Катализатор для гидроизомеризации дизельного топлива

Изобретение относится к катализатору для гидроизомеризации дизельного топлива, который может быть использован для получения низкозастывающего дизельного топлива с высокими выходом целевого продукта. Катализатор получен на основе наночастиц металлов платиновой группы, нанесенных на твердый носитель методом лазерного электродиспергирования, с обеспечением аморфной структуры наночастиц платиновых металлов, размеров не менее 90% частиц платиновых металлов в пределах 1,0-4,0 нм и количества металла в катализаторе менее 0,05 мас. %. Заявленный катализатор характеризуется сниженным содержанием дорогостоящих металлов платиновой группы и при гидроизомеризации дизельного топлива обеспечивает низкую температуру фильтруемости и высокий выход продукта. 4 з.п. ф-лы, 2 табл., 3 ил., 2 пр.

 

Изобретение относится к области нефтепереработки, в частности к способам получения катализаторов для гидроизомеризации дизельного топлива, и может быть использовано для получения низкозастывающего дизельного топлива с высоким выходом целевого продукта.

В настоящее время чрезвычайно актуальной является задача увеличения производства высококачественного зимнего и арктического дизельного топлива для удовлетворения потребности регионов Крайнего Севера, Сибири и Дальнего Востока. Основными требованиями к экологически чистым дизельным топливам является низкое содержание полициклических ароматических углеводородов, соединений серы и азота, при этом дизельное топливо для холодных климатических зон должно иметь низкую предельную температуру фильтруемости. Понижение температуры фильтруемости исходного сырья достигается уменьшением содержания парафинов с прямой и слаборазветвленной цепью, которые легко затвердевают. Процесс депарафинизации можно осуществить с помощью экстракции растворителем и кристаллизации, однако в последние годы основное внимание сосредоточено на способе удаления парафинов из дизельных фракций посредством каталитической гидроизомеризации - конверсии нормальных парафинов в изопарафины. Процесс гидроизомеризации с получением дизельного топлива зимних и арктических сортов осуществляется на бифункциональных каталитических композициях, содержащих металлы (чаще всего металлы платиновой группы) и цеолиты или цеолитоподобные структуры. Поскольку такие катализаторы достаточно быстро теряют свою активность под воздействием соединений серы и азота, в качестве сырья в процессах гидроизомеризации используют гидроочищенные фракции дизельного топлива. Несмотря на достигнутые значительные успехи в разработке катализаторов гидроизомеризации остается потребность в каталитических системах, которые обеспечивают сочетание высокой активности и селективности в отношении изомеризации н-парафинов в базовом сырье, так, чтобы получать высокий выход дизельного топлива с низкой температурой фильтруемости.

Для оценки новизны и технического уровня заявленного решения рассмотрим ряд известных заявителю технических средств аналогичного назначения, характеризуемых совокупностью сходных с заявленным изобретением признаков, известных из сведений, ставших общедоступными до даты приоритета изобретения.

Известен катализатор процесса гидроизомеризации [патент US №6051129 от 18.04.2000], содержащий 0,5 мас. % Pd, нанесенного на цеолит ZSM-48. Катализатор готовят нанесением методом ионного обмена из раствора, имеющего pH 10 на предварительно прокаленный цеолит, далее катализатор промывают водой, сушат при 120°C и прокаливают при 483°C на воздухе. На катализаторе приведенного состава процесс гидроизомеризации дизельного топлива проводят при температуре 200-475°C, давлении 1-200 атм, расходе сырья 0,1-20 ч-1, отношении водород/сырье 50-1000 м33. В процессе гидроизомеризации получают продукт с температурой застывания ниже -30°C, его выход не превышает 72%. Недостатком катализатора является высокое содержание драгоценного металла Pd и низкий выход целевого продукта.

Известен способ приготовления катализатора для гидроизомеризации дизельного топлива [патент RU №2535213 от 22.10.2013], включающий гидрирующий металлический компонент на носителе, содержащем цеолит и оксид алюминия. Композицию носителя получают смешением среднепористого цеолита ЦВН, широкопористого ультрастабильного цеолита USY, оксида алюминия в виде бемитного гидроксида алюминия, а также солей неблагородных металлов Ni, Mo, W - азотнокислого никеля (NiNO3×6H2O), парамолибдата аммония ((NH4)6Mo7O24×6H2O)или мета-вольфрамата аммония H26⋅N6O40×H2O, а также вводят промотор в виде кислот H3BO3 или H3PO4. Полученную смесь пептизируют азотной кислотой, экструдируют, сушат и прокаливают. Гидрирующий компонент - благородные металлы наносят пропиткой из растворов солей палладия (H2PdCl4) и иридия (Н2IrCl6). Синтезированные катализаторы сушат при 120°C и прокаливают при 500-550°C. Содержание в катализаторе благородных металлов (Pd, Ir) составляет 0,1÷1,0 мас. %. На синтезированном катализаторе в процессе гидроизомеризации предварительно гидроочищенной дизельной фракции при температуре процесса 400°C, давлении 2,0 МПа, объемной скорости подачи сырья 7,0 час-1, при соотношении Н2/сырье, равном 1200 нм33, получают продукт с температурой фильтруемости -41°C, с выходом продукта 92,6%. Недостатком способа является высокое содержание в катализаторе дорогостоящих металлов платиновой группы.

Наиболее близким по технической сущности к заявляемому является катализатор гидроизомеризации дизельного топлива на основе наночастиц металлов платиновой группы (патент RU №2536585 от 27.09.2013). Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и оксид алюминия, содержащий компоненты в следующих концентрациях, мас. %: цеолит ZSM-23 - 50-80, палладий - не более 0,6; бор 1,0-3,0; Al2O3 - остальное. Способ приготовления катализатора заключается в пропитке носителя, содержащего цеолит ZSM-23, раствором борной кислоты с последующей сушкой и прокалкой, и последующей пропитке водным раствором нитрата палладия с последующей сушкой и прокалкой. В присутствии катализатора приведенного выше состава проводили процесс гидроизомеризации предварительно гидроочищенной дизельной фракции, содержащей не более 30 ppm серы, при температуре процесса 320-340°C, давлении 2,5-6,5 МПа, объемной скорости подачи сырья 2-6 ч-1, объемном отношении водород/сырье - 200-600 нм33. В процессе гидроизомеризации получено дизельное топливо с температурой застывания ниже -40°C, с выходом продукта более 89%.

Недостатком данного катализатора, принятого нами за прототип, является высокое содержание дорогостоящих платиновых металлов (Pd) и низкий выход целевого продукта.

Задачей изобретения является снижение содержания дорогостоящих металлов платиновой группы в катализаторах гидроизомеризации дизельного топлива при условии получения низкой температуры фильтруемости и высокого выхода продукта.

Согласно изобретению катализатор гидроизомеризации дизельного топлива, полученный на основе наночастиц металлов платиновой группы, нанесенных на твердый носитель методом лазерного электродиспергирования, с обеспечением аморфной структуры наночастиц платиновых металлов, размеров не менее 90% частиц платиновых металлов в пределах 1,0-4.0 нм и количества металла в катализаторе менее 0,05 мас. %.

В этом заключается совокупность существенных признаков, обеспечивающая получение технического результата во всех случаях, на которые распространяется испрашиваемый объем правовой охраны.

Кроме того, заявленное техническое решение характеризуется наличием ряда дополнительных признаков, а именно:

- в качестве твердого носителя используют носитель, содержащий цеолит и связующий компонент на основе Al2O3;

- в качестве цеолита используют цеолит ZSM-23;

- в качестве металла платиновой группы используют Pd;

- в качестве металла платиновой группы используют Pt.

Технический результат, получаемый при использовании вышеописанного изобретения, состоит в снижении содержания платиновых металлов в катализаторах гидроизомеризации дизельного топлива. При использовании предлагаемых катализаторов в гидроизомеризации предварительно гидроочищенной дизельной фракции получают высокий выход продукта, имеющего низкую температуру фильтруемости, при том что содержание дорогостоящих платиновых металлов ниже по сравнению с известными катализаторами. Результат достигается благодаря тому, что формируемые методом лазерного электродиспергирования наночастицы платиновых металлов в составе катализатора имеют аморфную структуру и малые размеры [Rostovshchikova T.N., et. al., Catalysis Today, 2005, 105, 344]. Наночастицы металла малых размеров имеют большую величину удельной поверхности. В то же время на поверхности аморфных наночастиц имеется значительное количество низкокоординированных атомов металла, которые могут служить активными центрами каталитической реакции гидрирования и изомеризации нормальных алканов (с количеством атомов углерода более 15), содержащихся в дизельной фракции. Оба этих фактора способствуют повышению удельной (по металлу) активности предлагаемого катализатора в процессе гидроизомеризации и достижению при низком содержании металла высокого выхода продукта, имеющего низкую температуру фильтруемости. Отмеченными преимуществами не обладают кристаллические наночастицы металлов, формируемые стандартными методами пропитки и восстановления или ионного обмена, которые обычно используются для приготовления катализаторов гидроизомеризации.

Аморфное состояние наночастиц палладия, получаемых методом лазерного электродиспергирования, описанного в патенте РФ №2242532 от 09.09.2003, иллюстрирует микрофотография на фиг. 1, полученная с помощью просвечивающего электронного микроскопа высокого разрешения. Как видно на фиг. 1, некоторые частицы Pd имеют блочную структуру (состоят из нескольких кристаллических блоков), однако структура большинства частиц полностью разупорядочена (т.е. аморфна). Полученные в просвечивающем микроскопе картины дифракции электронов на частицах Pd имеют вид неструктурированного гало, что дополнительно свидетельствует об аморфном состоянии подавляющего большинства наночастиц Pd. По данным просвечивающей электронной микроскопии размеры частиц Pd составляют (2,2±0,8) нм (фиг. 2). Нами также установлено, что аморфные наночастицы Pd, полученные методом лазерного электродиспергирования, устойчивы по отношению к окислению, кристаллизации и агломерации при температурах до 700°C. На фиг. 3 показано изображение структуры катализатора гидроизомеризации, приготовленного методом лазерного электродиспергирования и содержащего наночастицы Pd на носителе ZSM-23/γ-Al2O3. Изображение получено методом просвечивающей электронной микроскопии.

Изобретение иллюстрируется примерами.

Пример 1.

В качестве носителя для приготовления катализатора использовали цеолит ZSM-23 с соотношением Si/Al в пределах 50-60, с кристаллической структурой ММТ, массовой долей оксида натрия не более 0,01%, в смеси с γ-Al2O3 в соотношении ZSM-23/Al2O3, равном 70:30 (удельная поверхность 150 м2/г, размеры гранул (330±80) мкм). Гранулы носителя в количестве 0,1 г загружали в кювету, установленную в вакуумной камере установки лазерного электродиспергирования. С целью обеспечения равномерного покрытия поверхности носителя наночастицами металла гранулы носителя во время нанесения перемешивали в кювете с помощью источника ультразвука. Время нанесения наночастиц палладия в процессе лазерного электродиспергирования равно 6 мин. Содержание Pd в приготовленном катализаторе составило 0,03 мас. %.

Процесс гидроизомеризации проводили в проточном реакторе. В реактор помещали образец катализатора весом 1,0 г. Активацию катализатора проводили при температуре 400°C в потоке водорода в течение 1 ч, при расходе водорода 1800 ч-1. В качестве сырья использовали гидроочищенную дизельную фракцию с началом кипения 195°C, концом кипения 365°C, с содержанием серы 8 ppm, содержанием азота 32 ppm, содержанием н-парафинов 17,2%. После активации палладия в токе водорода снижали температуру в реакторе до 280°C и при достижении этой температуры подавали в реактор дизельное топливо с расходом 4 ч-1 при объемном соотношении водород/сырье 500 нм33. Дальнейшие пошаговые изменения температуры составляли 20°C, исследования проводили в интервале температур 280÷380°C при давлении 3,5 МПа. На каждом шаге проводили отбор газовых и жидких проб. Из анализа хромограмм отобранных проб проводили определение фракционного состава получаемого продукта и содержание н-алканов. Определение предельной температуры фильтруемости продукта проводили на приборе АФТ-01 (Нефтехимавоматика, СПб) по методике ГОСТ 22254-92. Результаты испытаний катализатора приведенного состава представлены в таблице 1.

Из таблицы 1 видно, что при одинаковых температурах процесса гидроизомеризации заявленный катализатор, изготовленный по примеру 1, и катализатор сравнения обеспечивают сопоставимые характеристики продукта, но при значительно меньшем содержании Pd в заявленном катализаторе.

Пример 2.

Катализатор готовили аналогично примеру 1. Время нанесения наночастиц палладия в процессе лазерного электродиспергирования составило 8 мин. Содержание Pd в приготовленном катализаторе составило 0,04 мас. %.

Процесс гидроизомеризации проводили аналогично примеру 1. Результаты испытаний катализатора с содержанием Pd 0,04 мас. % представлены в таблице 2.

Из таблицы 2 видно, что при одинаковых температурах процесса гидроизомеризации заявленный катализатор, изготовленный по примеру 2, и катализатор сравнения обеспечивают близкие характеристики продукта, но при значительно меньшем содержании Pd в заявленном катализаторе.

Заявленный катализатор характеризуется сниженным содержанием дорогостоящих металлов платиновой группы и при гидроизомеризации дизельного топлива обеспечивает низкую температуру фильтруемости и высокий выход продукта.

1. Катализатор гидроизомеризации дизельного топлива, полученный на основе наночастиц металлов платиновой группы, нанесенных на твердый носитель методом лазерного электродиспергирования, с обеспечением аморфной структуры наночастиц платиновых металлов, размеров не менее 90% частиц платиновых металлов в пределах 1,0-4,0 нм и количества металла в катализаторе менее 0,05 мас. %.

2. Катализатор по п. 1, отличающийся тем, что в качестве твердого носителя используют носитель, содержащий цеолит и связующий компонент на основе Al2O3.

3. Катализатор по п. 2, отличающийся тем, что в качестве цеолита используют цеолит ZSM-23.

4. Катализатор по п. 1, отличающийся тем, что в качестве металла платиновой группы используют Pd.

5. Катализатор по п. 1, отличающийся тем, что в качестве металла платиновой группы используют Pt.



 

Похожие патенты:

Изобретение относится к области химии и технологии получения и переработки полимерных композиций, конкретно к полимерным композициям, сохраняющим длительную работоспособность в наиболее агрессивных средах, преимущественно в растворах фтористоводородной (плавиковой) кислоты.

Изобретение относится к электропроводящим покрытиям, которые могут быть использованы в электротехнике, электронике и химической промышленности. Композиция электропроводящего покрытия содержит пленкообразующую смолу и 0,1-95 мас.% полученных термическим способом частиц графенового углерода в расчете на общее содержание твердых веществ в комбинации с другим типом графеновых частиц, например полученных из терморасширенного графита.

Изобретение относится к области плазменной техники и может быть использовано для выделения пучков электронов из плазмы рабочей среды, создания электрических генераторов на основе энергии электронных пучков, электрореактивных двигателей, электронно-лучевых и ионно-лучевых приборов.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются водорастворимые цефалоспориновые антибиотики, в качестве оболочки альбумин человеческий сывороточный при соотношении оболочка:ядро 1:1 или 3:1, при этом водорастворимые цефалоспориновые антибиотики в виде порошка и препарат Е472с в качестве поверхностно-активного вещества добавляют к раствору альбумина, полученную смесь перемешивают и после растворения компонентов медленно по каплям добавляют петролейный эфир, полученную суспензию нанокапсул отфильтровывают, промывают петролейным эфиром и сушат.

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул аспирина.

Изобретение относится к области химии, в частности к полимерным эпоксидным композициям холодного отверждения, и может быть использовано для склеивания и ремонта стеклопластиковых конструкций, в том числе и во влажных условиях - при нанесении на влажные и мокрые поверхности.
Изобретение относится к области медицины, фармацевтики и нанотехнологий. Предлагается фармацевтическая композиция, обладающая антимикробной и противогрибковой активностью, содержащая трийодметан, нанесенный на алюмосиликатные нанотрубки с внешним диаметром трубок - 60-160 нм, внутренним диаметром - 10-60 нм и длиной трубок - 100-5000 нм, взятые при следующих соотношениях, масс.%: трийодметан 50, алюмосиликатные нанотрубки 50.

Изобретение относится к промышленности строительных материалов, а именно к способу приготовления дисперсно-армированного строительного раствора для монолитных полов, и может быть использовано при изготовлении монолитных покрытий полов и стяжек на основе цементного раствора.

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле, получение микроэлектронограммы от кристалла, микродифракционное исследование нанотонкого кристалла, анализ ротационного искривления решетки нанотонкого кристалла, при этом на электронно-микроскопическом изображении нанотонкого кристалла выбирают физическую точку M и двумерное направление, для этого выбирают пару - нелинейный изгибной экстинкционный контур и соответствующий ему рефлекс на микроэлектронограмме, испытывающий азимутальное размытие; проводят диагностику римановой геометрии решетки нанотонкого кристалла в данной точке M и данном двумерном направлении, задаваемом бивектором (а, b) - парой неколлинеарных векторов, исходящих из одной точки, совпадающей с центром микроэлектронограммы, полученной от нанотонкого кристалла, расположенных в плоскости микроэлектронограммы, где вектор b соответствует размытому рефлексу, путем совместного анализа пары - нелинейного изгибного экстинкционного контура, присутствующего на электронно-микроскопическом изображении кристалла в темном поле, и соответствующего ему рефлекса на микроэлектронограмме от кристалла, для установления непрерывности азимутального размытия рефлекса и непрерывности соответствующего ему изгибного контура, затем проводят диагностику римановой кривизны решетки нанотонкого кристалла путем определения численного значения римановой кривизны решетки нанотонкого кристалла в данной точке М и данном двумерном направлении, задаваемом бивектором (а, b), по определенной формуле.

Изобретение относится к фармацевтически приемлемым суспензиям для лечения рака. Суспензии включают воду, усилитель обработки и золото-платиновые биметаллические нанокристаллы, которые имеют средний размер частиц менее чем 50 нм, присутствуют в суспензии в общей атомной концентрации металла, равной 2-1000 ч/млн, и имеют поверхности, обладающие по меньшей мере одной характеристикой, выбранной из: (1) нет органических химических составляющих, прилипших или прикрепленных к упомянутым поверхностям, и (2) являются по существу чистыми и не имеют химических составляющих, прилипших или прикрепленных к поверхностям, отличных от воды, продуктов лизиса воды или усилителя обработки, ни один из которых не изменяет функционирование нанокристаллов.

Изобретение относится к способу получения жидких углеводородов путем контактирования алифатического спирта с катализатором при температуре 300-400°С, объемной скорости подачи сырья 2,4-3,0 ч-1.

Изобретение относится к электролитическим способам нанесения покрытий на углеродный носитель из растворов металлов группы платины и может быть использовано для получения платиноуглеродных катализаторов, используемых в химических источниках тока, в частности в низкотемпературных топливных элементах.

Изобретение относится к области разработки способа получения фотокатализатора на основе диоксида титана, модифицированного частицами платины, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода при комнатной температуре.

Изобретение относится к способу создания медных покрытий с развитой поверхностью, в котором из раствора электролита методом электроосаждения на металлический носитель наносят медное покрытие.

Изобретение относится к нанотехнологии, может быть использовано в химической промышленности для создания эффективных катализаторов. Заключается в том, что на подложку наносят вспомогательный слой, в котором формируют ряды канавок нанометровой глубины с вертикальными стенками, наносят слой каталитического материала нанометровой толщины, поверх которого формируют маску из фоторезиста с рисунком узких полосок, расположенных поперек канавок, анизотропным травлением удаляют слой каталитического материала до вспомогательного слоя, оставляя его на боковых стенках канавок и под маской, маску удаляют.
Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ).

Изобретение относится к полученной в плазме каталитической наночастице. Данная наночастица имеет границу раздела фаз для закрепления каталитического наноактивного материала на наноподложке, причем указанная граница раздела фаз содержит соединение, предназначенное для ограничения перемещения каталитического наноактивного материала на поверхности наноподложки.

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 в импульсном потенциостатическом режиме при перенапряжении не выше 300 мВ с использованием платинового анода, притом что электроосаждение ведут на угольную подложку.

Изобретение относится к способу получения катализатора на основе платины для использования в электродах электрохимических устройств. Данный способ включает предварительную очистку носителя ионным травлением, нанесение промежуточного слоя и последующее магнетронное напыление из по меньшей мере одной мишени на основе платины в вакууме в плазме основного газа с добавкой реакционного газа.

Изобретение относится к способу приготовления титаноксидного катализатора, применяемого преимущественно для фотокаталитической очистки воды, загрязненной молекулярными примесями органического происхождения.
Изобретение относится к катализатору для превращения метанола в ароматические углеводороды, способу получения указанного катализатора и к способу превращения метанола в ароматические углеводороды.
Наверх