Способ определения местоположения очага микросейсмического события

Изобретение относится к области сейсмической разведки, в частности к способам обработки микросейсмических данных. Согласно заявленному способу определения местоположения очага микросейсмического события в процессе обработки исходного микросейсмического сигнала осуществляют его разложение на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала. К каждой из исходных продольной и поперечной составляющих микросейсмического сигнала применяют дискретное вейвлет-преобразование с последующим разложением их на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками. На каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала. Определяют скорость прохождения составляющих микросейсмического сигнала, на основании которых вычисляют расстояние до очага микросейсмического события. Технический результат - снижение неопределенности при вычислении местоположения очага микросейсмического события при гидравлическом разрыве пласта. 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к области сейсмической разведки, в частности к способам обработки микросейсмических данных.

В настоящее время наибольшее распространение при обработке и интерпретации микросейсмических данных получили спектральные способы обработки с использованием быстрого преобразования Фурье (см. например патент РФ 2187828, G01V 1/30). Однако обработка с использованием быстрого преобразования Фурье различного рода микросейсмических данных не всегда позволяет достоверно распознать время прихода событий вследствие высокого уровня помех и занимает продолжительное время, что ограничивает выдачу рекомендаций по управлению процессом гидроразрыва пласта в режиме реального времени.

Данный недостаток может быть уменьшен с помощью вейвлет-преобразования данных с сейсмодатчиков. Известно, например, использование дискретного вейвлет-преобразования для обработки и анализа сигналов разнообразной природы (патент РФ №2246132). В указанном патенте дано подробное описание способа быстрого вычисления вейвлет-преобразований, которое может быть использовано при обработке сигналов, в частности в области обработки экспериментальных данных в физике, в гидроакустике, сейсмоакустике, радиолокации и т.д. В данном техническом решении посредством быстрого вычисления вейвлет-преобразования реализуется возможность анализировать сигнал с произвольной точностью измерения масштабов и временных сдвигов избыточного дискретного вейвлет-преобразования сигнала с произвольно заданным (выбранным) малым шагом дискретизации масштабных коэффициентов. Недостатком аналога является отсутствие возможности вычисления времен прихода продольной и поперечной составляющих волны, угла азимута падения волны, необходимых для вычисления местоположения очага микросейсмического события.

Наиболее близким к заявляемому способу является способ обработки сейсмических данных с использованием дискретного вейвлет-преобразования (патент РФ №2412454, G01V 1/48), согласно которому осуществляют прием сейсмических данных, их обработку, в процессе которой осуществляют представление сейсмических данных в виде набора сейсмических трасс, причем каждую из исходных сейсмических трасс, представленную в виде вектора отсчетов, подвергают дискретному вейвлет-преобразованию (М итераций) с получением вектора вейвлет-коэффициентов, содержащего детализирующие вейвлет-коэффициенты Кn с первого по уровень М включительно, а также гладкие вейвлет-коэффициенты последнего уровня преобразования ОМ, далее вектор вейвлет-коэффициентов разделяют на ряд векторов, каждый из которых содержит детализирующие вейвлет-коэффициенты Кn одного уровня и нули на месте всех остальных вейвлет-коэффициентов (детализирующий вектор уровня n), а также вектор, содержащий гладкие вейвлет-коэффициенты ОМ и нули на месте всех детализирующих коэффициентов (детализирующий вектор уровня М+1), каждый из указанных детализирующих векторов уровней с 1 по М+1 подвергают процедуре обратного дискретного вейвлет-преобразования с получением М+1 слоев детализации dl(n) и представлением (визуализацией) исходного сейсмического сигнала в виде составляющих dl(n) с различными энергетическими и частотными характеристиками; каждую из указанных составляющих (слоев детализации dl(n)) анализируют по целевой значимости с учетом решаемой сейсмической задачи, после чего осуществляют выборку значимых отдельных слоев детализации вейвлет-разложения исходного сейсмического сигнала для построения их частичных сумм для последующей обработки и отображения результатов обработки сейсмических данных.

Данный способ выбран в качестве прототипа. Он позволяет обеспечить возможность анализа сейсмических данных с локализацией особенностей сигнала в вейвлет-частотной области с повышенным качеством выделения особенностей сигнальной составляющей в пространственно-временных координатах, с разделением волновых полей на отдельные составляющие и повышением отношения сигнал/помеха.

Способ-прототип обладает рядом недостатков - низкая точность определения местоположения источника сигнала в толще Земли вследствие использования для сейсморазведки активного источника сигнала, расположенного на поверхности, что не позволяет вести пассивный микросейсмический мониторинг гидравлического разрыва пласта из-за отсутствия механизма вычисления времен прихода продольной и поперечной составляющих сейсмической волны для каждой из трех компонент, разнесенных в пространстве сейсмоприемников с помощью функции прямолинейности и расчета азимута угла падения волны, не позволяет выявить топологию образования трещин при гидравлическом разрыве пласта, не решает вопрос оперативного управления процессом гидравлического разрыва пласта в режиме реального времени.

Задача, на решение которой направлено изобретение - устранение указанных недостатков, а именно снижение неопределенности при вычислении местоположения очага микросейсмического события при гидравлическом разрыве пласта, построение топологии образования трещин гидравлического разрыва с высокой точностью путем вычисления времен прихода продольной и поперечной составляющих микросейсмической волны с группы трехкомпонентных сейсмоприемников, возможность оперативного управления процессом гидравлического разрыва пласта для снижения экономических, экологических и социальных рисков.

Поставленная задача решается способом определения местоположения очага микросейсмического события, при котором осуществляют прием исходного микросейсмического сигнала, его обработку с применением дискретного вейвлет-преобразования, с последующим использованием с учетом решаемой сейсмической задачи, в котором в отличие от прототипа в процессе обработки осуществляют разложение исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала, которое в качестве наибольшего значения собственного вектора положения используют для расчета угла азимута очага сейсмического события, вращают X, Y координаты в продольных и поперечных плоскостях на угол азимута и полученные таким образом новые X, Y компоненты исходного сигнала подвергают дискретному вейвлет-преобразованию с последующим разложением исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала, определяют скорость прохождения продольной и поперечной составляющей микросейсмического сигнала в определенном интервале толщи Земли, а расстояние D до очага микросейсмического события вычисляют из соотношения

где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.

Поставленная задача решается также тем, что скорости продольной и поперечной составляющей микросейсмического сигнала определяют геофизическими методами акустического каротажа либо кросс-дипольного акустического каротажа.

Для решения поставленной задачи обработка данных с выдачей результата расчета местоположения очага микросейсмического события происходит в режиме реального времени.

Кроме того, полученные данные о местоположении микросейсмического события сопоставляются с расчетными, и на основании величины их расхождения осуществляют выдачу управляющих команд в процессе гидравлического разрыва пласта и выработку дальнейшего выполнения плана закачки.

На фиг. 1 изображена последовательность расчета времени прибытия продольной составляющей микросейсмической волны с применением функции прямолинейности. На фиг. 2 изображена последовательность расчета времени прибытия поперечной составляющей микросейсмической волны с применением отношений амплитуд. На фиг. 3 показан пример трехкомпонентного микросейсмического сигнала и функции прямолинейности в шести масштабах. На фиг. 4 показаны интервалы времени между точками прибытия продольной и поперечной составляющих волны. На фиг. 5 показана совокупность точек, образующих топологию трещин. Вид сверху (а) и сбоку (б) на результаты микросейсмического исследования успешного гидравлического разрыва двух скважин. Цветными окружностями показаны разные стадии процесса.

Способ согласно изобретению осуществляют в следующей последовательности операций.

Принимают микросейсмический сигнал скважинными или наземными трехкомпонентными сейсмоприемниками (геофонами, гидрофонами). Для определения времени прибытия продольной составляющей волны используют свойство линейной поляризации продольной составляющей и ее распространение параллельно движению микросейсмической волны. Величиной степени линейной поляризации является функция прямолинейности, описанная Канасевичем.

Уравнение функции прямолинейности

где λ1 и λ2 - наибольшее и второе по величине собственные значения ковариационной матрицы соответственно.

Если ковариационная матрица (2) диагонализируема, то оценка прямолинейности траектории колебания частиц среды внутри определенного временного окна может быть получена из соотношений главной оси этой матрицы, т.е. оценка прямолинейности может быть дана из соотношения наибольшего и второго по величине значения ковариационной матрицы. Ковариационную матрицу представляют как

где X - «восточная» составляющая вейвлет-коэффициента для масштаба j;

Y - «северная» составляющая вейвлет-коэффициента для масштаба j;

Z - вертикальная составляющая вейвлет-коэффициента для масштаба j.

Ковариантность между X и Y определяют как

где μX и μY - средние значения X и Y соответственно.

Направление поляризации может быть измерено с учетом собственного вектора главной оси. Если λ1 - наибольшее собственное значение и λ2 - второе по величине собственное значение ковариационной матрицы, то функция (1) будет близка к единице, когда прямолинейность высока и близка к нулю, когда две главные оси приближаются друг к другу по величине (низкая прямолинейность).

Матрицу заполняют элементами - вейвлет-коэффициентами нескольких масштабов, которые получены при обработке микросейсмических сигналов в трех измерениях, используя дискретно-временное вейвлет-преобразование. Затем вычисляют собственные значения матрицы и соответствующие им собственные векторы. Строят функцию прямолинейности, таким образом получают функцию прямолинейности (Fj) для каждого масштаба. Далее строят составную функцию прямолинейности так, чтобы функции прямолинейности каждого масштаба вносили свой вклад в ее создание

где j - номер масштаба.

Место, где эта функция имеет максимальное значение, принимают за время прибытия продольной волны.

На фиг. 3 заметно, что функции прямолинейности приблизительно равны единице, когда волновая форма линейно поляризована, и нулю, когда линейной поляризации нет. Это четко видно на первых четырех масштабах.

Для расчета азимута местоположения очага микросейсмического события используют построение функции прямолинейности и находят собственный вектор, связанный с наибольшим собственным значением зафиксированной продольной волны. Собственный вектор представляет собой направление линейной поляризации, которое указывает на угол азимута.

Время прибытия поперечной волны микросейсмического события определяют исследованием отношения поперечной амплитуды к продольной.

Азимут (θ), рассчитанный для продольной волны, используют для вращения двух плоскостей по отношению к продольной и поперечной составляющим соответственно по следующему уравнению:

где dr и dt - продольная и поперечная составляющие сигнала соответственно.

Применяют к продольной и поперечной составляющим сигнала дискретно-временное вейвлет-преобразование, получают несколько масштабов для каждой из составляющих. Как и для продольных волн получают коэффициенты xj и yj, которые представляют собой различные масштабы для продольной и поперечной составляющих соответственно (j - номер масштаба).

На каждом масштабе отношение поперечной амплитуды к продольной рассчитывают по следующей формуле:

где envtj и envrj - огибающие функции поперечной и продольной составляющих сигнала соответственно. Огибающая функция позволяет избежать вопросов, связанных с делением на ноль. Ее определяют как

где h - преобразование Гильберта от x.

Все масштабы объединяют для построения второй составной функции определения времени прибытия поперечной волны

Точку после прибытия продольной волны, имеющую величину, которая равна, по меньшей мере, половине наибольшего значения CT, выбирают в качестве времени прибытия поперечной волны. Наибольший пик CT не используют, т.к. он представляет собой время, когда поперечная волна достигает свою наибольшую амплитуду, а это происходит некоторое время спустя после первого прибытия.

Несколько различных семейств вейвлетов (Хаара, Добеши, Морле, FHAT, MHAT и т.д.) используются в вейвлет-разложении, т.к. выбор вейвлета при обработке сигнала очень важен для определения времени прибытия поперечной волны составной функцией.

Времена прибытия продольной и поперечной составляющих волн фиксируются в каждом из трех измерений в определенной точке пространства (сейсмоприемником, геофоном, гидрофоном, либо другим прибором). Таких точек пространства (сейсмоприемников, геофонов, гидрофонов, либо других приборов) может быть несколько. Измеряются интервалы времени между точками прибытия продольной и поперечной составляющих волны (фиг. 4)

Для падающей продольной составляющей волны угол азимута вычисляется построением функции прямолинейности и нахождения собственного вектора, связанного с наибольшим собственным значением зафиксированной продольной составляющей волны. Собственный вектор представляет собой направление линейной поляризации, которое указывает на угол азимута волны.

Скорость прохождения сейсмической волны в определенном интервале толщи Земли определяется геофизическими методами акустического каротажа, либо кросс-дипольного акустического каротажа.

Таким образом, известны время, скорость в единице интервала и азимут падающей на приемник сейсмической волны. По формуле (9) производится расчет расстояния до микросейсмического события для однородной скоростной модели

где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.

Поскольку используется несколько сейсмоприемников, становится возможна инверсия источника колебаний, которая выполняется с помощью симплекс-метода или алгоритма сетевого поиска. Итоговое положение события рассчитывается путем минимизации пространственной ошибки по всем сейсмоприемникам, на пространственной карте ставится точка, соответствующая событию. Совокупность множества точек, нанесенных на карту, по мере возникновения микросейсмических событий во время проведения гидравлической стимуляции пласта образует графическое изображение инициируемых трещин. Графическая карта позволяет оценить геометрические параметры трещин и их ориентацию в пространстве.

По мере развития трещин гидравлического разрыва очаги микросейсмических событий будут менять свое местоположение в пространстве. Вычисленные местоположения очагов согласно описанному выше способу наносят на трехмерную карту в виде точек.

Пример конкретной реализации заявленного способа.

Пусть согласно программе закачки высота трещин должна составить 60 м, при этом мощность насыщенного углеводородами пласта в данной области равна 70 м, выше и ниже его расположены пласты, насыщенные водой. Прорыв трещин в водоносные слои грозит заводнением скважины и потерей экономической целесообразности ее дальнейшей эксплуатации, а также загрязнением водоносных слоев углеводородами. В процессе закачки заявляемым способом было установлено, что местоположение очагов микросейсмических событий опасно приблизилось к границам водоносного пласта. В этом случае принимается решение на останов насосов для предотвращения прорыва трещины выше либо ниже целевого пласта.

Таким образом, способ согласно изобретению позволяет эффективно выявлять время прибытия волн, сохраняя структуру сигнальной составляющей практически неизменной и обеспечивает, таким образом, более достоверное (по сравнению с частотной фильтрацией) выделение целевых волн, имеющих высокую информативную и прогнозную значимость при скважинных микросейсмических исследованиях.

Кроме того, очевидно, что анализ микросейсмических данных с использованием вейвлет-фильтрации согласно изобретению по слоям детализации расширяет возможности обработки и интерпретации волновых полей, обеспечивает возможность анализа микросейсмических данных с локализацией особенностей сигнала в вейвлет-частотной области с повышенным качеством выделения особенностей сигнальной составляющей в пространственно-временных координатах, с разделением волновых полей на отдельные составляющие и повышением соотношения «сигнал-шум».

1. Способ определения местоположения очага микросейсмического события, при котором осуществляют прием исходного микросейсмического сигнала, его обработку с применением дискретного вейвлет-преобразования, с последующим использованием с учетом решаемой сейсмической задачи, отличающийся тем, что осуществляют разложение исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят функцию прямолинейности и находят при условии ее максимизации время прихода продольной составляющей микросейсмического сигнала, которое в качестве наибольшего значения собственного вектора положения используют для расчета угла азимута очага сейсмического события, вращают X, Y координаты в продольных и поперечных плоскостях на угол азимута и полученные таким образом новые X, Y компоненты исходного сигнала подвергают дискретному вейвлет-преобразованию с последующим разложением исходного микросейсмического сигнала на слои детализации (масштабы) d(n) с различными энергетическими и частотными характеристиками, на каждом из указанных масштабов d(n) строят отношения поперечных амплитуд к продольным и находят время прибытия поперечной составляющей микросейсмического сигнала, определяют скорость прохождения продольной и поперечной составляющей микросейсмического сигнала в определенном интервале толщи Земли, а расстояние D до очага микросейсмического события вычисляют из соотношения

где D - расстояние, tP - время первого вступления продольной составляющей волны, tS - время первого вступления поперечной составляющей волны, υP - скорость продольной составляющей волны, υS - скорость поперечной составляющей волны.

2. Способ по п. 1, отличающийся тем, что скорости продольной и поперечной составляющей микросейсмического сигнала определяют геофизическими методами акустического каротажа либо кросс-дипольного акустического каротажа.

3. Способ по п. 1, отличающийся тем, что обработка данных с выдачей результата расчета местоположения очага микросейсмического события происходит в режиме реального времени.

4. Способ по п. 1, отличающийся тем, что полученные данные о местоположении микросейсмического события сопоставляются с расчетными, и на основании величины их расхождения осуществляют выдачу управляющих команд в процессе гидравлического разрыва пласта и дальнейшего выполнения плана закачки.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Представлено описание способа определения пути движения подземного флюида через геологический объем.

Изобретение относится к области геофизики и может быть использовано при обработке сейсмических данных. Предложен способ обработки данных, представляющих физическую систему, содержащий следующие шаги: обеспечивают (Р2) входные данные, представляющие различия в физической системе между первым и вторым состояниями физической системы, и инвертируют (Р5) входные данные или данные, определенные на их основе, в соответствии с параметризованной моделью (PI) физической системы для получения разностей параметров модели в первом и втором состояниях, где параметры модели представляют свойства физической системы.

Изобретение относится к области геофизики и может быть использовано при обработке сейсморазведочных данных. Заявлен способ для многопараметрической инверсии с использованием упругой инверсии.

Изобретение относится к области геофизических исследований. В предлагаемом способе формируют набор образцов исследуемой породы, определяют общую пористость и плотность каждого из образцов в атмосферных условиях, исключают из дальнейшего исследования образцы с отличающимся минералогическим составом, для оставшихся образцов определяют скорость распространения продольной волны и общую пористость в образцах в условиях, моделирующих пластовые.

Изобретение относится к геофизическим методам контроля разрушения горных пород и может быть использовано на рудных и нерудных месторождениях для исследования и локации образовавшихся несплошностей.

Способ выполнения инверсии одновременных кодированных источников геофизических данных для оценки параметров модели (41) физических свойств, в особенности приспособленный для обследований без геометрии системы регистрации стационарных приемников, таких как, например, морские сейсмические обследования с перемещающимися источником и приемниками.

Изобретение относится к области геофизики и может быть использовано для определения параметров упругой анизотропии для геологического подземного пласта. Предложены способ и устройство для расчета анизотропного параметра петрофизической модели для геологического подземного пласта.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных мероприятий. Согласно заявленному предложению данные поступательного движения в первом направлении измеряются датчиками движения частиц, содержащимися в удлиненном корпусе устройства датчика, расположенного на земной поверхности.

Изобретение относится к области геофизики и может быть использовано для отслеживания трещин в процессе гидроразрыва пласта. Предложены система, способ и носитель данных, используемые для анализа микросейсмических данных, собранных при гидравлическом разрыве пласта в подземной зоне.

Изобретение относится к нефтегазовой геологии и может быть использовано для выявления и локализации перспективных на нефть и газ зон и объектов. Заявленный способ включает проведение сейсмических работ по сети пересекающих бассейн региональных профилей, а также формирование композитных профилей из отработанных ранее площадных систем 2D, бурения, ГИС и опробования скважин и их комплексной структурной интерпретации с построением структурных карт по основным отражающим горизонтам и карт мощностей между ними.

Изобретение относится к области сейсморазведки и может быть использовано для поиска углеводородов и уточнения имеющихся запасов углеводородов на акваториях, в ходе морской сейсморазведки, в ходе шельфовой сейсморазведки, в том числе в Северных морях. Заявлен способ регистрации сейсмических сигналов с целью поиска и разведки углеводородов в структурах подводных геологических массивов, согласно которому осуществляют регистрацию сейсмических волн, в том числе откликов в воде от PS- и SS-волн, отраженных от неоднородностей подводного геологического массива и генерируемых источником сейсмических волн, посредством приемников, расположенных в водном слое, и проводят анализ временных записей сигналов, по результатам которого судят об исследуемом подводном геологическом массиве. При этом приемники располагают вблизи поверхности воды и удаляют от источника на минимальное заданное расстояние, обеспечивающее возможность регистрации откликов в воде от PS- и SS-волн, которое определяют путем полноволнового численного моделирования на основе известных данных о рельефе дна, и/или о толщине водного слоя, и/или об исследуемом подводном геологическом массиве. Технический результат – уменьшение трудоемкости, технической и технологической сложности проведения работ при одновременном повышении информативности сейсмических исследований. 2 з.п. ф-лы, 4 ил., 1 табл.
Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. Предложен способ вибрационной сейсморазведки, основанный на возбуждении и регистрации сейсмических колебаний при управлении опорного сигнала виброисточником колебаний. Согласно заявленному решению опорный сигнал разбивают на интервалы, которые соизмеримы между собой по временной продолжительности. Продолжительность отдельного интервала на два порядка меньше продолжительности опорного сигнала. После этого интервалы опорного сигнала стыкуют между собой в виде новой последовательности, причем место каждого из выделенных ранее интервалов в этой последовательности определяют по датчику случайных чисел. Сформированный таким образом новый опорный сигнал используют в качестве управляющего сигнала при излучении колебаний виброисточником, а также для формирования взаимнокорреляционных функций зарегистрированных сейсмических записей с этим опорным сигналом или для деконволюции записей при помощи оператора, рассчитанного по данному опорному сигналу. Квазислучайная последовательность интервалов исходного опорного сигнала для разных источников получается разной в силу различных стартовых значений датчика случайных чисел. Тем самым обеспечивается возможность одновременной работы различных виброисточников, для каждого из которых вновь сформированный опорный сигнал характеризуется отличающейся от других вновь сформированных сигналов последовательностью интервалов, на которые разбит исходный опорный сигнал. Тем самым из сейсмических записей, полученных путем одновременной регистрации сигналов, излучаемых различными источниками, можно путем взаимной корреляции или деконволюции с опорным сигналом, привязанным к конкретному виброисточнику, извлечь именно ту часть записи, которая регистрируется от данного виброисточника. Исходный опорный сигнал, из которого формируют новый опорный сигнал с квазислучайной последовательностью интервалов, может быть либо рассчитан, либо зарегистрирован внутри среды или в приповерхностной зоне. Технический результат - повышение качества и эффективности вибрационной сейсморазведки. 1 з.п. ф-лы.

Группа изобретений относится к техническим средствам охраны, способам обнаружения объектов, в том числе нарушителей, на охраняемой территории по создаваемым ими сейсмическим колебаниям и может быть использована для охраны участков местности и подступов к зданиям. Предложен способ обнаружения объекта, передвигающегося по охраняемой территории, включающий регистрацию и обработку формируемого объектом сейсмического сигнала, выделение в скользящем временном окне импульсов сейсмического сигнала заданной длительности, вычисление энергии сейсмического сигнала и сравнение полученных значений количества импульсов и энергии сейсмического сигнала с пороговыми значениями. Причем при превышении пороговых значений дополнительно вычисляют АКФ сейсмического сигнала, определяют первое локальное максимальное и первое локальное минимальное значения АКФ, вычисляют выраженное в процентах отношение k разности упомянутых максимального и минимального значений к упомянутому максимальному значению. По заданному количеству отношений k определяют среднее арифметическое значение kср и по результатам сравнения полученного значения kср с пороговым принимают решение о факте передвижения объекта по охраняемой территории. При этом в процессе обработки коэффициент усиления последующего сейсмического сигнала определяют в соответствии со средним значением энергии предшествующего сейсмического сигнала в скользящем временном окне. Предложено также устройство для осуществления вышеупомянутого способа обнаружения объекта, передвигающегося по охраняемой территории, состоящее из последовательно соединенных преобразователя сейсмических сигналов, предварительного усилителя, регулируемого усилителя, входного аналогового фильтра, блока цифровой обработки сейсмических сигналов, включающего последовательно соединенные аналого-цифровой преобразователь, цифровой полосовой фильтр, блок формирования скользящего временного окна, блок выделения импульсов сейсмического сигнала, блок подсчета количества импульсов заданной длительности и энергии сейсмического сигнала в скользящем временном окне, и блока принятия решения. Причем в устройстве блок цифровой обработки сейсмических сигналов дополнительно содержит последовательно соединенные блок запуска вычислителя автокорреляционных функций, вычислитель автокорреляционных функций и анализатор формы автокорреляционных функций, при этом вход упомянутого блока запуска соединен с выходом блока подсчета количества импульсов заданной длительности и энергии сейсмических сигналов, упомянутый блок запуска соединен с регулируемым усилителем посредством управляющего канала, а выход анализатора формы автокорреляционных функций соединен с входом блока принятия решения. Технический результат - повышение вероятности обнаружения объектов, передвигающихся по охраняемой территории, при изменении климатических условий и, как следствие, изменении поглощающих свойств грунта. 2 н. и 5 з.п. ф-лы, 7 ил.

Изобретение относится к области геофизики и может быть использовано при поиске углеводородов в водном пространстве. Описан способ обнаружения углеводородов. Способ включает в себя получение сейсмических данных, связанных с водной массой в области разведки. Затем фильтр применяют к по меньшей мере части сейсмических данных для усиления сигналов аномалий дифракции относительно горизонтальных или почти горизонтальных сигналов, связанных с водной массой, чтобы образовать фильтрованные сейсмические данные. После фильтрации места просачивания идентифицируют по фильтрованным сейсмическим данным. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к области сейсмических исследований и может быть использовано при поиске залежей углеводородов. Способ поиска и разведки залежей углеводородов по первому варианту заключается в том, что трехкомпонентные сейсмические приемники размещают на расстоянии от 100 метров до 10000 метров друг относительно друга, регистрируют и записывают информационные сигналы с по меньшей мере двух трехкомпонентных сейсмических приемников низкочастотного диапазона с синхронным снятием информационных сигналов с трех каналов по трем компонентам (x, y, z) в диапазоне частот от 0 Гц до 50 Гц. По измеряемым компонентам (x, y, z) в течение промежутка времени, достаточного для записи статистически достоверного шумового сигнала в низкочастотном диапазоне, рассчитывают векторные характеристики измеренных полей колебаний: дивергенцию и ротор и векторное произведение горизонтальных компонент полученных информационных сигналов. Оценивают наличие или отсутствие залежей углеводородов по отношению спектральной мощности параметров f1, f2 в диапазоне от 0 Гц до 7 Гц к спектральной мощности параметров f1, f2 в диапазоне от 0 Гц до 7 Гц.. По второму варианту в способе проводят дополнительное генерирование сейсмических колебаний сейсмовибратором, периодически генерирующим колебания в течение 30-40 сек с паузой в 20-30 секунд, а суждение о наличии залежей углеводородов выносят, если корреляционная размерность исходного векторного поля скоростей (F) в режиме регистрации сейсмического шума Земли больше, чем корреляционная размерность исходного векторного поля скоростей (F) в режиме регистрации информационных сигналов с использованием периодических колебаний сейсмовибратора. В третьем варианте реализации заявленного способа суждение о наличии залежей углеводородов выносят, если корреляционная размерность ротора исходного поля (Е) в режиме регистрации сейсмического шума Земли больше, чем корреляционная размерность ротора исходного поля (Е) в режиме регистрации информационных сигналов с использованием периодических колебаний сейсмовибратора. Технический результат – повышение достоверности обнаружения залежей углеводородов. 3 н. и 2 з.п. ф-лы.

Изобретение относится к области геофизики и может быть использовано для картирования границ субвертикальных протяженных объектов. Заявлен способ определения границ субвертикальных протяженных объектов в геологической среде, согласно которому на исследуемом участке устанавливают в каждой точке измерений i два горизонтальных с идентичными амплитудно-частотными характеристиками (АЧХ) сейсмометров X и Y, оси чувствительности которых взаимно ортогональны. Оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации. Расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований. Проводят синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации T, определяемом периодом стационарности горизонтальных компонент микросейсмического сигнала. Затем вычисляют усредненный по времени регистрации T спектр мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектр мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i. Определяют отношения полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f), после чего строят для каждой выбранной частоты fj карты значений отношения спектров мощности SXi(fj)/SYi(fj), интерполяционную поверхность значений отношения спектров мощности SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности. Привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. Определение границ субвертикальных протяженных геологических объектов проводят по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента. Технический результат – повышение достоверности определения субвертикальных границ объектов в геологической среде за счет того, что горизонтальные компоненты случайного микросейсмического сигнала по отношению друг к другу являются физически равнозначными, и сокращение трудоемкости измерений. 1 ил.

Изобретение относится к области геофизики и может быть использовано для картирования границ субвертикальных протяженных объектов. Заявлен способ определения границ субвертикальных протяженных объектов в геологической среде, согласно которому на исследуемом участке устанавливают в каждой точке измерений i два горизонтальных с идентичными амплитудно-частотными характеристиками (АЧХ) сейсмометров X и Y, оси чувствительности которых взаимно ортогональны. Оси чувствительности всех сейсмометров X имеют одинаковое направление ориентации, и оси чувствительности всех сейсмометров Y имеют одинаковое направление ориентации. Расстояние между точками измерений i составляет не более минимальной глубины заданного диапазона исследований. Проводят синхронную регистрацию микросейсмических сигналов, состоящих из волн Рэлея, сейсмометрами X и Y в течение времени регистрации T, определяемом периодом стационарности горизонтальных компонент микросейсмического сигнала. Затем вычисляют усредненный по времени регистрации T спектр мощности SXi(f) горизонтальных компонент сигналов сейсмометров X и спектр мощности SYi(f) горизонтальных компонент сигналов сейсмометров Y в каждой точке измерений i. Определяют отношения полученных спектров мощности в каждой точке измерений i SXi(f)/SYi(f), после чего строят для каждой выбранной частоты fj карты значений отношения спектров мощности SXi(fj)/SYi(fj), интерполяционную поверхность значений отношения спектров мощности SXi(fj)/SYi(fj) и карты модуля градиента интерполяционной поверхности. Привязку каждой полученной карты значений отношения спектров мощности SXi(fj)/SYi(fj) к глубине Hj проводят с использованием формулы Hj=0,6-0,8V(fj)/fj, где V(fj) - средняя фазовая скорость волны Рэлея, fj - частота в спектре. Определение границ субвертикальных протяженных геологических объектов проводят по значениям модуля градиента, превышающим 2/3 от максимального значения модуля градиента. Технический результат – повышение достоверности определения субвертикальных границ объектов в геологической среде за счет того, что горизонтальные компоненты случайного микросейсмического сигнала по отношению друг к другу являются физически равнозначными, и сокращение трудоемкости измерений. 1 ил.

Изобретение относится к области геофизики и может быть использовано для осуществления мониторинга состояния геологической среды при разработке шельфовых и глубоководных месторождений полезных ископаемых, для локализации крупных неоднородных образований, таких как различного рода заиленные объекты, вулканические структуры в морском дне и т.п. Согласно заявленному способу производят площадную расстановку на исследуемой территории с заданным шагом измерительных пунктов. Каждый измерительный пункт состоит из установленного в толще ледового покрова сейсмоприемника и расположенного в толще воды под сейсмоприемником гидроакустического векторного приемника. На каждом измерительном пункте регистрируют сейсмоакустические и гидроакустические сигналы от шумовых источников в течение определенного времени. После чего выделяют поверхностную сейсмическую волну из сейсмоакустического сигнала путем сравнения сейсмоакустических и гидроакустических сигналов, отфильтровывают сейсмоакустический сигнал от гидроакустических помех и шумов ледового покрова. Затем вычисляют взаимно-корреляционную функцию отфильтрованных поверхностных сейсмических волн для каждой пары сейсмоприемников. Определение времени распространения поверхностной сейсмической волны проводят по положению максимума взаимно-корреляционной функции. Строят экспериментальные карты скорости поверхностной сейсмической волны для разных ее частот ƒ, моделируют карты скорости поверхностной сейсмической волны для тех же частот ƒ путем построения математических моделей исследуемой геологической среды с разным распределением значений упругих параметров по глубине и сравнивают модельные карты скорости поверхностной сейсмической волны с полученными экспериментальными картами скорости поверхностной сейсмической волны. Выбирают математическую модель исследуемой геологической среды, для которой модельные карты скорости поверхностной сейсмической волны идентичны полученным экспериментальным картам скорости поверхностной сейсмической волны. После чего выносят суждение о наличии полезных ископаемых по значению упругих параметров выбранной математической модели исследуемой геологической среды. Технический результат – повышение точности и достоверности поиска полезных ископаемых на шельфе морей, покрытых льдом. 3 ил.

Изобретение относится к области геофизики и может быть использовано для осуществления мониторинга состояния геологической среды при разработке шельфовых и глубоководных месторождений полезных ископаемых, для локализации крупных неоднородных образований, таких как различного рода заиленные объекты, вулканические структуры в морском дне и т.п. Согласно заявленному способу производят площадную расстановку на исследуемой территории с заданным шагом измерительных пунктов. Каждый измерительный пункт состоит из установленного в толще ледового покрова сейсмоприемника и расположенного в толще воды под сейсмоприемником гидроакустического векторного приемника. На каждом измерительном пункте регистрируют сейсмоакустические и гидроакустические сигналы от шумовых источников в течение определенного времени. После чего выделяют поверхностную сейсмическую волну из сейсмоакустического сигнала путем сравнения сейсмоакустических и гидроакустических сигналов, отфильтровывают сейсмоакустический сигнал от гидроакустических помех и шумов ледового покрова. Затем вычисляют взаимно-корреляционную функцию отфильтрованных поверхностных сейсмических волн для каждой пары сейсмоприемников. Определение времени распространения поверхностной сейсмической волны проводят по положению максимума взаимно-корреляционной функции. Строят экспериментальные карты скорости поверхностной сейсмической волны для разных ее частот ƒ, моделируют карты скорости поверхностной сейсмической волны для тех же частот ƒ путем построения математических моделей исследуемой геологической среды с разным распределением значений упругих параметров по глубине и сравнивают модельные карты скорости поверхностной сейсмической волны с полученными экспериментальными картами скорости поверхностной сейсмической волны. Выбирают математическую модель исследуемой геологической среды, для которой модельные карты скорости поверхностной сейсмической волны идентичны полученным экспериментальным картам скорости поверхностной сейсмической волны. После чего выносят суждение о наличии полезных ископаемых по значению упругих параметров выбранной математической модели исследуемой геологической среды. Технический результат – повышение точности и достоверности поиска полезных ископаемых на шельфе морей, покрытых льдом. 3 ил.

Изобретение относится к области геофизики и может быть использовано для определения трещинной пористости горных пород. Способ определения трещинной пористости горных пород включает в себя экспериментальное определение скорости (Vp) распространения упругой продольной волны каждого образца в термобарических условиях, превышающих пластовые на 10-15%, общую пористость (Кп.общ.) каждого образца в термобарических условиях, превышающих пластовые на 10-15%. После этого строят график зависимости (Vp) от (Кп.общ.), в результате чего графически определяют скорость (Vp.ск.) распространения упругой продольной волны в минеральном скелете исследуемой породы. Затем рассчитывают трещинную пористость (Кп.тр.) каждого из образцов исследуемой породы по формуле: При этом в случае получения отрицательных величин рассчитываемой трещинной пористости полученное наибольшее отрицательное ее значение приравнивают нулю и определяют уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут.) по формуле: После чего вновь рассчитывают величину трещинной пористости (Кп.тр.) каждого образца исследуемой породы по формуле (1), используя для расчета полученное по формуле (2) уточненное значение скорости распространения упругой продольной волны в минеральном скелете (Vp.ск.ут). Технический результат - повышение точности проводимых исследований по определению величины трещинной пористости пород при исследовании образцов горных пород. 2 ил., 2 табл.
Наверх