкой эмульсии полимера.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления магнезитового жаростойкого бетона, включающий: связующее, магнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидные нанодисперсные полисиликаты натрия и тонкомолотые наполнители - лом периклазохромитовых изделий, шлам электрокорунда при следующем соотношении компонентов, мас.

Изобретение относится к строительству и касается промышленности строительных материалов, а именно к изготовлению любых видов строительных изделий, дорожных покрытий, и может быть использовано при жилищном и промышленном строительстве, строительстве дорог, в литейном, химическом производстве и других областях.

Изобретение относится к области производства строительных изделий, а именно легких конструкционно-теплоизоляционных стеновых блоков. В способе изготовления конструкционно-теплоизоляционных изделий, включающем приготовление смеси на основе жидкого стекла, стеклобоя и полистирола, укладку ее в форму, тепловую обработку и распалубливание, используют смесь, содержащую кг/м3 смеси: жидкое стекло с силикатным модулем 2,7-3 и плотностью 1,33-1,36 г/см3 - 296-337, песок фракции 0,25 мм и менее - 170-195, тонкоизмельченный стеклобой тарный фракции 0,125 мм и менее - 400-455, а также кремнефтористый натрий - 10% от массы жидкого стекла, пластификатор С-3 - 0,03-0,05% от массы жидкого стекла, предварительно подвспененный полистирол бисерный фракции 1-2 мм - 815-930 л/м3 смеси, смесь укладывают в закрытые щелевые формы, тепловую обработку осуществляют электропрогревом в течение 5-10 мин переменным током промышленной частоты 50 Гц напряжением 50-80В до температуры смеси 90-100°С.

Изобретение относится к области производства строительных материалов, в частности к производству искусственных пористых заполнителей для бетонов и гранулированных теплоизоляционных материалов для засыпной теплоизоляции, а также к получению полуфабриката для производства гранулированного строительного материала.

Изобретение относится к производству смесей, которые могут быть использованы в качестве обмазочного материала в строительстве печей. Огнеупорная смесь содержит, мас.%: жидкое калиевое стекло с плотностью 1300-1350 кг/м3 и силикатным модулем 3,6-4 30,5-31,5, каолин 1,0-3,0, стальное волокно длиной 5-10 мм 1,0-3,0, глинозем 9,5-12,0, шамот - остальное.

Изобретение относится к геополимерным композитам. Геополимерный композит для бетона ультравысокого качества, содержащий связующее вещество, содержащее, по меньшей мере, один химически активный алюмосиликат и, по меньшей мере, один химически активный щелочноземельный алюмосиликат, щелочную активирующую присадку, содержащую водный раствор, по меньшей мере, одного вещества из гидроокиси натрия и гидроокиси калия и, по меньшей мере, одного вещества из кремнеземного дыма, стекла из силиката натрия, стекла из силиката калия, раствора силиката натрия и раствора силиката калия, и один или более заполнителей.
Изобретение относится к порошкообразному раствору для расшивки швов мостовых. Предложен порошкообразный раствор для расшивки швов мостовых, содержащий, мас.%: порошок из калиевого жидкого стекла, содержащий 5-22 мас.% воды, 0,5-50, резиновую муку 3-60, наполнитель 10-95 и другие компоненты 0-20.

Изобретение относиться к средствам для ремонта повреждений и защиты от коррозии в месте повреждения стеклоэмалевых покрытий технологического оборудования химических предприятий, систем трубопроводов, другого оборудования технического назначения и может быть применено на предприятиях химической и металлургической промышленности, в том числе использующих эмалированные трубы для оборота жидкости с кислой средой.

Изобретение относится к способам обезвреживания и утилизации отходов бурения и может быть использовано для комплексного обезвреживания отходов, образующихся при производстве буровых работ, таких как буровые шламы (БШ), буровые сточные воды (БСВ), отработанные буровые растворы (ОБР), загрязненные грунты и другие предварительно измельченные производственные и бытовые отходы.

Изобретение относится к производству строительных материалов и изделий из ячеистых бетонов и может быть использовано для утепления ограждающих конструкций зданий и сооружений различного назначения.
Изобретение относится к производству композиционных вяжущих на основе гипса и минеральных добавок и может быть использовано при изготовлении строительных материалов для внутренней отделки помещений.

Изобретение относится к способам утилизации отходов отработанных строительных материалов и может найти применение в качестве заполнителей и модифицирующих добавок для бетонов дорожного строительства: бордюрных камней, тротуарных плит, покрытия нижних оснований дорог.

Изобретение относится к строительной индустрии, а именно к получению модифицированного экономически выгодного тяжелого бетона на основе отходов доломитового производства.

Изобретение относится к технологии производства строительных материалов и может найти применение в области строительства в качестве стенового отделочного материала на основе гипса, для изготовления 3D панелей.
Изобретение относится к охране природной среды в нефтегазодобывающей промышленности и предназначается для утилизации нефтесодержащих буровых отходов при строительстве, эксплуатации и демонтаже нефтегазовых скважин.

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении цементов различного назначения c добавками. Технический результат - охрана окружающей среды и повышение прочности цемента.

Изобретение относится к области строительных материалов, в частности к производству жаростойких бетонов на основе химических связующих. Технический результат заключается в повышении предела прочности при сжатии и термостойкости жаростойких бетонов.

Изобретение относится к строительным материалам для изготовления изделий из бетона. Бетон песчаный включает портландцемент, кварцевый песок с модулем крупности 2,7-3,2, наполнитель, гиперпластификатор «Melflux 2651 F», воду, в качестве наполнителя использован шлам химической водоочистки (ШХВО), введена водоудерживающая добавка в виде микрокремнезема, при следующем соотношении компонентов, мас.%: портландцемент 16,7-18,4, кварцевый песок 68,4-70,0, ШХВО 1,2-2,5, микрокремнезем 0,8-2,8, гиперпластификатор «Melflux 2651 F» 0,08-0,09, вода 8,91-10,11, при этом удельная поверхность ШХВО составляет от 1200 до 1300 м2/кг.

Изобретение относится к промышленности строительных материалов, а именно к способу приготовления дисперсно-армированного строительного раствора для монолитных полов, и может быть использовано при изготовлении монолитных покрытий полов и стяжек на основе цементного раствора.

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического природного материала, жидкого натриевого стекла, формовании массы в виде плит или блоков, сушке готового продукта, в качестве неорганического природного материала используют песок кварцевый, дополнительно вводят портландцемент, смесь шламовых отходов установок очистки сточных вод водоподготовки промышленных предприятий, дезактивированного катализатора процесса дегидрирования циклогексанола после их совместного измельчения в присутствии 1,5-2,0 мас. карбамида, а в качестве добавки - базальтовую фибру или базальтовую муку, или их смесь, смешивание компонентов осуществляют в смесителе лопастного типа с последующим их перемешиванием с указанным жидким натриевым стеклом в общей сложности в течение 6-8 мин, формованием в виде плит размером 500×600×50 мм или блоков размером 300×600×200 мм, сушкой при температуре +10-35°С, при этом компоненты смеси берут в следующем соотношении, мас. : жидкое натриевое стекло 16,0-32,0, портландцемент 18,0-20,0, песок кварцевый 20,0-25,0, смесь шламовых отходов и дезактивированного катализатора дегидрирования циклогексанола 3,5-6,0, карбамид 1,5-2,0, базальтовая фибра или базальтовая мука, или их смесь 25,0-31,0. Технический результат - повышение прочности при сжатии, снижение коэффициента теплопроводности, а также придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот, снижение энергоемкости производства. 1 табл., 3 пр.

Наверх