Адаптивная система управления с фильтр-корректором для априорно неопределенных динамических объектов с периодическими коэффициентами

Изобретение относится к системам автоматического управления и может быть использовано при построении адаптивных систем управления неустойчивыми линейными динамическими объектами периодического действия с относительным порядком передаточной функции, превышающим единицу. Технический результат - обеспечение устойчивости системы управления и точной компенсации нестационарных изменений внутренних коэффициентов объекта регулирования за счет получения и использования оценок его переменных состояния. Адаптивная система управления содержит объект регулирования, блок задания коэффициентов, первый блок суммирования, введены: фильтр-корректор (ФК), n первых умножителей, n вторых умножителей, n третьих умножителей, n четвертых умножителей, n вторых блоков суммирования, n блоков задержки, n интеграторов (n - размерность вектора состояния объекта регулирования) и третий блок суммирования. 2 ил.

 

Изобретение относится к системам автоматического управления и может быть использовано при построении адаптивных систем управления неустойчивыми линейными динамическими объектами периодического действия с относительным порядком передаточной функции, превышающим единицу.

Наиболее близким техническим решением к предлагаемому является адаптивная система управления для динамических объектов с периодическими коэффициентами (Патент РФ №2427870, официальный бюл. «Изобретения и полезные модели». - 2011, №24, прототип), содержащая объект регулирования, блок задания коэффициентов, первый блок суммирования, последовательный фильтр-компенсатор (ПФК), первый умножитель, второй блок суммирования, блок задержки, второй умножитель, при этом выходы объекта регулирования соединены с соответствующими входами блока задания коэффициентов, выходы блока задания коэффициентов подключены к входам первого блока суммирования, выход которого соединен с первым и вторым входами первого умножителя и вторым входом второго умножителя, выход первого умножителя подключен к первому входу второго блока суммирования, выход второго блока суммирования соединен с первым входом второго умножителя, а также входом блока задержки, выход которого подключен ко второму входу второго блока суммирования, выход второго умножителя соединен с входом объекта регулирования.

Однако недостатком данной системы является потеря работоспособности при управлении неустойчивыми динамическими объектами, а также невозможность точной компенсации нестационарных изменений внутренних коэффициентов объектами управления с целью обеспечения высокого качества работы системы.

Задачей, на решение которой направлено заявленное изобретение, является расширение функциональных возможностей системы, т.е. обеспечение устойчивости системы управления и точной компенсации нестационарных изменений внутренних коэффициентов объекта регулирования за счет получения и использования оценок его переменных состояния.

Сущность изобретения состоит в том, что в адаптивную систему управления с фильтр-корректором (ФК) для априорно неопределенных динамических объектов с периодическими коэффициентами, содержащую объект регулирования, блок задания коэффициентов, первый блок суммирования, введены: фильтр-корректор (ФК), n первых умножителей, n вторых умножителей, n третьих умножителей, n четвертых умножителей, n вторых блоков суммирования, n блоков задержки, n интеграторов (n - размерность вектора состояния объекта регулирования) и третий блок суммирования, при этом выходы объекта регулирования подключены к соответствующим входам блока задания коэффициентов, выходы блока задания коэффициентов соединены с соответствующими входами первого блока суммирования, выход первого блока суммирования подключен к входу четвертого блока суммирования ФК, выход которого соединен с входом n-1 интегратора ФК и является последним n-м выходом ФК, выход j интегратора ФК (j=n-1, n-2, …, 2) связан с входом последующего j-1 интегратора ФК с соответствующим коэффициентом, с k-м (k=2, 3, …, n-1) входом четвертого блока суммирования ФК, а также является j-м выходом ФК, выход первого интегратора ФК с соответствующим коэффициентом связан с последним n-м входом четвертого блока суммирования ФК, а также является первым выходом ФК; каждый из n выходов ФК соединен с первым и вторым входами соответствующего i-го (i=1, 2, …, n) первого и третьего умножителей, а также вторым входом каждого i-го второго и четвертого умножителей, выход каждого i-го первого умножителя подключен к первому входу i-го второго блока суммирования, выход которого одновременно соединен с первым входом i-го второго умножителя и входом i-го блока задержки, выход i-го блока задержки подключен к второму входу i-го второго блока суммирования, выход каждого i-го второго умножителя соединен с соответствующим входом третьего блока суммирования; выход каждого i-го третьего умножителя подключен к входу соответствующего i-го интегратора, выход каждого i-го интегратора соединен с первым входом соответствующего i-го четвертого умножителя, выходы каждого i-го четвертого умножителя подключены к соответствующим входам третьего блока суммирования, выход которого подключен к входу объекта регулирования.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена блок-схема системы управления; на фиг. 2 изображена блок-схема ФК. Система содержит: объект регулирования 1; блок задания коэффициентов 2; первый блок суммирования 3; ФК 4; первые умножители 51, …, 5n; вторые блоки суммирования 61, …, 6n; блоки задержки 71, …, 7n; вторые умножители 81, …, 8n; третьи умножители 91, …, 9n; интеграторы 101, …, 10n; четвертые умножители 111, …, 11n; третий блок суммирования 12; четвертый блок суммирования ФК 13; интеграторы ФК 141, …, 14n-1; y1, …, ym - выходные сигналы объекта регулирования; x1ФК, …, хnФК - выходные сигналы фильтр-корректора; u - входной сигнал объекта регулирования.

Объект регулирования описывается уравнением:

где x(t) - n-мерный вектор состояния;

A(t+Т), b(t+Т) - соответственно нестационарные матрица и вектор, элементы которых являются T-периодическими функциями времени; собственные числа матрицы A могут иметь положительную вещественную часть;

y(t) - вектор выходных координат объекта;

* - символ транспонирования;

L - вектор, формирующий выход объекта;

u(t) - управляющее воздействие, удовлетворяющее соотношению:

где χпер(t), χинт(t) - векторы настраиваемых параметров контура адаптации; хФК(t) - вектор оценок переменных состояния объекта регулирования (1), полученных с помощью ФК

где АФК - матрица в форме Фробениуса; bФК, LФК - стационарные векторы.

С помощью критерия гиперустойчивости В.М. Попова можно показать, что реализация алгоритмов самонастройки компонентов векторов χпер(t) и χинт(t) регулятора (2) в виде

где γ0i, γ1i - некоторые постоянные положительные величины; обеспечит точную компенсацию изменений внутренних параметров объекта регулирования и устойчивость системы управления.

Система функционирует следующим образом.

Сигналы y1, …, ym с выхода объекта регулирования 1 подаются на входы блока задания коэффициентов 2, внутри которого происходит их умножение на постоянный коэффициент, выходные сигналы с блока задания коэффициентов 2 поступают на соответствующие входы первого блока суммирования 3, сигнал с выхода которого идет на вход ФК 4. Входной сигнал ФК 4 (структурная схема представлена на фиг. 2) поступает на первый вход четвертого блока суммирования ФК 13, выходной сигнал xnфК четвертого блока суммирования ФК 13 одновременно подается на вход интегратора ФК 14n-1 и на последний выход ФК 4, сигналы xjФК с выходов интеграторов ФК 14j (j=n-1, n-2, …, 2) поступают на вход последующего интегратора ФК 14j-1 с соответствующим коэффициентом на k-й (k=2, 3, …, n-1), вход четвертого блока суммирования ФК 13, а также на соответствующий j-й выход ФК 4, выходной сигнал x1ФК интегратора ФК 141 подается с соответствующим коэффициентом на последний n-й вход четвертого блока суммирования ФК 13, а также на первый выход ФК 4. Выходные сигналы x1ФК, …, xnФК ФК 4 одновременно поступают на первый и второй входы первых умножителей 51, …, 5n, на первый и второй входы третьих умножителей 91, …, 9n, на вторые входы вторых умножителей 81, …, 8n, а также на вторые входы четвертых умножителей 111, …, 11n, сигналы с выходов первых умножителей 51, …, 5n с соответствующими коэффициентами γ0i идут на первые входы вторых блоков суммирования 61, …, 6n, выходные сигналы которых подаются на первые входы вторых умножителей 81, …, 8n и на входы блоков задержки 71, …, 7n, сигналы с выходов блоков задержки 71, …, 7n идут на вторые входы вторых блоков суммирования 61, …, 6n, выходные сигналы вторых умножителей 81, …, 8n поступают на соответствующие входы третьего блока суммирования 12, сигналы с выходов третьих умножителей 91, …, 9n с соответствующими коэффициентами γ1i подаются на входы интеграторов 101, …, 10n, выходные сигналы которых идут на первые входы соответствующих четвертых умножителей 111, …, 11n, сигналы с выходов четвертых умножителей 111, …, 11n поступают на соответствующие входы третьего блока суммирования 12, сигнал u с выхода которого подается на вход объекта регулирования 1.

Таким образом, заменяя в системе, содержащей объект регулирования, блок задания коэффициентов, первый блок суммирования, последовательный фильтр-компенсатор (ПФК), первый умножитель, второй блок суммирования, блок задержки, второй умножитель, последовательный фильтр-компенсатор (ПФК) на фильтр-корректор (ФК), вводя вместо первого и второго умножителей, второго блока суммирования, блока задержки - n первых умножителей, n вторых умножителей, n третьих умножителей, n четвертых умножителей, n вторых блоков суммирования, n блоков задержки, n интеграторов (n - размерность вектора состояния объекта регулирования), а также третий блок суммирования, обеспечиваем устойчивость системы управления и точную компенсацию нестационарных изменений внутренних коэффициентов объекта с использованием в контуре регулирования оценок его переменных состояния.

Технический результат заключается в расширении функциональных возможностей системы, а именно обеспечении устойчивости системы управления и точной компенсации нестационарных, Т-периодических изменений внутренних коэффициентов объекта за счет получения и использования в контуре управления оценок его переменных состояния.

Данное устройство может быть реализовано промышленным способом на основе стандартной элементной базы.

Адаптивная система управления с фильтр-корректором (ФК) для априорно неопределенных динамических объектов с периодическими коэффициентами, содержащая объект регулирования, блок задания коэффициентов, первый блок суммирования, отличающаяся тем, что введены: фильтр-корректор (ФК), n первых умножителей, n вторых умножителей, n третьих умножителей, n четвертых умножителей, n вторых блоков суммирования, n блоков задержки, n интеграторов (n - размерность вектора состояния объекта регулирования) и третий блок суммирования, при этом выходы объекта регулирования подключены к соответствующим входам блока задания коэффициентов, выходы блока задания коэффициентов соединены с соответствующими входами первого блока суммирования, выход первого блока суммирования подключен к входу четвертого блока суммирования ФК, выход которого соединен с входом n-1 интегратора ФК и является последним n-м выходом ФК, выход j интегратора ФК (j=n-1, n-2, …, 2) связан со входом последующего j-1 интегратора ФК с соответствующим коэффициентом, с k-м (k=2, 3, …, n-1) входом четвертого блока суммирования ФК, а также является j-м выходом ФК, выход первого интегратора ФК с соответствующим коэффициентом связан с последним n-м входом четвертого блока суммирования ФК, а также является первым выходом ФК, каждый из n выходов которого соединен с первым и вторым входами соответствующего i-го (i=1, 2, …, n) первого и третьего умножителей, а также вторым входом каждого i-го второго и четвертого умножителей, выход каждого i-го первого умножителя подключен к первому входу i-го второго блока суммирования, выход которого одновременно соединен с первым входом i-го второго умножителя и входом i-го блока задержки, выход i-го блока задержки подключен к второму входу i-го второго блока суммирования, выход каждого i-го второго умножителя соединен с соответствующим входом третьего блока суммирования; выход каждого i-го третьего умножителя подключен к входу соответствующего i-го интегратора, выход каждого i-го интегратора соединен с первым входом соответствующего i-го четвертого умножителя, выходы каждого i-го четвертого умножителя подключены к соответствующим входам третьего блока суммирования, выход которого подключен к входу объекта регулирования.



 

Похожие патенты:

Изобретение относится к автоматике. Способ расширения диапазона регулирования автоматических систем регулирования без потери устойчивости включает настройку регулятора, реализующего пропорциональную и интегральную составляющие закона регулирования, при которой сигнал управляющего воздействия зависит от величины ошибки регулирования и значений коэффициентов пропорциональной и интегральной составляющих.

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия, необходимого для обеспечения полной инвариантности его показателей качества к непрерывно изменяющимся параметрам нагрузки электропривода заданной степени подвижности робота.

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия, необходимого для обеспечения полной инвариантности его показателей качества к непрерывно изменяющимся параметрам нагрузки электропривода заданной степени подвижности робота.

Изобретение относится к области электротехники и может быть использовано в системах автоматического управления нестационарными объектами - системах адаптивного управления электроприводом.

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод манипуляционного робота содержит электродвигатель, редуктор, датчики положения и скорости, сумматоры, блоки умножения, задатчики сигнала, квадраторы, дифференциатор и функциональные преобразователи: синусные и косинусные.

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод содержит последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель, связанный непосредственно с датчиком скорости и через редуктор - с датчиком положения.

Изобретение относится к управлению подводными объектами с использованием судовых спускоподъемных устройств. Устройство для управления подводным объектом содержит на судне-носителе лебедку, задатчик среднего значения длины каната, задатчик скорости лебедки, управляющий блок, электропривод лебедки, токосъемник и барабан лебедки.

Изобретение относится к способу управления подводным объектом. Для перемещения подводного объекта по вертикали со стороны судна изменяют длину первой из двух частей механической связи между объектом и судном, поддерживая усилие, равное весу подводного объекта в воде, осуществляют дополнительное перемещение со стороны подводного объекта изменением длины второй части механической связи, ограниченное допустимыми значениями.

Изобретение относится к области управления сложными объектами, которые не удается представить математической моделью в виде систем линейных дифференциальных уравнений, и быстродействующими технологическими процессами и касается нефтехимической, машиностроительной и нефтеперерабатывающей промышленностей.

Изобретение относится к области самонастраивающихся систем управления электроприводами. Способ самонастройки заключается в том, что в течение определенного интервала времени подают случайно сгенерированное управляющее задание на вход электропривода или предварительно построенной его модели.

Комбинированная адаптивная система управления с фильтр-корректором (ФК) для априорно неопределенных динамических объектов с периодическими коэффициентами содержит объект регулирования, блок задания коэффициентов, первый блок суммирования, ФК, n первых умножителей, n вторых умножителей, n вторых блоков суммирования, n блоков задержки, третий умножитель, интегратор, четвертый умножитель, третий блок суммирования, соединенные определенным образом. ФК содержит четвертый блок суммирования, интегратор, пятый блок суммирования, соединенные определенным образом. Обеспечивается устойчивость системы управления и точная компенсация нестационарных изменений внутренних коэффициентов объекта. 2 ил.

Изобретение относится к области автоматического управления динамическими объектами и обеспечивает формирование программных траекторий перемещения программной точки с заданной скоростью. Устройство формирования программных сигналов управления содержит навигационную систему, первую, вторую и третью следящие системы управления динамическими объектами, а также сумматоры, квадраторы, блок извлечения квадратного корня, блоки умножения, блок деления, задатчик сигнала и интегратор. Технический результат заключается в формировании скорости изменения параметров каждого из сплайнов, образующих траектории движения динамических объектов, таким образом, чтобы программные точки двигались по этим траекториям с требуемой скоростью. 1 ил.

Адаптивная электрогидравлическая следящая система с модулированной осцилляцией содержит сумматор, настраиваемый регулятор, модулятор, демодулятор, генератор осцилляции, клеточный автомат, объект управления, соединенные определенным образом. Обеспечивается упрощение системы и повышение ее надежности. 2 ил.

Изобретение относится к электротехнике и может быть использовано для построения систем автоматического управления возбуждением (далее САУВ) синхронных генераторов (далее СГ). Технический результат заявленного способа - определение оптимальной настройки каналов стабилизации АРВ для различных схемно-режимных условий работы генератора, адаптация САУВ для работы с различными типами СГ. Способ построения адаптивной системы автоматического управления возбуждением, заключающийся в том, что коэффициенты каналов стабилизации автоматического регулятора возбуждения подстраивают под изменения значений параметров эквивалентной схемы «генератор - линия - шины бесконечной мощности (ШБМ)» и коэффициента усиления регулятора напряжения таким образом, чтобы переходные процессы при возмущающем и управляющем воздействиях имеют апериодический или близкий к нему характер. 10 ил.

Изобретение относится к области электроэнергетики и может быть применено для управления охлаждением маслонаполненного силового трансформатора. Устройство содержит блок (1) цифровой обработки, снабженный входным интерфейсом (2) для подключения датчиков электрического состояния трансформатора, например одного или нескольких датчиков (3) тока нагрузки, и выходным интерфейсом (4) для выдачи сигналов управления регулируемыми приводами масляных и воздушных охладителей указанного трансформатора. По показаниям датчиков (3) блок (1) определяет допустимые термогидравлические состояния силового трансформатора и производительности масляных и воздушных охладителей, при которых не будет превышена уставка по температуре наиболее нагретой точки. Из полученных данных блок (1) отбирает термогидравлическое состояние и необходимую для его поддержания комбинацию производительностей масляных и воздушных охладителей, при которых суммарные затраты электроэнергии на охлаждение силового трансформатора и потери в нем будут минимальными. Если выбранная производительность ниже заданного порога, блок (1) выводит из работы один из охладителей и повторно определяет минимизирующую суммарные затраты комбинацию производительностей для охладителей, оставшихся в работе. Для расширения функциональных возможностей в устройство могут быть введены дополнительные интерфейсы. В результате уменьшаются суммарные затраты электроэнергии на охлаждение силового трансформатора и на потери в нем. 7 з.п. ф-лы, 1 ил.

Настоящее изобретение, относящееся к области выращивания растений, предлагает систему и способ управления ростом растений. Система содержит центр сбора информации, процессор, подключенный к центру сбора информации, и регулируемый источник света. Центр сбора информации выполнен с возможностью получать информацию о росте растения, которая включает по меньшей мере одно из информации о распределении веток и листьев и информации о распределении цветков. Процессор выполнен с возможностью определять, в соответствии с информацией о росте, целевое положение излучения регулируемого источника света на растении и управлять регулируемым источником света для освещения целевого положения на растении. В результате достигается автоматическое управление регулируемым источником света для лучшего освещения растения, упрощается работа пользователя. 2 н. и 11 з.п. ф-лы, 10 ил.

Изобретение относится к робототехнике и может быть использовано при создании приводов манипуляторов. Изобретение направлено на обеспечение полной инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его динамических моментных нагрузочных характеристик при движении манипулятора по всем трем рассматриваемым степеням подвижности и тем самым повышение его динамической точности управления. 3 ил.

Изобретение относится к робототехнике и может быть использовано при создании приводов роботов. Изобретение направлено на обеспечение полной инвариантности динамических свойств электропривода к непрерывным и быстрым изменениям его динамических моментных нагрузочных характеристик при движении манипулятора по всем четырем рассматриваемым степеням подвижности и, тем самым, повышение его динамической точности управления. 3 ил.

Изобретение относится к стендовым испытаниям узлов транспортных средств. Предложена автоматизированная система управления нагружающим устройством для стендовых испытаний автомобильных энергетических установок, в которой устройство имитации колеса содержит блок модели привода, который в реальном автомобиле связывает вал испытываемого силового агрегата энергоустановки с колесами, и интегрирующее звено, постоянная времени которого равна моменту инерции имитируемого колеса и коэффициент усиления равен радиусу имитируемого колеса. Первым выходным сигналом блока модели шины является сумма ее продольной реакции и силы сопротивления качения, вторым сигналом - вектор составляющих ее касательной реакции. Выходным сигналом блока модели движения автомобиля является вектор составляющих проскальзывания шины и ее нормальная реакция. Повышается точность воспроизведения нагрузочных режимов энергоустановки в широком диапазоне воспроизводимых системой режимов движения автомобиля. 2 з.п. ф-лы, 5 ил.

Автоматический нейросетевой настройщик параметров ПИ-регулятора для управления нагревательными объектами содержит уставку по температуре, ПИ-регулятор, объект управления, два блока задержки сигналов, нейросетевой настройщик, соединенные определенным образом. Обеспечивается повышение энергоэффективности работы нагревательного объекта. 9 ил. 1 табл.
Наверх