Способ определения мощности газогенератора

Изобретение относится к области авиационного двигателестроения, а именно испытаний и эксплуатации газотурбинных двигателей. В способ определения мощности газогенератора в качестве средства преобразования аэродинамического сопротивления используют сопло, в качестве параметров, характеризующих энергию, - тягу сопла и температуру заторможенного потока перед соплом, при этом мощность газогенератора определяют по формуле:

где GB - расход воздуха на входе в газогенератор,

GT - расход топлива в камеру сгорания,

R - тяга сопла,

ϕс - коэффициент скорости сопла,

ТT* - температура газа на входе в сопло, которая определяется в зависимости от относительного расхода топлива при стандартном значении теплотворной способности топлива и температуры наружного воздуха,

КГ - показатель изоэнтропы,

RГ - газовая постоянная,

g - 9,81 м/с2 .

Изобретение позволяет упростить определение мощности газогенератора.

 

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей.

Наиболее близким к данному изобретению по технической сущности и достигаемому техническому результату является известный способ определения мощности газогенератора, в котором преобразуют мощность путем учета изменения расхода воздуха на входе в газогенератор, расхода топлива в камеру сгорания и преобразования энергии потока при изменении аэродинамического сопротивления. (RU 2012157200, кл. F02C 6/02, 10.12.2015.)

Данный способ не является оптимальным, т.к. его сложно осуществить технически.

Задачей настоящего изобретения является снижение металлоемкости устройства для определения мощности газогенератора и уменьшение затрат на его изготовление.

Ожидаемый технический результат заключается в упрощении определения мощности газогенератора расчетным путем.

Ожидаемый технический результат достигается тем, что рассчитывают мощность путем измерения расхода воздуха на входе в газогенератор, расхода топлива в камеру сгорания при учете преобразования энергии потока на средстве, изменяющем аэродинамическое сопротивление, по предложению в качестве средства изменения аэродинамического сопротивления используют сопло, а в качестве параметров, характеризующих энергию, - тягу сопла и температуру заторможенного потока перед соплом, при этом мощность газогенератора определяют по формуле:

где GB - расход воздуха на входе в газогенератор,

GT - расход топлива в камеру сгорания,

R - тяга сопла,

ϕс - коэффициент скорости сопла,

ТT* - температура заторможенного потока (температура газа на входе в сопло, которая определяется в зависимости от относительного расхода топлива при стандартном значении теплотворной способности топлива и температуры наружного воздуха),

КГ - показатель изоэнтропы,

RГ - газовая постоянная,

g - 9,81 м/с2.

Мощность газогенератора может быть определена путем замены рабочей турбины соплом. Мощность определяется как результат изоэнтропического расширения газа из состояния, определяемого измерениями на выходе из газогенератора (полное давление и температура заторможенного потока) в состояние, определяемое атмосферным давлением окружающего воздуха.

Способ определения мощности газогенератора реализуется следующим образом. При проведении испытаний на стенде рабочую турбину заменяют соплом. Измеряют расход воздуха на входе в газогенератор GВ, расход топлива в камеру сгорания GТ, тягу сопла R, а также температуру газа перед реактивным соплом ТТ* в зависимости от относительного расхода топлива при стандартном значении теплотворной способности топлива и температуры наружного воздуха. Рассчитывают мощность газогенератора по формуле:

Пример расчета

В качестве топлива использовали природный газ

R=4515 кгс,

GB=64,62 кг/с,

GТ=0,9 кг/с,

ТТ*=908 К,

ϕс=0,94,

g=9,81 м/с2,

RГ=29,64 Дж/кгК,

КГ=1,332.

Ne=1626302 кгс м/с,

Ne=1626302/102=15944 кВт.

Применение изобретения позволяет упростить определение мощности газогенератора.

Способ определения мощности газогенератора, включающий расчет мощности путем измерения расхода воздуха на входе в газогенератор, расхода топлива в камеру сгорания при учете преобразования энергии потока на средстве, изменяющем аэродинамическое сопротивление, отличающийся тем, что в качестве средства изменения аэродинамического сопротивления используют сопло, а в качестве параметров, характеризующих энергию, - тягу сопла и температуру заторможенного потока перед соплом, при этом мощность газогенератора определяют по формуле:

где: GВ - расход воздуха на входе в газогенератор,

GТ - расход топлива в камеру сгорания,

R - тяга сопла,

ϕс - коэффициент скорости сопла,

ТT* - температура заторможенного потока,

КГ - показатель изоэнтропы,

RГ - газовая постоянная,

g - 9,81 м/с2.



 

Похожие патенты:

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива с имитацией высотных условий.

Изобретение относится к области авиадвигателестроения, турбостроения, а именно к стендам для моделирования процессов теплообмена в охлаждаемых лопатках, и может найти применение при проектировании и оптимизации систем охлаждения лопаток высокотемпературных газовых турбин.

Изобретение относится к области эксплуатации и диагностики авиационного газотурбинного двигателя. Технический результат – повышение точности способа ускоренного расчетно-экспериментального установления периодичности контроля деталей двигателя для обеспечения безопасной эксплуатации по техническому состоянию.

Изобретение относится к обнаружению утечек в топливной системе транспортных средств. В способе эксплуатации топливной системы транспортного средства, во время испытания на утечку в топливной системе прерывают испытание при обнаружении случайного временного закрывания клапана, соединенного с топливным баком.

Изобретение относится к обнаружению утечек топливной системы. Система для обнаружения утечек топлива в транспортном средстве с гибридным приводом содержит устройство потребления вакуума, вакуумный насос с электроприводом с первым выпускным отверстием для подачи вакуума и вторым выпускным отверстием для выпуска воздуха, датчик давления топливной системы и контроллер.

Изобретение относится к области технологии эксплуатации технического оборудования, преимущественно электроники, используемого в различных областях народного хозяйства.

Изобретение относится к энергетике и может быть использовано в двигателестроении и в автомобильной промышленности. Техническим результатом является повышение точности измерения и обеспечение многофункциональности стенда.

Изобретение относится к энергетике и может быть использовано в двигателестроении и в автомобильной промышленности. Техническим результатом является повышение точности измерения и обеспечение многофункциональности стенда.

Изобретение относится к гидромашиностроению и может быть использовано при оценке технического состояния гидромашины в условиях эксплуатации. Способ диагностирования гидромашины включает периодический вывод гидромашины на испытательный режим с непрерывным изменением угловой скорости вращения вала, например, выключением привода гидромашины.

Изобретение относится к области диагностики, а именно к способам оценки технического состояния машин по вибрации корпуса, и может быть использовано при эксплуатации машинных комплексов для предупреждения внезапных отказов и аварий машин в нефтеперерабатывающей и других отраслях промышленности.

Объектом изобретения является устройство моделирования попадания скоплений льда в двигатель, содержащее главную емкость, образующую полость для топлива и соединенную с входом двигателя через трубопровод, систему впрыска, содержащую орган впрыска, расположенный в трубопроводе, вспомогательную емкость, образующую полость для топлива и соединенную с системой впрыска через орган выбора, и бак, соединенный, с одной стороны, с водяным резервом и, с другой стороны, с системой впрыска через орган выбора, в котором орган выбора выполнен с возможностью избирательного установления сообщения между системой впрыска и вспомогательной емкостью или баком с целью впрыска в двигатель определенного количества воды. Технический результат изобретения – повышение точности впрыскиваемого объема воды за очень короткое время впрыска в топливный контур в строго определенных и точных условиях расхода и температуры. 13 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Система тестирования показателя работы паровой турбины включает по меньшей мере одно компьютерное устройство, включающее нейронную сеть, сформированную с использованием динамической термодинамической модели паровой турбины и предварительных данных, собранных от паровой турбины; устройство тестирования сети для тестирования упомянутой нейронной сети с использованием данных тестирования; вычислитель текущего показателя работы для вычисления текущего показателя работы упомянутой паровой турбины на основе эксплуатационных данных паровой турбины; и вычислитель прогнозируемого показателя работы для вычисления прогнозируемого показателя работы паровой турбины на основе текущего показателя работы. Также представлены способ тестирования показателя работы паровой турбины и машиночитаемый носитель для хранения данных. Изобретение обеспечивает возможность тестирования показателя работы паровой турбины. 3 н. и 16 з.п. ф-лы, 3 ил.

Изобретение относится к области турбостроения, а именно - к испытаниям газогенераторов турбореактивных двухконтурных двигателей на стенде. Стенд для испытания газогенераторов турбореактивных двухконтурных двигателей имеет воздуховод с установленными по тракту заслонками и турбореактивный двухконтурный двигатель. Вход воздуховода соединен с наружным контуром турбореактивного двигателя, а выход - с испытуемым газогенератором. Потоком воздуха наружного контура турбореактивного двигателя без смешения потоков наружного и внутреннего контуров совместно с использованием заслонок, перепускающих воздух на вход испытуемого газогенератора и в выхлопной воздуховод, обеспечивается одновременная имитация газодинамических параметров воздуха на входе в испытуемый газогенератор и упрощение испытаний. 1 ил.

Способ эксплуатации предназначен для использования в управлении периодичностью профилактического технического обслуживания объектов. Способ включает определение начальной периодичности технического обслуживания объекта по наработке и допустимой интенсивности отказов по отношению к наработке, проведение технического обслуживания по наработке и фиксацию величины интенсивности отказов до обслуживания, сравнение величины интенсивности отказов с допустимой и, при ее величине больше допустимой, проведение очередного обслуживания при наработке объекта, пропорциональной отношению допустимой интенсивности отказов к фиксированной. Изобретение направлено на повышение надежности технического объекта путем управления периодичностью его технического обслуживания. 1 табл., 1 ил.

Изобретение относится к испытательной технике, а именно к стендам для температурных испытаний авиационной техники. Стенд для температурных испытаний содержит устройство нагрева рабочей среды, основание, размещенные на нем камеру для испытуемого изделия, трубопровод и защитное устройство в виде компенсатора температурного расширения трубопровода. Компенсатор выполнен в виде катковой опоры и шарнирно связанного с ней гидравлического демпфера, а устройство нагрева закреплено на катковой опоре. Стенд снабжен теплозащитными экранами, выполненными в виде обечаек, последовательно установленных внутри трубопровода и образующих канал для рабочей среды. Удлинение трубопровода компенсируется перемещением катковой опоры с нагревательным устройством и гидравлическим демпфером. Изобретение позволяет обеспечить компенсацию температурных деформаций стенда путем обеспечения свободного перемещения нагревательного устройства при разрушении трубопровода в процессе испытания. 2 ил.

Изобретение может быть использовано в машиностроении, авиа-, двигателестроении и других областях. В качестве датчиков звукового давления используется ряд технических микрофонов с узкой диаграммой направленности, установленных в заданном секторе исследуемой детали. Дополнительно выделяют точечные значения величины звукового давления и частотный спектр каждого из микрофонов в отдельности, строят спектральную амплитудно-фазовую картинку по частотному спектру ряда технических микрофонов и путем преобразований, проведения фильтраций и коррекции акустического сигнала получают визуальное отображение распределения амплитуд вибрации для каждой из выделенных частот на поверхности детали. Изобретение позволяет повысить достоверность результата при проведении определения амплитуды, а также дает возможность качественной оценки форм колебаний элементов конструкции. 3 з.п. ф-лы, 8 ил.

Изобретение относится к способам испытаний турбореактивных двигателей (ТРД) и может быть использовано при испытаниях стационарных газотурбинных двигателей. В способе приведение параметров к стандартным атмосферным условиям производят с учетом влажности атмосферного воздуха, при этом предварительно проводят испытания двигателя при различной влажности атмосферного воздуха, измеряют параметры двигателя при различной влажности атмосферного воздуха, вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от влажности атмосферного воздуха, а при приведении параметров к стандартным атмосферным условиям умножают приведенные значения параметров на коэффициенты, учитывающие отклонение влажности атмосферного воздуха от стандартного. Полученные коэффициенты используют для вычисления параметров двигателя при различных климатических условиях конкретных районов эксплуатации двигателя. Технический результат изобретения - повышение репрезентативности результатов испытаний. 2 табл.
Изобретение относится к области авиадвигателестроения, а именно, к способам испытаний газотурбинных двигателей. Способ испытания авиационного газотурбинного двигателя, включающий приработку деталей и узлов на стационарных и переходных режимах в процессе предъявительских испытаний двигателя. Для приработки двигателя при отрицательных температурах атмосферного воздуха уменьшают диаметр критического сечения реактивного сопла и угол установки направляющих аппаратов компрессора высокого давления до достижения заданных значений частоты вращения ротора высокого давления и температуры газа перед турбиной и открывают отборы воздуха на системы самолета. Изобретение позволяет проводить предъявительские испытания при любой температуре воздуха на входе в двигатель с возможностью приработки газотурбинного двигателя на стационарных и переходных режимах в зимнее время года при отрицательных температурах воздуха на входе в двигатель.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения. Стенд для испытаний газотурбинных двигателей включает нагрузочное устройство, имеющее возможность соединения с валом свободной силовой турбины испытуемого газотурбинного двигателя. В качестве нагрузочного устройства использован синхронный реверсивный турбогенератор, вал ротора которого имеет возможность соединения одним концом с валом свободной силовой турбины испытуемого газотурбинного двигателя, причём другой свободный конец ротора турбогенератора может быть оснащен механическим тормозным устройством. Стенд оснащен системой возбуждения турбогенератора, автономной активной балластной нагрузкой и командным блоком. Статорные электрические цепи турбогенератора имеют возможность подключения к балластной нагрузке, электрические цепи обмоток ротора турбогенератора подключены к системе возбуждения, при этом турбогенератор содержит датчик частоты вращения его вала, связанный с командным блоком, подключенным к системе возбуждения и имеющим возможность подключения к сектору газа испытуемого газотурбинного двигателя. Изобретение позволяет расширить функциональные возможности стенда. 6 з.п. ф-лы, 4 ил.

Способ повышения эффективности диагностики развития трещины в диске работающего авиационного газотурбинного двигателя, который реализуется совместным анализом интегрального вибросигнала, регистрируемого на корпусе двигателя из-за импульсного высвобождения энергии при ступенчатом развитии трещины при выходе двигателя на максимальные обороты в рабочем цикле, и составляющих спектра вибрации, зарегистрированных одновременно с интегральным вибросигналом. Изобретение позволяет повысить эффективность метода диагностики дисков по импульсному колебанию корпуса двигателя при развитии трещины в диске.
Наверх