Лазерный дальномер с оптическим сумматором излучения

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с оптическим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора. При этом оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии а между излучающими площадками, связанным с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча, перпендикулярно к оптической оси объектива введено плоское основание, на котором закреплены лазерные диоды, а перед лазерным диодом, соответствующим необыкновенному лучу, введена плоскопараллельная компенсационная пластина толщиной 0<g<ncA, где nc - показатель преломления компенсационной пластины, Ao - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите. Положение оптической системы относительно изображений излучающих площадок соответствует условиям A - ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно изображения ближней к объективу излучающей площадки, A=Ao-A* - остаточный астигматизм оптической системы; A* - смещение фокальной плоскости оптической системы за счет компенсационной пластины. Технический результат изобретения состоит в наиболее эффективном использовании суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известен лазерный дальномер [1], содержащий приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора. Оптический сумматор выполнен в виде поляризационного светоделительного кубика, а оптические оси лазерных излучателей расположены перпендикулярно его смежным граням и взаимно перпендикулярны между собой.

При таком построении оптического сумматора лазерные излучатели разнесены друг относительно друга, что усложняет конструкцию лазерного дальномера, увеличивает его габариты и затрудняет сопряжение оптических осей лазерных излучателей.

Наиболее близким по технической сущности к предлагаемому устройству является лазерный дальномер, описанный в [2]. Этот лазерный дальномер с оптическим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых взаимно перпендикулярно поляризованы и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов расположены со стороны одной из ее граней на расстоянии a между ними, связанном с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча.

Особенность полупроводниковых лазерных излучателей - их протяженный характер, обусловленный конфигурацией излучающего р-n перехода. При этом возможны потери энергии зондирующего импульса при измерении дальности до целей с иной формой или при ошибках наведения оси дальномера на цель. Это приводит к уменьшению дальности действия дальномера, особенно по целям, вытянутым в вертикальном (трубы, мачты, столбы) или в горизонтальном (провода, трубопроводы, эстакады) направлении.

Задачей изобретения является наиболее эффективное использование суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами и, соответственно, увеличение дальности действия до таких целей.

Указанная задача решается за счет того, что в известном лазерном дальномере с оптическим сумматором излучения, содержащем приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых взаимно перпендикулярно поляризованы и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии a между излучающими площадками, связанном с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча, перпендикулярно к оптической оси объектива введено плоское основание, на котором закреплены лазерные диоды, а перед лазерным диодом, соответствующим необыкновенному лучу, введена плоскопараллельная компенсационная пластина толщиной , где nc - показатель преломления компенсационной пластины, A0 - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная выходная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите, а положение оптической системы относительно изображений излучающих площадок соответствует условиям A - ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно изображения ближней к объективу излучающей площадки, A=Аo-A* - остаточный астигматизм оптической системы; A* - смещение фокальной плоскости оптической системы за счет компенсационной пластины.

Компенсационная пластина может быть приклеена к двулучепреломляющей пластине.

Компенсационная пластина может быть выполнена в виде полуволновой пластинки.

На фиг. 1 представлена блок-схема лазерного дальномера. На фиг. 2 - оптическая схема передающего устройства. На фиг. 3 показан ход лучей в передающем устройстве при остаточном астигматизме A и дефокусировке Δf.

Лазерный дальномер (фиг. 1) содержит передающее устройство 1, приемное устройство 2 и блок управления и обработки данных 3. Передающее устройство 1 состоит из двух лазерных излучателей 4 и 5, подключенных к оптическому сумматору 6, за которым установлен объектив 7. Приемное устройство 2 включает последовательно установленные объектив 8 и фотоприемное устройство 9. Входы лазерных излучателей 4, 5 и выход фотоприемного устройства 9 связаны с блоком управления и обработки данных 3.

Передающее устройство (фиг. 2) содержит два излучателя 4 и 5, излучающие площадки которых (р-n переходы лазерных диодов) расположены взаимно-перпендикулярно на расстоянии а между ними в поперечном направлении. Перед ними могут быть установлены цилиндрические линзы 10 и 11 [2], параллельно направляющие оси пучков лазерного излучения на двулучепреломляющую плоскопараллельную пластину 12, после которой лазерное излучение поступает на объектив 7 передающего устройства 1. Чтобы произошло совмещение пучков лазерного излучения, толщина АВ=h (фиг. 2) двулучепреломляющей плоскопараллельной пластины 12 должна обеспечивать схождение оптических осей лазерных излучателей в одной точке на выходной грани пластины 12. Из фиг. 2 следует, что для этого должно соблюдаться условие

h - толщина пластины;

a - расстояние между оптическими осями лазерных излучателей;

β - угол преломления необыкновенного луча.

Лазерные излучатели 4 и 5 установлены на основание 13. Перед излучателем 5, соответствующим необыкновенному лучу, установлена компенсационная плоскопараллельная пластина 14, приклеенная к двулучепреломляющей пластине 12.

Устройство работает следующим образом.

При поступлении управляющего сигнала от блока управления и обработки данных 3 лазерные излучатели 4 и 5 одновременно излучают лазерные импульсы, причем, направления поляризации пучков выходного излучения перпендикулярны. Пучок излучения от лазерного излучателя 4 распространяется в двулучепреломляющей плоскопараллельной пластине 12 в направлении обыкновенного луча. Пучок излучения от лазерного излучателя 5 с ортогональным направлением поляризации распространяется в двулучепреломляющей плоскопараллельной пластине в 12 направлении необыкновенного луча. На выходной грани двулучепреломляющей плоскопараллельной пластины 12 пучки лазерного излучения совмещаются и через объектив 7 передающего устройства 1 направляются на цель. Отраженное целью излучение через объектив 8 приемного устройства 2 фокусируется на чувствительной площадке фотоприемного устройства 9, на выходе которого формируется электрический импульс, поступающий на блок управления и обработки данных 3, где по задержке τ между переданным и принятым импульсами определяется дальность до цели R=cτ/2, где c - скорость света.

Удлинение оптического хода обыкновенного OO' и необыкновенного OO'' лучей в плоскопараллельной пластине равно, соответственно, Δfo=h/ho и Δfe=h/heCosβ, где h - толщина пластины, no и ne - показатели преломления обыкновенного и необыкновенного лучей, β - угол преломления необыкновенного луча [3]. Для известных двулучепреломляющих кристаллов Cosβ ~ 1. С учетом этого астигматизм оптической системы

Введение компенсационной пластины 14 позволяет скомпенсировать астигматизм полностью или частично. Остаточный астигматизм A=Ao-A*, где - смещение фокальной плоскости оптической системы за счет компенсационной пластины, g - толщина компенсационной пластины, nc - показатель преломления компенсационной пластины.

Остаточный астигматизм может быть целесообразным при зондировании узких целей с поперечным габаритом, сопоставимым с ошибкой наведения оси дальномера, когда при наведении узким лучом происходит промах. Это возможно при наведении с подвижного основания, например, с борта летательного аппарата в процессе работы системы предупреждения столкновений, включающей лазерный дальномер.

Если излучающие площадки 4 и 5 расположены параллельно, то для создания перпендикулярности плоскостей поляризации излучаемых лазерных пучков компенсационная пластина 14 может быть выполнена в виде полуволновой пластинки [4].

На эквивалентной схеме фиг. 3 показаны изображения 4* и 5* излучающих площадок, приведенные к главной оси дальномера OO'. Система имеет остаточный астигматизм A и сфокусирована со смещением Δf относительно изображения площадки 4*. Из построений фиг. 3 следует.

Откуда

Пример.

D0=20; f=50; A=0,2; ϕ12=10-3. При этом из (5) и (6) следует

0,075<Δf<0,125.

Таким образом, данное техническое решение с одной стороны позволяет полностью устранить астигматизм, присущий оптическому сумматору такого типа, а с другой - позволяет сохранить остаточный астигматизм, необходимый для создания требуемой диаграммы направленности передающего канала дальномера.

Благодаря указанному построению дальномера обеспечивается решение поставленной задачи - наиболее эффективное использование суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами и, соответственно, увеличение дальности действия дальномера.

Источники информации

1. Патент США №6714285 от 30 марта 2004 г., Кл. США 356/4.01.

2. Лазерный дальномер. Патент РФ №2362120 по з-ке 2007145830 от 12.12.2007 г. - прототип.

3. М.И. Апенко, А.С. Дубовик. Прикладная оптика, М., «Наука», 1971 г. - 392 с.

4. А.Н. Матвеев. Оптика, М., «Высшая школа», 1985 г. - 351 с.

1. Лазерный дальномер с оптическим сумматором излучения, содержащий приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора, оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии а между излучающими площадками, связанном с толщиной h двулучепреломляющей пластины соотношением h=a/tgβ, где β - угол преломления необыкновенного луча, отличающийся тем, что перпендикулярно к оптической оси объектива введено плоское основание, на котором закреплены лазерные диоды, а перед лазерным диодом, соответствующим необыкновенному лучу, введена плоскопараллельная компенсационная пластина толщиной 0<g<ncA0, где nc - показатель преломления компенсационной пластины, А0 - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmax/ψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная выходная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите, а положение оптической системы относительно изображений излучающих площадок соответствует условиям

А-ϕ2f2/D0<Δf<ϕ1f2/D0, где ϕ1 и ϕ2 - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно изображения ближней к объективу излучающей площадки, A=Ao-A* - остаточный астигматизм оптической системы; A* - смещение фокальной плоскости оптической системы за счет компенсационной пластины.

2. Лазерный дальномер по п. 1, отличающийся тем, что компенсационная пластина приклеена к двулучепреломляющей пластине.

3. Лазерный дальномер по п. 1, отличающийся тем, что компенсационная пластина выполнена в виде полуволновой пластинки.



 

Похожие патенты:

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с сумматором зондирующих пучков излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора.

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство, включающее приемный объектив и фотоприемник, и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора, выполненного в виде двулучепреломляющей плоскопараллельной пластины.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с двулучепреломляющим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора, выполненного в виде двулучепреломляющей плоскопараллельной пластины.

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Лазерный дальномер с комбинированным лазерным излучателем содержащит приемное устройство и передающее устройство, включающее объектив с фокусным расстоянием Fo.

Лазерный фазовый дальномер содержит передающую систему и приемную систему. Передающая система состоит из масштабного генератора, источника излучения в виде лазера, коллиматора лазерного излучения, поворотного зеркала и поворотной призмы.

Изобретение относится к ручному лазерному дальномеру. Дальномер содержит лазерный узел для определения отличающихся первого и второго расстояний в первом и втором относительных направлениях через короткий промежуток времени и устройство ввода для установки угла между первым и вторым относительными направлениями.

Способ определения расстояния при помощи камеры основан на том, что получают один видеокадр, получают калибровочные характеристики камеры, выделяют на кадре объект, до которого измеряют расстояние.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений.

Датчик для дальномера имеет чувствительный элемент и оптическое экранирующее устройство. Чувствительный элемент имеет первую детектирующую часть для детектирования измерительного излучения и вторую детектирующую часть для детектирования контрольного излучения.

Лазерный дальномер содержит импульсный полупроводниковый лазер, оптическую систему, генератор тактовых импульсов, счетчик импульсов, устройство с индикатором, ключевую схему, фотоприемник, линию задержки, схему совпадения.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с сумматором зондирующих пучков содержит приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя со взаимно параллельными излучающими площадками, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора, выполненного в виде двулучепреломляющей плоскопараллельной пластины и полуволновой пластины, установленной перед одним из лазерных излучателей. При этом излучающие площадки ориентированы так, чтобы их максимальный габарит располагался параллельно максимальному габариту заданной цели, причем одна излучающая площадка находится в фокусе передающей оптической системы, состоящей из объектива и оптического сумматора, а расстояние а между излучающими площадками удовлетворяет условию где β - угол преломления необыкновенного луча;f - фокусное расстояние передающей оптической системы;ϕ0 - предельно допустимая угловая расходимость выходного излучения в плоскости минимального габарита излучающей площадки;no - показатель преломления обыкновенного луча двулучепреломляющей плоскопараллельной пластины;nе - показатель преломления необыкновенного луча;Do - диаметр передающего объектива.Технический результат - наиболее эффективное использование суммарной энергии зондирующего излучения при измерении больших дальностей и обеспечение возможности измерения меньших дальностей при грубом наведении, например при работе с рук. 1 з.п. ф-лы, 5 ил.

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с комбинированным лазерным полупроводниковым излучателем содержит приемное устройство и передающее устройство, включающее объектив и раздельно размещенные лазерные излучатели, выполненные в виде полупроводникового лазерного диода. При этом перед излучающей площадкой лазерного диода установлена коллекторная линза, излучающие площадки расположены в плоскости, перпендикулярной оптической оси объектива, а каждая коллекторная линза выполнена в виде цилиндрической линзы, фокус которой смещен параллельно оптической оси объектива на расстояние z1 от своей излучающей площадки в сторону, противоположную объективу, центр цилиндрической линзы смещен перпендикулярно оптической оси объектива и параллельно излучающей площадке на расстояние yN в сторону от оптической оси объектива так, чтобы оптические оси лазерных излучателей пересекались в фокусе объектива передающего устройства. Кроме того, излучающие площадки расположены в фокальной плоскости системы из объектива и цилиндрической линзы, причем параметры оптических элементов лазерного дальномера удовлетворяют условию , где ψ - угол расходимости излучения лазерного излучателя в плоскости, перпендикулярной излучающему лазерному переходу; D2 - световой диаметр цилиндрической линзы; f - фокусное расстояние цилиндрической линзы; D0 - световой диаметр объектива; - расстояние между цилиндрическими линзами; ΔN - расстояние между излучающими площадками; z1 и z2 - расстояния от излучающей площадки до фокуса линзы и от фокуса линзы до фокуса объектива; z1=f-D2/2tg(ψ/2); z2=f2/z1; N=(RN/R1)2 - количество лазерных излучателей; RN - заданная дальность действия дальномера; R1 - дальность действия с одним излучателем. Технический результат - обеспечение максимальной дальности действия дальномера при минимальных габаритах устройства. 5 ил.

Изобретение относится к измерительной технике, а именно к устройствам для измерения аэродинамического давления, и может быть использовано в тоннелях на высокоскоростных железнодорожных магистралях. Техническим результатом изобретения является расширение области использования устройства для измерения давления воздуха, а именно измерение аэродинамического давления на тоннельные конструкции при движении высокоскоростных поездов. Данное устройство для измерения аэродинамического давления на тоннельные сооружения содержит корпус (1), на передней стенке которого установлена эластичная мембрана (2). Внутри корпуса (1) установлен измерительный прибор в виде лазерного дальномера (3), установленный в корпусе (1) таким образом, что его луч (4) перпендикулярен эластичной мембране (2). Корпус (1) устройства присоединен к тоннельной обделке (5). Передача данных на ЭВМ осуществляется через выход (6) с лазерного дальномера (3). 1 ил.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный измеритель дальности с оптическим сумматором содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы взаимно перпендикулярно и совмещены с помощью оптического сумматора в виде двулучепреломляющей плоскопараллельной пластины. Причем лазерные диоды установлены со стороны ее грани, противоположной объективу, в плоскости, перпендикулярной оптической оси объектива, двулучепреломляющая пластина наклонена относительно линии, соединяющей излучающие площадки лазерных диодов на угол γ=γн+γс, удовлетворяющий условию ⎜Xo(γ)-Хе(γ)⎜≤ΔХмакс, где γн - номинальное значение угла наклона пластины; γс - постоянная поправка; Xo(γ) и Xe(γ) - продольное положение фокусов соответственно для обыкновенного и необыкновенного пучка лучей; ΔХмакс - предельно допустимое расстояние между фокальными плоскостями; Yo(γ) и Ye(γ) - поперечное положение фокусов соответственно для обыкновенного и необыкновенного пучка лучей; F - положение фокуса объектива на оси x в отсутствие двулучепреломляющей пластины, причем Xo(γ)=F+Yo(γ)/tgγ; Xe(γ)=F+h⋅tgβ/Sinγ+Ye(γ)/tgγ; Yo(γ)=ho*Sin(γ-γo*); Ye(γ)=he*Sin(γ-(γe*+β)); ho*=h/Cos(γo*); he*=h/Cos(γe*+β); h - толщина двулучепреломляющей пластины; ; ; no и ne - показатель преломления соответственно обыкновенного и необыкновенного луча, а расстояние b между излучающими площадками лазерных диодов соответствует условию; ⎜Yo(γ)-Ye(γ)⎜-b=±ΔYмакс/2; ΔYмакс=ΔϕмаксF; Δϕмакс - максимальная ширина диаграммы направленности зондирующего излучения. Технический результат изобретения - точное совмещение фокусов обыкновенного и необыкновенного пучков лучей. 4 ил.

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с оптическим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с помощью оптического сумматора. При этом оптический сумматор выполнен в виде двулучепреломляющей плоскопараллельной пластины, излучающие площадки лазерных диодов закреплены на корпусе дальномера совместно с объективом и двулучепреломляющей пластиной со стороны одной из ее граней на расстоянии а между излучающими площадками, связанным с толщиной h двулучепреломляющей пластины соотношением hatgβ, где β - угол преломления необыкновенного луча, перпендикулярно к оптической оси объектива введено плоское основание, на котором закреплены лазерные диоды, а перед лазерным диодом, соответствующим необыкновенному лучу, введена плоскопараллельная компенсационная пластина толщиной 0<g<ncA, где nc - показатель преломления компенсационной пластины, Ao - астигматизм оптической системы, причем фокусное расстояние f объектива соответствует условию f>gmaxψ, где gmax - максимальный габарит излучающей площадки, ψ - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их максимальном габарите. Положение оптической системы относительно изображений излучающих площадок соответствует условиям A - ϕ2f2D0<Δf<ϕ1f2D0, где ϕ1 и ϕ2 - заданная максимальная расходимость излучения от первой и второй излучающих площадок в их минимальном габарите, Δf - смещение фокуса оптической системы относительно изображения ближней к объективу излучающей площадки, AAo-A* - остаточный астигматизм оптической системы; A* - смещение фокальной плоскости оптической системы за счет компенсационной пластины. Технический результат изобретения состоит в наиболее эффективном использовании суммарной энергии зондирующего излучения при измерении больших дальностей до целей с малыми угловыми габаритами. 2 з.п. ф-лы, 3 ил.

Наверх