Способ получения и состав масла из семян дыни

Изобретение относится к пищевой промышленности. Масло из семян дыни, полученное обработкой семян дыни, собранных в сентябре, методом сверхкритической флюидной экстракции диоксидом углерода. При этом используют высушенные семена дыни сорта «Лада», измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Изобретение позволяет получить масло из семян дыни, включающее линолевую кислоту с более высоким выходом с одновременным извлечением 10 других жирных кислот. 2 н. и 1 з.п. ф-лы, 1 ил., 9 табл., 27 пр.

 

Изобретение относится к пищевой промышленности и касается способа получения масла из семян дыни, содержащего в качестве основного компонента линолевую кислоту с помощью сверхкритической флюидной экстракции.

Наиболее близким примером к заявляемому способу получения масла является способ получения тыквенного масла прессованием с предварительной влаготепловой обработкой измельченных семян при температуре 80-90°C и последующим фильтрованием масла [А.Н. Шиков, В.Г. Макаров, В.Е. Рыженков. Растительные масла и масляные экстракты: технология, стандартизация, свойства. М.: Русский врач. 2004, С. 120-121].

Недостатком этого метода является то, что он не позволяет получать масло с извлечением других жирных кислот (количество извлекаемых жирных кислот 6).

Известен способ получения экстракта из семян тыквы [патент РФ №2051596], включающий экстракцию семян тыквы растительным маслом в соотношении 1:2 на водяной бане в течение 1,5 ч с последующим центрифугированием и отделением целевого продукта.

Недостаток этого метода заключается в том, что он не позволяет получать чистое масло семян тыквы.

Известен способ получения масла из семян тыквы [патент РФ №2197977], включающий следующие этапы: стерилизация семян горячим воздухом при температуре 100-120°C в течение 2,5-3,5 минут с последующим понижением температуры растительного сырья до окружающей среды и механический отжим семян при 60°C.

Известен способ получения масла из семян тыквы [патент РФ №2170027], предусматривающий сортировку и сушку семян сначала при 20-22°C, а затем при 60-80°C и последующее прессование.

Известен способ получения масла из семян тыквы [патент РФ №2064485], заключающийся в сортировке семян, их сушке при 50-60°C в течение 15-20 минут и прессовании при 70°C, с последующей фильтрацией при 40°C.

Известен способ получения масла из семян тыквы [патент РФ №2018514], предусматривающий измельчение семян до муки грубого помола, термическую обработку при температуре не выше 60°C и прессование.

Известен способ получения масла из семян тыквы [патент РФ №2441664], предусматривающий сортировку сырья, измельчение, обработку семян паром в течение 2-5 минут и их холодное прессование.

Известен способ получения масла из семян тыквы [патент РФ №2445111], который сводится к следующим этапам: обеззараживание семян, очистка от шелухи и примесей, пропаривание семян и их прессование сначала при 70-75°C, затем при 20-25°C и фильтрация масла.

Недостаток этих методов заключаются в том, что термическая обработка семян на начальном этапе процесса может способствовать деструкции части ценных веществ, входящих в состав масла тыквы.

Известен способ получения масла из семян арбуза [патент РФ №2542758], основанный на измельчении биологического материала и последующей обработкой его сверхкритическим углекислым газом.

Однако перечисленные выше способы получения масел не могут являться аналогами, так как получены из других растений.

Нами было найдено, что измельчение высушенного при 30-35°C в течение 1,0-1,5 часов растительного сырья семян дыни сорта «Лада» (Cucumis meld) до размера частиц 1,0-2,0 мм, приводит к увеличению выхода масла, при проведении экстракции диоксидом углерода в течение 50 минут (таблица 2), при давлении 300 атмосфер (таблица 4), температуре 40°C (таблица 5) и скорости потока диоксида углерода 40 г/мин (таблица 6). При этом увеличивается одновременно извлечение других компонентов. При более длительной экстракции происходит уменьшение выхода ценных компонентов, в частности линолевой кислоты и других жирных кислот (таблица 3).

Уменьшение количества жирных кислот является недостатком способа получения масла из семян дыни в течение более длительной экстракции.

Задачей, решаемой предлагаемым изобретением, является получение масла из семян дыни, включающей линолевую кислоту, с более высоким выходом масла и одновременным извлечением кроме линолевой кислоты 10 других компонентов (чертеж). Поставленная задача решается с помощью масла из растительного сырья, представляющего семена дыни, включающего линолевую кислоту. Масло получено методом сверхкритической флюидной экстракцией диоксидом углерода высушенных при 30-35°C в течение 1,0-1,5 часов семян дыни сорта «Лада», измельченных до частиц размером 1,0-2,0 мм с последующей экстракцией в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин. Предпочтительно используют семена дыни, собранные в сентябре, так как выход масла из семян в этот период максимален (таблица 7). Измельчение сырья семян дыни до размера частиц 1,0-2,0 мм приводит к повышению выхода масла из семян дыни. Одновременно с линолевой кислотой извлекаются и другие ценные жирные кислоты, которые при других условиях экстракции не извлекаются в таком количестве. Измельчение сырья до размера частиц менее 1,0 мм (0,7 мм) привело к понижению выхода масла с 62,63% до 62,25% (таблица 2, пример 9). Сырье, измельченное до размера частиц 1,0-2,0 мм с последующей экстракцией в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин позволяет получать масло из семян дыни с более высоким содержанием и количеством активных компонентов, не нарушая их структуры. При более длительном времени экстракции, более 50 минут (таблица 3, пример 14), или более высоком давлении, более 300 атмосфер (таблица 4, пример 17), или более высокой температуре, более 40°C (таблица 5, пример 20), или при более высокой скорости потока диоксида углерода, более 40 г/мин (таблица 6, пример 24) могут происходить нежелательные процессы, что приводит к уменьшению выхода линолевой кислоты и ряда других жирных кислот (таблица 3, пример 14).

При измельчении сырья до частиц размером 10 мм не достигается высокий выход масла (таблица 2, выход масла составляет 15,5%). При степени измельченности сырья 0,7 мм уменьшается количество линолевой кислоты с 62,54% (таблица 2, пример 7) до 62,25% (таблица 2, пример 9).

Ниже показано содержание компонентов в полученном масле по заявляемому способу.

Отличием предлагаемого изобретения от ранее известных способов получения масел заключается в том, что в качестве сырья используют высушенные при 30-35°C в течение 1,0-1,5 часов семена дыни сорта «Лада», собранные в сентябре и измельченные до частиц размером 1,0-2,0 мм с последующей экстракцией диоксидом углерода в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин. Техническим результатом предлагаемого решения является получение масла из семян дыни, включающего линолевую кислоту, с более высоким выходом с одновременным извлечением 10 других жирных кислот (таблица 8). Соотношение ненасыщенных и насыщенных кислот масла из семян дыни приведено в таблице 9.

Способ получения масла из семян дыни заключается в следующем.

Высушенные при 30-35°C в течение 1,0-1,5 часов и измельченные до размера частиц 1,0-2,0 мм семена дыни сорта «Лада», собранные предпочтительно в сентябре, массой 65 г засыпают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR). Растительное сырье обрабатывают в среде сверхкритического диоксида углерода в течение 50 минут, давлении 300 атмосфер, при температуре 40°C и скорости потока диоксида углерода 40 г/мин с последующим отделением масла.

Химический состав полученных образцов масла из семян дыни исследовали методом хромато-масс-спектрометрии на приборе Agilent с библиотекой 40 тыс. химических соединений, количественное определение компонентов масла проводили методом газожидкостной хроматографии на хроматографе Shimadzu QP 2010 с масс-селективным детектором после превращения жирных кислот в соответствующие метиловые эфиры при обработке диазометаном. Эфирный раствор диазометана получали из N-нитрозо-N-метилмочевины по известной методике [Г. Беккер, Г. Домшке, Э. Фангхенель. Органикум: в 2 т. Т. 2. М.: 1979. С. 248]. Для идентификации использовали библиотеку масс-спектров NIST 02. Хроматографирование осуществляли на колонке MDN-1 (метилсиликон, твердосвязанный) 30 м, диаметр - 0,25 мм. Режим хроматографирования: инжектор - 180°C; детектор - 200°C; интерфейс - 210°C; газ-носитель - гелий 1 мл/мин. при делении потока 20:1; термостат 60°C - 1 мин, 2 град/мин - до 70°C, 5 град/мин - до 90°C, 10 град/мин - до 180°C, 20 град/мин - до 280°C, далее изотерма - 1 мин. Содержание компонентов масла из семян дыни приведено в масс. %.

Пример 1.

Точную навеску сырья (65 г) семян дыни высушенных при 30-35°C в течение 1,0-1,5 часов и измельченных до размера частиц 10 мм, помещают в сепаратор объемом 200 мл сверхкритического экстрактора марки SFE-500 M1 (фирма THAR) и проводят экстракцию в среде сверхкритического диоксида углерода в течение 20 минут, давлении 300 атмосфер, при температуре 40°C и скорости потока диоксида углерода 40 г/мин. Давление сбрасывают до атмосферного, а масло собирается в приемнике, оно представляет собой жидкость желтого цвета, показатель преломления изменялся в незначительных пределах и равен 1,4735-1,5015. Относительная плотность изменялась в пределах d420 0,9153-0,9420. Выход и состав основных компонентов масла приведены в таблице 1.

Пример 2.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 30 минут (выход и состав приведены в таблице 1).

Пример 3.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 40 минут (выход и состав приведены в таблице 1).

Пример 4.

Аналогичен примеру 1, только экстракцию масла в сверхкритическом экстракторе проводят в течение 50 минут (выход и состав приведены в таблице 1).

Пример 5.

Сырье (семена дыни), измельченных до частиц размером 10 мм. Экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 6.

Точную навеску сырья (65 г) семян дыни, измельченных до частиц размером 7 мм, помещают в сверхкритический экстрактор. Экстракцию проводят 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 2).

Пример 7.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 2 мм (выход и состав приведены в таблице 2).

Пример 8.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 1 мм (выход и состав приведены в таблице 2).

Пример 9.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 0,7 мм (выход и состав приведены в таблице 2).

Пример 10.

Аналогичен примеру 5, только навеску сырья (65 г) семян дыни измельчают до частиц размером 1 мм. Экстракцию масла в сверхкритическом экстракторе проводили 20 минут (выход и состав приведены в таблице 3).

Пример 11.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 30 минут (выход и состав приведены в таблице 3).

Пример 12.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 40 минут (выход и состав приведены в таблице 3).

Пример 13.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 50 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 14.

Аналогичен примеру 10, только экстракцию масла в сверхкритическом экстракторе проводили 60 минут при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 3).

Пример 15.

Аналогичен примеру 13, только экстракцию проводили при давлении 200 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 16.

Аналогичен примеру 13, только экстракцию проводили при давлении 300 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 17.

Аналогичен примеру 13, только экстракцию проводили при давлении 400 атмосфер при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 4).

Пример 18.

Аналогичен примеру 13, только экстракцию проводили при температуре 32°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 19.

Аналогичен примеру 18, только экстракцию проводили при температуре 40°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 20.

Аналогичен примеру 18, только экстракцию проводили при температуре 45°C при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 5).

Пример 21.

Аналогичен примеру 19, только экстракцию проводили при скорости потока диоксида углерода 20 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 22.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 30 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 23.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 40 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 24.

Аналогичен примеру 21, только экстракцию проводили при скорости потока диоксида углерода 50 г/мин при соблюдении технологических параметров работы экстрактора, указанных в примере 1 (выход и состав приведены в таблице 6).

Пример 25.

Аналогичен примеру 13, только сбор сырья семян дыни производили в августе месяце (выход масла приведен в таблице 7).

Пример 26.

Аналогичен примеру 13, только сбор сырья семян дыни производили в сентябре месяце (выход масла приведен в таблице 7).

Пример 27.

Аналогичен примеру 13, только сбор сырья семян дыни производили в октябре месяце (выход масла приведен в таблице 7).

Таким образом, в процессе поиска оптимальной степени измельченности сырья из семян дыни сорта «Лада», собранных преимущественно в сентябре, содержащей линолевую кислоту, установлено, что оптимальным для достижения поставленной задачи является использование частиц размером 1,0-2,0 мм с последующей экстракцией диоксидом углерода в течение 50 минут, при давлении 300 атмосфер, температуре 40°C и скорости потока углекислого газа 40 г/мин, так как при данных технологических условиях более высокий выход масла сочетается с более высоким содержанием линолевой кислоты и других жирных кислот (таблица 2).

Приложения.

Таблица 1
Выход масла из сырья семян дыни, измельченного до размера частиц 10 мм и содержания в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
1 20 15,4 58,3 16,8 7,7
2 30 16,5 60,1 17,5 8,2
3 40 17,1 60,7 18,1 8,6
4 50 17,5 61.2 18,8 9,1

Таблица 2
Выход масла из сырья семян дыни и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от степени измельченности (продолжительности экстракции 50 минут)
№ примера Степень измельченности, мм Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
5 10 15,5 61,35 18,06 8,93
6 7 16,7 61,76 18,58 9,12
7 2 18,2 62,54 19,21 9,83
8 1 18,3 62,63 19,34 9,91
9 0,7 17,1 62,25 19,03 9,87

Таблица 3
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от продолжительности экстракции
№ примера Продолжительность экстракции, минут Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
10 20 15,7 59,78 16,76 8,11
11 30 16,9 61,46 17,25 8,74
12 40 17,2 62,15 18,54 9,35
13 50 18,3 62,63 19,34 9,91
14 60 17,5 62,34 19,02 9,15

Таблица 4
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от величины давления
№ примера Величина давления, атмосфер Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
15 200 16,5 58,03 18,65 8,86
16 300 18,3 62,63 19,34 9,91
17 400 17,2 61,14 18,67 9,05

Таблица 5
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от температуры
№ примера Температура, °С Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
18 32 16,9 60,85 18,16 8,72
19 40 18,3 62,63 19,34 9,91
20 45 17,8 61,09 18,92 9,35

Таблица 6
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут и содержание в нем линолевой кислоты, олеиновой кислоты и пальмитиновой кислоты в зависимости от скорости потока диоксида углерода
№ примера Скорость потока диоксида углерода, г/минута Выход масла (в % от сухого сырья) Количество основных компонентов масла (масс. % от цельного масла)
линолевая кислота олеиновая кислота пальмитиновая кислота
21 20 15,2 58,28 17,06 8,65
22 30 17,6 61,35 18,54 9,27
23 40 18,3 62,63 19,34 9,91
24 50 17,8 61,23 19,02 9,54

Таблица 7
Выход масла из сырья семян дыни, измельченного до размера частиц 1 мм, времени экстракции 50 минут в зависимости от времени сбора
№ примера Месяц Выход масла (в % от сухого сырья)
25 август 15,6
26 сентябрь 18,3
27 октябрь 17,2

Таблица 8
Количественный состав масла из семян дыни по данным газовой хроматографии
№ пика Время выхода, мин Содержание, % Идентифицированное соединение
1 4,48 0,11 Додекановая кислота
2 5,54 0,06 Тетрадекановая кислота
3 6,48 0,03 Пентадекановая кислота
4 7,24 0,16 Пальмитоолеиновая кислота
5 7,42 9,91 Пальмитиновая кислота
6 8,48 0,09 Маргариновая кислота
7 9,32 62,63 Линолевая кислота
8 9,54 19,34 Олеиновая кислота
9 9,57 0,92 6-Октадеценовая кислота
10 10,18 5,74 Стеариновая кислота
11 12,27 1,01 7,10,13-Эйкозатриеновая кислота

Таблица 9
Соотношение ненасыщенных и насыщенных кислот масла семян дыни
Ненасыщенные кислоты Насыщенные кислоты
Пальмитолеиновая кислота Додекановая кислота
Линолевая кислота Тетрадекановая кислота
Олеиновая кислота Пентадекановая кислота
6-Октадеценовая кислота Пальмитиновая кислота
7,10,13-Эйкозатриеновая кислота Маргариновая кислота
Стеариновая кислота
5,27 1

1. Масло из семян дыни, полученное обработкой семян дыни, собранных в сентябре, методом сверхкритической флюидной экстракции диоксидом углерода, при этом используют высушенные при 30-35°C в течение 1,0-1,5 часов семена дыни сорта «Лада», измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин.

2. Масло по п. 1, включающее в качестве основного компонента линолевую кислоту в количестве 62,63 мас.% и дополнительно олеиновую кислоту 19,34 мас.%, пальмитиновую кислоту 9,91 мас.%.

3. Способ получения масла из семян дыни по п. 1, характеризующийся тем, что семена дыни, собранные в сентябре и высушенные при 30-35°C в течение 1,0-1,5 часов, измельчают до частиц размером 1,0-2,0 мм и проводят сверхкритическую флюидную экстракцию в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 г/мин с последующим отделением масла.



 

Похожие патенты:

Изобретение относится к масложировой промышленности. Ускоритель кристаллизации, содержащий полимерную смесь, которая в качестве компонентов включает в себя насыщенную жирную гидроксикислоту С18-28, соответственно имеющую гидроксильную и карбоксильную группы на обоих концах, и которая может иметь одну карбонильную группу в своей цепи, глицерин и дополнительную жирную кислоту, причем данная полимерная смесь полимеризуется эфирной связью посредством компонентов до молекулярного веса от 3000 до 100000.

Изобретение относится к области детского питания. Композиция содержит, по меньшей мере, один триглицерид, по меньшей мере, один фосфолипид и, по меньшей мере, одну полиненасыщенную жирную кислоту (LC-PUFA).

Изобретение относится к производству продуктов диетического профилактического питания и касается функциональной триглицеридной композиции для производства пищевых продуктов.

Изобретение относится к пищевой промышленности, а именно к масложировой промышленности. Специализированный липидный модуль представляет собой композицию на основе источников полиненасыщенных жирных кислот, содержащую докозагексаеновую кислоту при определенном соотношении омега-3 и омега-6 жирных кислот и комплекс биологически активных веществ, включающий каротиноиды и смесь токоферолов.

Изобретение относится к масложировой промышленности. Способ производства кукурузного масла предусматривает извлечение масла из кукурузных зародышей прессованием на прессах под давлением.

Изобретение относится к масложировой промышленности. Способ получения масла семян Gossipium hirsutum (хлопчатник, сорт «AC-4») методом сверхкритической флюидной углекислотной экстракции, при этом в качестве исходного сырья используют высушенные и измельченные семена хлопчатника, которые экстрагируют в сверхкритическом флюидном экстракторе диоксидом углерода (поток флюида 40 г/мин) при температуре 40-45 оС, давлении 300-350 атм и времени 60-70 мин.

Изобретение относится к пищевой промышленности. Предложена водная дисперсия микрокапсул, включающих по крайней мере одно гидрофобное вещество и белковую поверхность раздела, окружающую по крайней мере одно гидрофобное вещество.

Изобретение относится к композициям заменителей жира женского молока и может быть использовано при создании заменителей грудного молока для детей. Продукт включает растительные масла, такие как: кокосовое, соевое, высокоолеиновое подсолнечное масло и концентраты омега-3 и омега-6 полиненасыщенных жирных кислот (ПНЖК), а также обезвоженный молочный жир при следующем соотношении компонентов, мас.
Изобретение относится к масложировой промышленности и касается масла для жарки, предназначенного для обжаривания продуктов в неглубоком слое масла и во фритюре. Композиция для жарки, включающая рафинированное дезодорированное масло или смесь масел и стабилизирующую добавку.

Изобретение относится к масложировой промышленности и может быть использовано в качестве пищевого продукта, биологически активной добавки, фармакологической композиции. Масляный экстракт на основе обогащенных неорганической формой йода - йодид калия пророщенных семян нута в тыквенном масле из семян тыквы в соотношении нут:масло 1:1.

Группа изобретений относится к композициям для грудных детей. Предложены: композиция, содержащая по меньшей мере одну длинноцепочечную полиненасыщенную жирную кислоту (LC-PUFA), по меньшей мере один пробиотик и смесь олигосахаридов, включающую по меньшей мере один N-ацетилированный олигосахарид, по меньшей мере один сиалированный олигосахарид и по меньшей мере один нейтральный олигосахарид, для стимуляции ангиогенеза в кишечнике и всасывания питательных веществ, переносимости энтерального питания грудных детей или подрастающих младенцев; её применение в качестве синтетического питательного агента по тому же назначению; композиция того же состава, применяемая при профилактике и/или лечении воспалительного поражения кишечника, представляющего собой некротизирующий энтероколит, и/или при выздоровлении после повреждения и/или хирургического вмешательства в области кишечника грудных детей или подрастающих младенцев, и её применение в качестве синтетического питательного агента по тому же назначению. Технический результат состоит в стимуляции ангиогенеза в кишечнике, что позволяет снизить риск некротизирующего энтероколита и способствует выздоровлению после повреждения и/или хирургического вмешательства в кишечнике грудных детей или подрастающих младенцев. 4 н. и 22 з.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к масложировой промышленности. Способ обогащения растительного масла фукоксантином предусматривает использование спиртовой вытяжки, полученной из сырой биомассы С. closterium с высоким содержанием фукоксантина (15-17 мг⋅г-1 сухой массы). Спиртовую вытяжку, насыщенную фукоксантином, предварительно полученную из сырой биомассы С. closterium, смешивают с маслом в соотношении компонентов спиртовая вытяжка : масло 1:5, затем выдерживают смесь в течение 60 мин с последующим отделением масла от нерастворившейся спиртовой фракции. Изобретение позволяет получить растительное масло, обогащенное фукоксантином, которое можно использовать как в чистом виде, так и при производстве пищевых продуктов. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.
Изобретение относится к масложировой промышленности. Ароматизированное масло растительное – смесь (варианты) содержит смесь пищевых растительных масел с пряно-масляным экстрактом на подсолнечном масле, причем масло растительное – смесь представлено смесью растительных масел, таких как масло подсолнечное рафинированное дезодорированное, масло облепиховое пищевое нерафинированное или масло тыквенное пищевое нерафинированное, масло льняное пищевое нерафинированное, а пряно-масляный экстракт представлен смесью пряностей - кориандр, перец черный и пряных овощей - сельдерей, чеснок при следующем соотношении компонентов, мас.%: масло подсолнечное рафинированное дезодорированное - 50, масло облепиховое пищевое нерафинированное или масло тыквенное пищевое нерафинированное - 25, масло льняное пищевое нерафинированное - 10, масляный экстракт пряностей и пряных овощей на подсолнечном масле - 15. Изобретение позволяет создать композицию ароматизированного масла растительного - смеси с повышенным содержанием β-каротина (провитамина А), а также антиоксидантов группы флавонолов и минеральных веществ. 2 н.п. ф-лы, 2 пр.

Изобретение относится к композиции масла или жира для жарки во фритюре, включающей (I) фракционированное масло или жир на основе пальмового масла, в котором содержание трипальмитина относительно содержания триглицерида составляет 70-90% по массе, содержание ненасыщенных жирных кислот по отношению к общему содержанию всех жирных кислот составляет 1-8% по массе и содержание трипальмитина относительно содержания тринасыщенного триглицерида жирных кислот составляет 84-95% по массе, и (II) базовое масло с температурой плавления ниже 10°C, причем содержание компонента (I) по отношению к общей массе композиции масла или жира составляет 0,05-15% по массе, и содержание компонента (II) по отношению к общей массе композиции масла или жира составляет 85-99,95% по массе. Заявлена принципиально новая композиция масла или жира, обладающая тепловой стойкостью. 4 н. и 6 з.п. ф-лы, 7 ил., 5 табл., 14 пр.

Изобретение относится к пищевой промышленности. Предложен способ получения компонента, замедляющего поседение, для шоколада и шоколадоподобных продуктов, включающий стадию дезодорирования композиции триглицеридов. Причем композиция триглицеридов содержит, по меньшей мере, 40% по весу мононенасыщенных симметричных триглицеридов, выбранных из группы, состоящей из POP, StOSt и POSt, где Р соответствует пальмитилу, St соответствует стеарилу и О соответствует олеилу. Указанная композиция триглицеридов содержит масло какао. Дезодорирование проводят по меньшей мере 60 минут при температуре по меньшей мере 235°С. Способ обеспечивает значительный эффект замедления процесса поседения шоколада. 5 н. и 8 з.п. ф-лы, 1 ил., 15 табл., 5 пр.
Изобретение относится к пищевой промышленности и может быть использовано для непосредственного употребления в пищу в качестве продукта функциональной направленности, а также при производстве пищевых эмульсионных масложировых продуктов. Пищевой продукт содержит кедровое масло, подсолнечное масло, облепиховое масло и растительные фосфолипиды (лецитин) при следующих соотношениях компонентов, мас.%: масло кедровое – 40-68, масло подсолнечное – 30-47, масло облепиховое – 1-10, растительный фосфолипид – лецитин – 1-3. Изобретение позволяет получить пищевой продукт, подходящий для непосредственного употребления в пищу с целью обогащения рациона питания незаменимыми пищевыми веществами - Омега-6 (ω-6) и Омега-3 (ω-3) жирными кислотами, токоферолами, β-каротином и фосфолипидами, а также увеличить антиоксидантную устойчивость..

Изобретение относится к пищевой промышленности. Масло из семян дыни, полученное обработкой семян дыни, собранных в сентябре, методом сверхкритической флюидной экстракции диоксидом углерода. При этом используют высушенные семена дыни сорта «Лада», измельченные до частиц размером 1,0-2,0 мм, а экстракцию проводят в течение 50 минут при давлении 300 атмосфер, температуре 40°C и скорости потока диоксида углерода 40 гмин. Изобретение позволяет получить масло из семян дыни, включающее линолевую кислоту с более высоким выходом с одновременным извлечением 10 других жирных кислот. 2 н. и 1 з.п. ф-лы, 1 ил., 9 табл., 27 пр.

Наверх