Способ восстановления параметров движения летательного аппарата

Изобретение относится к области авиационного приборостроения и может найти применение для восстановления фактических (опытных) параметров движения при проведении летных испытаний летательного аппарата (ЛА). Технический результат – расширение функциональных возможностей. Для этого на основе телеметрической информации о работе бортовой инерциальной навигационной системы (ИНС) и бортовой аппаратуры спутниковой навигации (БАСН), а также данных о координатах точки падения ЛА и моменте встречи ЛА с земной поверхностью апостериорно определяют поправки, согласующие измеренные и расчетные данные, на основании которых восстанавливают параметры движения (поступательного и вращательного) на атмосферном участке полета ЛА. При этом обеспечивают высокоточное определение фактических (опытных) параметров (поступательного и вращательного) движения атмосферного участка траектории полета. 2 ил.

 

Изобретение относится к способам обработки экспериментальных данных и может быть использовано для восстановления параметров фактической (опытной) траектории на атмосферном участке полета при проведении летных испытаний летательного аппарата (ЛА).

Известен «Способ обработки информации о перемещении летательного аппарата» (Патент РФ №2436047, А.И. Клименко, А.А. Клименко, А.В. Абакумов, Е.Н. Скрипаль, Р.В. Ермаков, Л.А. Филиппов, МПК G01C 23/00 (2006.01), опубл. 10.12.2011 г., Бюл. №34), который включает операции, связанные с получением информации об основных параметрах навигации: от инерциальной навигационной системы (ИНС), состоящей из функционирующих в режиме регистрации информации по меньшей мере одного трехосевого акселерометра, по меньшей мере одного трехосевого датчика угловой скорости, по меньшей мере одного трехосевого магнитометра и от спутниковой навигационной системы (СНС). Комплексирование данных СНС осуществляют с возможностью корректировки параметров навигации и ошибок, накапливающихся при функционировании инерциальных навигационных систем. При этом маркируют выбранную траекторию перемещения ЛА точками его возможного нахождения, находящимися друг относительно друга в пространстве на расстоянии, равном заранее заданной величине. Реальные координаты положения ЛА определяют с использованием данных от ИНС и СНС в дискретные моменты времени, значения которых зависят от динамики и направления угловых скоростей ЛА. Данный способ выбран в качестве прототипа.

Известный способ предназначен для восстановления траектории ЛА в процессе полета, техническим результатом способа является повышение эффективности обработки информации путем обеспечения определения и восстановления траектории ЛА. Однако данный способ не обеспечивает высокоточного определения фактических (опытных) значений вектора скорости и параметров ориентации на атмосферном участке полета при проведении летных испытаний управляемых ЛА, что необходимо для подтверждения правильности функционирования бортовых систем навигации и управления, определения экспериментальных значений аэродинамических характеристик (АДХ) корпуса и органов управления ЛА, уточнения его тактико-технических характеристик.

Технической задачей, на решение которой направлено заявляемое изобретение, является обеспечение высокой точности определения фактических параметров поступательного и вращательного движения летательного аппарата на атмосферном участке полета.

Указанный технический результат достигается за счет того, что в заявляемом способе восстановления параметров траектории ЛА, включающем получение информации о движении ЛА от бортовой инерциальной навигационной системы на всем атмосферном участке полета ЛА и информации об основных параметрах навигации от бортовой аппаратуры спутниковой навигации (БАСН), обработку полученных данных от ИНС и БАСН и определение параметров движения ЛА, в отличие от прототипа, дополнительно получают информацию об основных параметрах навигации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке полета ЛА, информацию от ИНС и БАСН получают телеметрически и проводят ее обработку апостериорно. В ходе обработки параметров движения ЛА с использованием информации ИНС и информации о параметрах движения навигационных спутников (НС) производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС; формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей ЛА относительно НС и с использованием данных о координатах точки падения и моменте встречи ЛА с земной поверхностью, определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей, восстанавливают параметры движения с учетом полученных поправок.

Обеспечение высокой точности определения фактических параметров поступательного и вращательного движения летательного аппарата на атмосферном участке полета достигается за счет использования всей совокупности признаков заявляемого способа.

На фиг. 1 показан алгоритм реализации заявляемого способа обработки; на фиг. 2 - алгоритм обработки информации в соответствии с заявляемым способом, полученной в ходе осуществлении заявляемого способа при помощи математических моделей ИНС и БАСН, а также комплексной модели движения управляемого ЛА при проведении летных испытаний летательного аппарата.

Способ восстановления параметров движения летательного аппарата реализуется следующим образом.

В процессе полета ЛА телеметрически получают информацию:

- данные о параметрах движения (поступательного и вращательного) на атмосферном участке полета летательного аппарата от бортовой ИНС, состоящей из по крайней мере одного трехосевого акселерометра (либо трех одноосевых акселерометров) и по крайней мере одного трехосевого датчика угловой скорости (либо трех одноосевых датчиков угловой скорости), функционирующих в режиме регистрации информации на всем атмосферном участке полета ЛА:

- координаты положения, составляющие вектора скорости и параметры ориентации ЛА в инерциальной геоцентрической системе координат (ИГСК);

- проекции кажущихся скоростей и приращений углов поворотов на измерительные оси трехосевого датчика угловой скорости (ДУС) (либо трех одноосевых датчиков угловой скорости) и измерительные оси трехосевого акселерометра (либо трех одноосевых акселерометров) (АКС) из состава ИНС, измеряемые в каждом цикле навигационных определений;

- информацию об основных параметрах навигации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке траектории полета ЛА:

- измеренные значения радиальных скоростей и дальностей до видимых НС;

- моменты измерений радиальных скоростей и дальностей;

- номера навигационных спутников, относительно которых получены измерения радиальных скоростей и дальностей.

После проведения испытаний ЛА из архива Информационно-аналитического центра координатно-временного и навигационного обеспечения (ИАЦ КВНО) ЦНИИмаш получают информацию о:

- параметрах движения навигационных спутников в гринвичской геоцентрической системе координат, относительно которых получены измерения радиальных скоростей и дальностей.

Обработку полученных данных от ИНС и БАСН проводят апостериорно, при этом в ходе обработки параметров траектории ЛА производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС, формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей.

С использованием полученных данных, данных о координатах точки падения и данных о моменте встречи ЛА с земной поверхностью, полученных с помощью средств контроля, методом наименьших квадратов определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей (поправки к начальным условиям поступательного и вращательного движения), к показаниям акселерометра, а также поправку на рассогласование шкалы времени БАСН и системной шкалы времени навигационных спутников, восстанавливают параметры движения с учетом полученных поправок, то есть для восстановления параметров траектории определяют поправки, согласующие навигационные определения ИНС с результатами траекторных измерений БАСН, включая поправки к начальным условиям поступательного и вращательного движения, к показаниям акселерометра, а также поправку на рассогласование шкалы времени БАСН и системной шкалы времени НС.

Состав поправок ограничивают наиболее значимыми для восстановления опытной траектории и включают поправки в начальные условия для решения навигационной задачи в соответствии с алгоритмом работы ИНС, в том числе: три поправки в координаты положения; три поправки в составляющие вектора скорости; три поправки в параметры ориентации.

Поправки должны минимизировать функционал вида:

,

при условии, что A⋅X=b,

где X - вектор искомых поправок;

M - матрица коэффициентов влияния поправок на изменения величин отклонений квадратов радиальных дальностей (S2) до видимых НС и скалярных произведений радиальных дальностей и скоростей (S-W);

B - вектор, элементами которого являются взвешенные разности расчетных и измеренных значений:

- квадратов радиальных дальностей S;

- скалярных произведений радиальных дальностей S и скоростей W;

A - матрица коэффициентов влияния элементов вектора X на отклонения координат конечной точки траектории (точки падения ЛА);

b - вектор, содержащий отклонения координат фактической точки падения от точки прицеливания.

Искомое решение определяется из уравнений:

,

.

Дополнительно могут быть определены характеристики точности восстановления параметров движения ЛА, так же как ошибки определения поправок (с учетом и без учета идентифицированного вектора поправок), обусловленные совместным влиянием всех погрешностей ИНС, и восстановлены параметры движения с использованием расширенного вектора поправок (три поправки в координаты положения; три поправки в составляющие вектора скорости; три поправки в параметры ориентации; одна поправка в аддитивную погрешность акселерометра; две поправки в мультипликативные составляющие погрешности акселерометра).

Наибольшая точность восстановления параметров движения достигается на завершающем этапе послеполетной обработки телеметрической информации - при интегрировании уравнений движения с использованием измерений приращений кажущихся скоростей и углов поворота ЛА с учетом полученных поправок к начальным условиям и результатам измерений акселерометра. Учет указанных поправок позволяет повысить точность определения координат положения ЛА до единиц метров.

Заявляемый способ восстановления параметров движения летательного аппарата был проверен при помощи математической модели ИНС и БАСН, а также комплексной модели движения управляемого ЛА (см. фиг. 2). Проверка показала работоспособность заявляемого способа и достижение заданной точности восстановления траектории движения ЛА.

Таким образом, заявляемый способ обеспечивает высокоточное определение фактических (опытных) параметров поступательного и вращательного движения ЛА на атмосферном участке траектории полета, при условии наличия полной телеметрической информации о работе бортовой ИНС на всем атмосферном участке и информации от БАСН на доплазменном и не менее чем в двух точках на послеплазменном участке траектории.

Способ восстановления параметров движения летательного аппарата (ЛА), включающий получение информации от бортовой инерциальной навигационной системы (ИНС) на всем атмосферном участке полета ЛА и информации об основных параметрах навигации от бортовой аппаратуры спутниковой навигации (БАСН), обработку полученных данных от ИНС и БАСН и определение параметров движения ЛА, отличающийся тем, что информацию об основных параметрах навигации от БАСН получают на доплазменном и не менее чем в двух точках на послеплазменном участке полета ЛА, информацию от ИНС и БАСН получают телеметрически и проводят ее обработку апостериорно, в ходе обработки параметров движения ЛА с использованием информации ИНС и информации о параметрах движения навигационных спутников (НС) производят определение расчетных радиальных скоростей и дальностей ЛА относительно НС, формируют массивы данных об измеренных и расчетных значениях радиальных скоростей и дальностей ЛА относительно НС, и с использованием данных о координатах точки падения и моменте встречи ЛА с земной поверхностью определяют поправки, согласующие измеренные и расчетные данные о значениях радиальных скоростей и дальностей, восстанавливают параметры движения с учетом полученных поправок.



 

Похожие патенты:

Группа изобретений относится к способу и системе отображения полетной информации. Для отображения полетной информации отслеживают текущее местоположение самолета на заданной траектории полета, определяют текущий момент времени для текущего местоположения самолета на траектории, обеспечивают плановое время нахождения самолета в текущем положении, вычисляют и отображают отклонение планового и текущего времени, обеспечивают рекомендуемую путевую скорость, вычисляют и отображают отклонение текущей путевой скорости от рекомендованной.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат изобретения - повышение точности и быстродействия оптимального оценивания и коррекции всех измеряемых инерциальной навигационной системой (ИНС) навигационных и пилотажных параметров в обеспечение эффективного решения навигационных, боевых и специальных задач.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей.

Группа изобретений относится к способу построения инерциальных демпфированных систем с произвольным периодом, инвариантным по отношению к маневрированию объекта и инерциальной системе.

Изобретение относится к области авиационного приборостроения и может быть использовано в составе комплексов пилотажно-навигационного оборудования летательных аппаратов (ЛА).

Изобретение предназначено для использования в летательном аппарате в условиях ограниченной видимости, в частности, при выполнении спасательных операций, операций вблизи земли и т.д.

Изобретение относится к области пилотажно-навигационных систем транспортного летательного аппарата. Цифровая пилотажно-навигационная система транспортно-летательного аппарата, содержащая аппаратуру текущих пилотажных навигационных параметров для измерения курса, углов крена, тангажа, инерциальных скоростей (ИС-1), (ИС-2), воздушной скорости, барометрической высоты (СВС), относительной высоты от радиовысотомера (РВ), для определения координат посредством инерциальных радиосистем, блок коммутации (БК), цифро-аналоговый преобразователь (ЦАП), блок исполнения команд (БИК), систему радиосвязи с приемником-передатчиком (ПП) связи с пультом управления на начальном пункте маршрута (НПМ) и пультом управления на конечном пункте маршрута (КПМ), также дополнительно включает спутниковую навигационную систему (СНС), блок программы маршрута (БПМ), блок взлета-посадки (БВП), выполнен первый и второй автоматические навигаторы (АН).
Изобретение относится к области инерциальной навигации и может быть использовано в авиационных бесплатформенных инерциальных навигационных системах (БИНС). Технический результат - расширение функциональных возможностей.
Комплекс бортового оборудования содержит бортовое радиоэлектронное оборудование, комплексный потолочный пульт, интегрированную систему сбора, контроля и регистрации полетной информации, систему управления общесамолетным оборудованием, систему управления комплексной системой управления, вычислительную часть маршевой силовой установки, общесамолетные системы с собственными вычислителями, подключенные к бортовой сети информационного обмена определенным образом.
Изобретение, характеризуемое как способ повышения точности начальной выставки бесплатформенной инерциальной системы (БИНС) во время нахождения летательного аппарата (ЛА) на аэродроме, после начальной выставки и перехода БИНС в режим навигации, за все время нахождения ЛА на аэродроме, осуществляют совместную обработку информации инерциального счисления и внешней информации, поступающей, по меньшей мере, от спутниковой навигационной системы (СНС), относится к области инерциальной навигации и может быть использовано в авиационных БИНС.

Изобретение относится к области измерительных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат - повышение точности оценивания и краткосрочного прогноза параметров движения цели на основе субоптимальной процедуры ее углового сопровождения в обеспечение эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого оценивание и прогноз параметров цели осуществляют в проекциях на оси лучевой системы координат. Выбор указанной системы координат не случаен, так как позволяет эффективно реализовать и привязку к цели, и модифицированный прогноз ее параметров на основе углового сопровождения цели. Для этого по окончании режима привязки, ее фильтр-идентификатор редуцируют, выделяя из него дальномерный канал и канал углового сопровождения цели. Фильтр-идентификатор канала углового сопровождения по измерениям углов визирования цели формирует перечень оценок характерных для него параметров, а дальномерный канал, на основе оценок собственных параметров, полученных в режиме привязки, и текущих оценок составляющих скорости канала углового сопровождения реализует прогноз своих параметров, которые используют в процедуре углового сопровождения. 5 ил.

Изобретение относится к способам определения кинематических параметров гребной механической системы и сил, приложенных к ее элементам. При реализации предложенного способа осуществляют прямые измерения ускорения и скорости лодки вдоль ее продольной оси и угол поворота весла в вертлюге вокруг вертикальной оси. Также измеряют угловую скорость поворота весла в вертлюге вокруг вертикальной оси и на основании полученного значения вычисляют угловое ускорение поворота весла. Измеряют перемещение гребца вдоль продольной оси лодки, на основании полученного значения вычисляют его ускорение. Далее, используя полученные значения измеренных величин, вычисляют гидродинамическую силу сопротивления движению лодки, силы инерции, возникающие при поступательных движениях лодки и гребца, а также поступательном и вращательном движениях весел, момент сил инерции весла, возникающий при его вращательном движении и поступательном движении лодки. Определяют силы, приложенные к рукоятке весла, к вертлюгу, к лопасти весла и к подложке. Техническим результатом изобретения является повышение точности измерения сил, определяемых на элементах гребной механической системы, а также уменьшение времени предстартовой подготовки системы в тренировочном процессе. 1 ил.

Изобретение относится к радиотехнике, а именно к методам и системам пассивной радиолокации, и может быть использовано для определения местоположения в трехмерном пространстве источника радиоизлучения (ИРИ), размещенного на летательном аппарате (ЛА) (самолет, вертолет и т.п.), за счет приема и последующей обработки электромагнитных волн, порожденных этим ИРИ. Достигаемый технический результат – управление летательным аппаратом (ЛА) на предельно малых высотах в ближней зоне аэродрома и вывод ЛА в точку захода на посадку. Указанный результат достигается тем, что система содержит три узкобазовых подсистемы, каждая из которых содержит N приемных антенн, первый и второй аналого-цифровой преобразователь, центральную электронно-вычислительную машину, малошумящий усилитель, N входов которого соединены с N приемными антеннами, первый и второй многоканальные синхронные квадратурные приемники, входы которых соединены соответственно с первым и вторым выходами малошумящего усилителя, а выходы - с первыми входами первого и второго аналого-цифровых преобразователей, первый и второй каналы обработки информации, первые входы которых соединены с выходами аналого-цифровых преобразователей, а выходы подключены к центральной электронно-вычислительной машине; управляющий контроллер, подключенный по входу к центральной электронно-вычислительной машине, первый выход которого подключен ко второму входу первого многоканального синхронного квадратурного приемника, ко второму входу первого аналого-цифрового преобразователя и ко второму входу первого канала обработки информации, а второй выход - ко второму входу второго многоканального синхронного квадратурного приемника, ко второму входу второго аналого-цифрового преобразователя и ко второму входу второго канала обработки информации; центральный пункт обработки, в состав которого входят три порта ввода информации, каждый вход которого соединен через гибридную оптико-коаксиальную сеть с выходом центральной электронно-вычислительной машины каждой узкобазовой подсистемы, блок клавиатуры, блок индикации, блок вычисления текущей скорости ЛА, блок вычисления текущей высоты полета ЛА, блок вычисления дальности до ЛА, оперативное запоминающее устройство, постоянное запоминающее устройство, первый дополнительный порт вывода, микропроцессор, объединенные между собой шиной адреса и данных; радиомодем декаметрового диапазона радиоволн, вход которого соединен с выходом первого дополнительного порта вывода, а выход является общим выходом системы, обеспечивающим радиосвязь с ЛА. 8 ил.

Изобретение относится к часовому устройству, содержащему среднюю часть (30), закрытую задней крышкой и стеклом, указанная средняя часть (30) содержит окружный заплечик (34), в котором имеется канавка (37), указанная канавка расположена на поверхности заплечика, параллельно центральной оси (С) средней части, указанное часовое устройство содержит систему (20) с вращающимся безелем, вращательно установленную в указанном окружном заплечике, характеризующуюся тем, что указанная система с вращающимся безелем включает в себя безельное кольцо (40, 41) по меньшей мере с одной первой выемкой (46), расположенной на поверхности безеля, которая должна быть обращена в сторону указанной канавки после того, как указанная система (20) с вращающимся безелем установлена в средней части, указанная система (20) с вращающимся безелем помимо этого содержит пружинные средства (80), заходящие как в указанную по меньшей мере одну первую выемку (46) безеля, так и в канавку (37) в средней части, удерживая систему (20) с вращающимся безелем в средней части (30) часового устройства. 8 з.п. ф-лы, 8 ил.

Изобретения относятся к области систем навигации летательных аппаратов (ЛА) и могут быть использованы при выставке бесплатформенных инерциальных навигационных систем летательного аппарата (БИНС ЛА) корабельного базирования. Технический результат - сокращение времени выставки БИНС ЛА на корабле при обеспечении требуемой точности. Для этого способ выставки БИНС ЛА, основанный на совместной обработке методом фильтрации Калмана выходных сигналов БИНС ЛА и ИНС корабля базирования, соответствующих угловым скоростям, измеренным трехкомпонентными датчиками угловых скоростей (ДУС), установленными на ЛА и на корабле, дополнительно включает в себя измерение значения курса ЛА относительно географического меридиана (ψг), причем выставку осуществляют в два этапа. На первом этапе измеряют линейные ускорения вдоль осей связанной системы координат корабля базирования и связанной системы координат ЛА, определяют координаты БИНС ЛА относительно ИНС корабля и осуществляют выставку по крену и тангажу путем согласования векторов перегрузок с использованием статистического фильтра Калмана второго порядка, при этом выставка может выполняться как в статическом положении корабля базирования, так и при его качке и маневре. На втором этапе осуществляют выставку в азимуте путем измерения и согласования векторов угловых скоростей корабля базирования и ЛА и измерения линейных ускорений вдоль осей связанных систем координат корабля базирования и ЛА, причем, если в течение 5-10 секунд отсутствует качка корабля с угловыми скоростями ωx<2-3 град/с, выполняют маневр корабля типа «зигзаг» и производят обработку сигналов измерения, используя фильтр Калмана третьего порядка с размерностью вектора измерений, равной шести. Устройство, реализующее данный способ выставки БИНС ЛА корабельного базирования, включающее ИНС корабля базирования и БИНС ЛА, базирующегося на корабле, дополнительно содержит блок формирования матрицы Якоби, задатчик курса и координат точки базирования ЛА, первый статистический фильтр Калмана второго порядка и второй статистический фильтр Калмана третьего порядка, причем выходы ИНС корабля и БИНС ЛА подключены к блоку формирования матрицы Якоби. Первый выход блока формирования матрицы Якоби и выход задатчика курса и координат точки базирования ЛА подключены к соответствующим входам первого статистического фильтра Калмана. Второй выход блока формирования матрицы Якоби и выходы первого статистического фильтра Калмана подключены к соответствующим входам второго статистического фильтра Калмана, выходы которого подключены к соответствующим входам БИНС ЛА, базирующегося на корабле. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к области авиационного приборостроения и может быть использовано в одноосных и трехосных измерителях угловых скоростей и линейных ускорений, используемых в инерциальных навигационных системах и в пилотажных системах управления подвижными объектами в качестве датчиков первичной информации. Технический результат – повышение точности. Для этого компенсацию дрейфа нулевых сигналов гироскопических датчиков осуществляют путем выделения компенсирующего сигнала из измеряемого по результатам сравнения измеряемого сигнала с заданным уровнем и последующей корректировкой измеряемого сигнала с помощью выделенного компенсирующего сигнала, при этом выделение компенсирующего сигнала осуществляется путем фильтрации измеряемого сигнала, накопления отфильтрованного сигнала, его осреднения, сравнения с заданным уровнем, накоплением массива выделенного сигнала, его осреднения, прогнозирования, сравнения прогнозируемого сигнала с заданным уровнем и по результатам сравнения при превышении заданного уровня сигнала в качестве компенсирующего сигнала принимается спрогнозированный сигнал, а при непревышении заданного уровня сигнала спрогнозированный сигнал в качестве компенсирующего не принимается. Изобретение позволяет решить задачу путем компенсации дрейфа нулевого сигнала в процессе эксплуатации прибора за счет выделения нулевого сигнала из измеряемого по результатам сравнения измеряемого сигнала с заданным уровнем, прогнозирования компенсационного сигнала, контроля его уровня и последующей корректировки измеряемого сигнала с помощью выделенного компенсационного сигнала. Исследования показали, что за счет использования предложенного изобретения удалось почти на порядок уменьшить накапливаемую угловую погрешность курсового угла в микромеханическом гироскопе STIM-210 норвежской фирмы Sensonor. 2 з.п. ф-лы, 2 ил.

Трехосный микромеханический блок чувствительных элементов содержит корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях, электронные субблоки в виде печатных плат с крышками. Печатные платы выполнены в виде восьмиугольников и имеют симметрично расположенные выступающие части с установленными на них микроразъемами. Печатные платы установлены так, чтобы их электронные компоненты были внутри корпуса. Внешние границы базовых поверхностей шестигранного куба равноудалены от линий пересечения ортогональных базовых плоскостей на длину выступающей части платы. Крышки субблока равномерно выступают за контуры плат по всему периметру. На каждой боковой гране шестигранного куба выполнена площадка шириной, равной выступающей за печатную плату крышки. Обеспечивается повышение точности измерений и усовершенствование конструкции измерителя. 5 ил.

Комплекс бортового оборудования вертолетов и самолетов авиации общего назначения (АОН) содержит многофункциональный индикатор (МФИ), основной пилотажный прибор (ОПП), комбинированную курсовертикаль (КВ), приемники воздушных давлений, приемник температуры торможений, блок преобразования сигналов, интегрированную систему радиосвязи (ИСР), систему табло аварийной и уведомляющей сигнализации, комплект внутреннего светотехнического и светосигнального оборудования, устройство беспроводной загрузки пользовательских данных, ответчик системы управления воздушным движением, аварийно-спасательный радиомаяк, малогабаритный бортовой регистратор, радиовысотомер, автоматический радиокомпас, транспондер автоматического зависимого наблюдения, комплект аппаратуры ближней навигации и посадки VOR/ILS/маркерного приемника/автоматического радиокомпаса, автопилот, соединенные определенным образом с помощью канала информационного обмена. МФИ содержит блок вычисления и формирования, включающий модуль индикации и сигнализации, программные модули навигации и картографии, а также предупреждения критических режимов и раннего предупреждения близости земли, дисплейный модуль, модуль питания. ОПП содержит ЖК-индикатор, модуль определения пространственного положения, модуль преобразования критических сигналов. КВ содержит основной вычислительный модуль, модуль пространственного положения, модуль измерения и вычисления воздушных данных с приемником ГЛОНАСС/GPS, датчик магнитного курса. ИСР содержит блок радиостанции, пульт внутренней связи. Обеспечивается повышение безопасности пилотирования и эффективность применения вертолетов и самолетов АОН. 5 з.п. ф-лы, 2 ил.

Изобретение относится к оборудованию стрелковых тиров, военных полигонов или как роботизированная платформа в составе перспективных охранных или тактических роботизированных разведывательно-боевых комплексах. Роботизированная платформа (РП) состоит из корпуса, привода и устройства управления. РП является транспортным средством с гусеничным движителем с приводом от бесколлекторных электродвигателей постоянного тока. РП управляется по радиоканалу в режимах: ручном дистанционном, полуавтоматическом, автоматическом по программе. РП также содержит навигационную и инерционные бортовые системы, закрытое бронированное моторно-трансмиссионный отделение. Внутри корпуса несущая рама обеспечивает крепление внутренних узлов и агрегатов РП. Привод РП содержит элементы крепления и ведущие звездочки левой и правой гусениц. Ходовая часть РП состоит из двух гусеничных движителей. Каждый движитель оснащен тремя сдвоенными опорными роликами из резины, двумя поддерживающими роликами и расположенном впереди по ходу движения узлом натяжителя со звездочкой, резиновыми гусеницами с грунтозацепами, а все элементы движителя закреплены на раме гусеницы. Рама крепится к опорным консолям корпуса посредством скоб. Достигается возможность перемещения мишени. 4 ил.

Изобретение относится к области навигации наземных транспортных средств, а именно к комплексной навигационной аппаратуре на основе аппаратуры счисления координат и спутниковой навигационной системы. Технический результат – расширение функциональных возможностей. Для этого автоматизированная система навигации с контролем целостности навигационных данных спутниковых радионавигационных систем по информации механического и доплеровского датчиков скорости состоит из аппаратуры счисления координат, в качестве основного элемента которой используется бесплатформенная инерциальная навигационная система (БИНС), оснащенной датчиком скорости механическим (ДСМ), датчиком скорости доплеровским (ДСД) и барометрическим высотомером (БВ), спутниковой навигационной аппаратуры (СНА), бортовой ЭВМ, выносного комплекса спутниковой навигационной аппаратуры (ВК СНА), устройства контроля качества (УКК) навигационных полей спутниковых систем и формирования корректирующей информации. Бесплатформенная инерциальная навигационная система (БИНС) оснащена вычислителем навигационных параметров (ВНП), выполненным с возможностью автоматического учета температурных поправок, а в качестве датчиков первичной информации БИНС используются инерциальные датчики: лазерные гироскопы (ЛГ) и кварцевые акселерометры (КА). Спутниковая навигационная аппаратура (СНА), основой которой является приемоиндикатор (ПИ), оснащена антенной системой (АС), состоящей из четырех антенных модулей (AM). Бортовая ЭВМ связана с барометрическим высотомером (БВ), состоящим, в свою очередь, из датчика температуры (ДТ), измерителя цифрового атмосферного давления (ИЦАД) и блока обработки данных (БОД), а через блок согласования (БС) - с датчиком скорости механическим (ДСМ) и датчиком скорости доплеровским (ДСД). Кроме того, она оснащена периферийными устройствами: клавиатурой (К), видеомонитором (ВМ), устройством документирования (УД), манипулятором графической информации (МГИ). Выносной комплекс спутниковой навигационной аппаратуры (ВК СНА), состоящий из носимого приемоиндикатора (НПИ) и антенны геодезической (АГ), оснащен переносным накопителем навигационной информации (ННИ). Бортовая ЭВМ связана по соответствующим каналам обмена и управления с вышеперечисленной аппаратурой, дополнительно - с аппаратурой передачи данных (АПД). Отличительной особенностью от прототипа является наличие схемы разрешения использования сигналов спутников (СРИСС) на основе алгоритма контроля целостности навигационного обеспечения спутниковых радионавигационных систем. В ее состав входят сумматор, пороговое устройство (ПУ) и ключевое устройство (КУ). В результате при осуществлении изобретения обеспечивается формирование автоматизированной системы навигации с контролем целостности навигационных данных спутниковой навигационной аппаратуры за счет введения схемы разрешения использования информации спутниковой навигационной аппаратуры, которая позволяет выявить факт неправильного функционирования спутниковых радионавигационных систем и изолировать выдачу данных от спутниковой навигационной аппаратуры, таким образом повышая целостность системы. 1 ил.

Изобретение относится к области авиационного приборостроения и может найти применение для восстановления фактических параметров движения при проведении летных испытаний летательного аппарата. Технический результат – расширение функциональных возможностей. Для этого на основе телеметрической информации о работе бортовой инерциальной навигационной системы и бортовой аппаратуры спутниковой навигации, а также данных о координатах точки падения ЛА и моменте встречи ЛА с земной поверхностью апостериорно определяют поправки, согласующие измеренные и расчетные данные, на основании которых восстанавливают параметры движения на атмосферном участке полета ЛА. При этом обеспечивают высокоточное определение фактических параметров движения атмосферного участка траектории полета. 2 ил.

Наверх