Способ осуществления тлеющего разряда и устройство для его реализации



Способ осуществления тлеющего разряда и устройство для его реализации
Способ осуществления тлеющего разряда и устройство для его реализации
Способ осуществления тлеющего разряда и устройство для его реализации
Способ осуществления тлеющего разряда и устройство для его реализации
H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2621283:

федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" (ФГАОУВПО КФУ) (RU)

Изобретения относятся к способам и устройствам для осуществления тлеющего разряда и могут найти применение при обработке поверхности и нанесении покрытий на поверхности различных изделий в вакууме, в машиностроении для поверхностной термообработки, напыления и упрочнения, а также для получения излучения, например для накачки лазеров. Технический результат - обеспечение горения тлеющего разряда при давлении от 10 Торр и ниже. В способе осуществления тлеющего разряда, включающем зажигание тлеющего разряда между анодом и катодом в газоразрядной камере с поперечным к направлению электрического поля потоком рабочего газа, при зажигании тлеющего разряда устанавливают давление в газоразрядной камере от P=10 Торр и ниже, создают разные концентрации частиц газа в различных областях межэлектродного пространства, за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с. Устройство для осуществления тлеющего разряда содержит откачную вакуумную систему, подключенную к газоразрядной камере с размещенными в ней анодом, катодом, патрубками для подачи и откачки рабочего газа, устройством для формирования потока рабочего газа. Устройство содержит конфузор, а устройство для формирования потока рабочего газа выполнено как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода, также имеется патрубок для откачки остаточного газа из газоразрядной камеры. 2 н.п. ф-лы, 3 ил.

 

Изобретения относятся к способам и устройствам для осуществления тлеющего разряда. Осуществление тлеющего разряда может найти применение при обработке поверхности и нанесении покрытий на поверхности различных изделий в вакууме, а также может найти применение в машиностроении для поверхностной термообработки, напыления и упрочнения. Также для получения излучения, например для накачки лазеров.

Известен способ получения тлеющего разряда [1], заключающийся в пропускании постоянного тока через газ при давлении 0,1-10 Торр. Для того чтобы газовый промежуток между электродами пропускал постоянный ток, в газе должно поддерживаться ионизованное состояние, которое создается электрическим полем, существующим между катодом и анодом. Плазма такого разряда неоднородна и состоит из катодной области, положительного столба и прианодной области. Плазма положительного столба тлеющего разряда в газах и парах металлов при давлениях 0,1-70 Торр используется для создания лазеров, излучающих в различных диапазонах длин волн.

Недостаток [1] в том, что при давлениях порядка 10-2 Торр существование тлеющего разряда затрудняется, а при 10-3 Торр вовсе становится невозможным.

Известно устройство получения тлеющего разряда [2]. В диодной и магнетронной системах мишень (М) одновременно служит катодом (К) разряда, генерирующего атомы распыляемого вещества. Анодом (А) служит либо подложкодержатель, либо стенки газоразрядной камеры. Разряд с напряжением 0,5 кВ и выше и может поддерживаться при низком давлении. Этому требованию соответствует аномальный тлеющий разряд с питанием напряжением постоянного тока или высокой частоты в системе без магнитного поля и магнетронный разряд, где Маг - магнит, Пл - плазма.

Недостаток [2] в том, что при давлениях порядка 10 Торр и ниже существование тлеющего разряда затрудняется, а при 10-3 Торр вовсе становится невозможным.

Для горения магнетронного разряда необходим магнетрон, являющийся сложным и дорогостоящим оборудованием, состоящим из мишени, корпуса, системы магнитов и канала водяного охлаждения. Также наличие водяного охлаждения приводит к периодическому образованию течи в газоразрядной камере, что снижает эффективность оборудования. Также на магнетроне периодически возникают пробои в виде дуг и микропробоев, нарушающие работу тлеющего разряда [3].

Наиболее близким к заявленному техническому решению, прототипом, являются способ и устройство осуществления тлеющего разряда в потоке газа [4]. Способ осуществления тлеющего разряда реализуется в газоразрядных камерах как при поперечном, так и при продольном, относительно среднего электрического тока, направлении потока газа. Скорость потока газа составляет V=10-300 м/с, его температура T=100-700 К, полное давление газовой смеси находится в пределах P=10-760 Торр. Для увеличения объемной однородности разряда применяется секционирование электродов (как правило, катодов) и снабжение их индивидуальными балластными сопротивлениями. Средняя плотность тока в объеме разряда j~3÷30 мА/см2, плотность тока на поверхности катода j~0,1÷10 А/см2 соответствует нормальной плотности тока тлеющего разряда.

Устройство для осуществления тлеющего разряда содержит анод и катод, представленный в виде катодных элементов подключенных через балластные сопротивления Rб, устройство Ф для формирования потока, патрубки для подачи потока газа и откачки, направленные в поперечном к оси анода и катода направлении, размещенные в газоразрядной камере. Также к газоразрядной камере подключена откачная вакуумная система для поддержания полного давления газовой смеси P=10-760 Торр. Межэлектродное расстояние обычно составляет в поперечном разряде h=1-10 см, в продольном h=5-100 см. За счет секционирования электродов размер зоны поперечного разряда вдоль потока может достигать L=100 см и более.

Недостатком [4] является невозможность обеспечения горения разряда при низких давлениях (от 10 Торр и ниже).

Технический результат в предлагаемых способе осуществления тлеющего разряда и устройстве для его реализации заключается в обеспечении горения тлеющего разряда при давлении от 10 Торр и ниже.

Технический результат в способе осуществления тлеющего разряда, включающем зажигание тлеющего разряда между анодом и катодом в газоразрядной камере с поперечным к направлению электрического поля потоком рабочего газа, достигается тем, что при зажигании тлеющего разряда устанавливают давление в газоразрядной камере от P=10 Торр и ниже, создают разные концентрации частиц газа в различных областях межэлектродного пространства, за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с.

Технический результат в устройстве осуществления тлеющего разряда, содержащем откачную вакуумную систему, подключенную к газоразрядной камере, с размещенными в ней анодом, катодом, патрубками для подачи и откачки рабочего газа, устройством для формирования потока рабочего газа, достигается тем, что содержит конфузор, а устройство для формирования потока рабочего газа выполнено как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода, также имеется патрубок для откачки остаточного газа из газоразрядной камеры.

На фиг. 1 изображено устройство осуществления тлеющего разряда.

На фиг. 2 изображено устройство осуществления тлеющего разряда в работе, где схематично показаны тлеющий разряд при поперечном потоке газа.

На фиг. 3 схематично изображено взаимное расположение анода и катода с диффузором и конфузором.

Устройство для осуществления тлеющего разряда (фиг. 1, фиг. 2, фиг. 3) содержит газоразрядную камеру 1 с патрубками подачи 2 рабочего газа и откачки 3 рабочего газа и газа из газоразрядной камеры 1 с размещенными в ней электродами - анодом 4 и катодом 5, источник питания постоянного тока 6, подключенный к аноду 4 и катоду 5, газоразрядная камера 1 имеет диффузор 7, выполненный в виде сверхзвукового сопла, и конфузор 8, причем диффузор 7 и конфузор 8 установлены в газоразрядной камере 1 соосно против друг друга.

Электроды - анод 4 и катод 5 размещены в газоразрядной камере 1 на расстоянии L=10÷400 мм друг от друга и более. Газоразрядная камера 1 выполнена любой формы, необходимой для реализации технологического процесса.

Патрубок подачи 2 рабочего газа соединен с диффузором 7, например, шлангом в газоразрядной камере 1. Патрубок подачи 2 рабочего газа соединен, например, шлангом вне газоразрядной камеры 1, через систему регулирования подачи и контроля расхода газа 9 с источником рабочего газа 10, например баллоном с газом.

Патрубки откачки 3 рабочего газа и газа из газоразрядной камеры 1 соединены с диффузором 8, например, шлангом в газоразрядной камере 1.

Патрубки откачки 3 рабочего газа и газа из газоразрядной камеры 1 соединены через каналы 11 с насосной системой 12, каналы 11 могут быть выполнены, например, в виде системы труб.

Системой изменения положения 13 изменяется положение диффузора 7 и конфузора 8 относительно межэлектродного пространства анода 4 и катода 5. Система изменения положения 13 может представлять собой конструкцию с закрепленными к рейке диффузором 7 и конфузором 8, а рейка, расположенная параллельно оси анода 4 и катода 5, перемещается за счет зубчатой передачи с шаговым двигателем.

Рассмотрим предлагаемый способ осуществления тлеющего разряда с помощью устройства, изображенного на фиг. 1-3.

Насосной системой 12 в газоразрядной камере 1 достигается давление от P=10 Торр и ниже. Включают источник питания постоянного тока 6 анода 4 и катода 5 в газоразрядной камере 1, для зажигания тлеющего разряда 14.

В межэлектродный зазор через диффузор 7 подают сверхзвуковой поток рабочего газа 15, например аргона.

При подаче сверхзвукового потока рабочего газа 15 концентрация пролетающих нейтральных частиц в межэлектродном пространстве увеличивается и тлеющий разряд 14 зажигается.

Рабочий газ в диффузор 7 подается из патрубка 2 через систему регулирования подачи и контроля расхода газа 9 и источник рабочего газа 10. Системой регулирования подачи и контроля расхода газа 9 можно обеспечить необходимый расход и скорость сверхзвукового потока рабочего газа 15 после диффузора 7.

Диффузор 7 и конфузор 8 расположены таким образом, чтобы сверхзвуковой поток рабочего газа 15 из диффузора 7 полностью попадал в конфузор 8. Расстояние между диффузором 7 и конфузором 8 ограничено размерами камеры 1. Сверхзвуковой поток рабочего газа 15 из конфузора 8 и газы из камеры 1 откачиваются через каналы 11 насосной системой 12.

Технологический процесс осуществляют при следующих параметрах тлеющего разряда: плотность тока разряда j=100÷500000 мА/м2; расстояние между электродами L=10÷400 мм, где j - плотность тока, мА/м2, L - расстояние между электродами, мм, P - давление в камере 1. Например, при давлении P=0,5 Торр, при j=500 мА/м2, L=50 мм. Через диффузор 7 в межэлектродный зазор подается поток рабочего газа 15, например аргон при сверхзвуковой скорости, например V=400 м/с.

Системой изменения положения 13 изменяется положение сверхзвукового потока рабочего газа 15 относительно межэлектродного пространства и регулируется заданное расстояние относительно анода 4 La и катода 5 Lк (Фиг. 3). La и Lк могут принимать любое положительное значение, удовлетворяющее условию:

La+Lк=L,

Изменяя расход, скорость и состав потока рабочего газа 15, можно изменять вольтамперную характеристику тлеющего разряда. Также появляется возможность управления распределением внутренних характеристик тлеющего разряда 14.

Пройдя через ось анода 4 и катода 5, сверхзвуковой поток рабочего газа 15 попадает в конфузор 8, где происходит восстановление потока, и далее поток уходит через каналы 11 в насосную систему 12.

В прикатодной области тлеющего разряда 14 в газоразрядной камере 1 осуществляются основные процессы, обеспечивающие существование самостоятельного разряда. Под действием сильного электрического поля электроны ускоряются и, пройдя астоново пространство, приобретают энергию, достаточную для интенсивного возбуждения атомов. Здесь ионизация атомов пренебрежимо мала, так как энергия электронов значительно меньше потенциала ионизации (в среднем 10-15 эВ) частиц. Проходя область первого катодного свечения, электроны ускоряются до энергии, достаточной для ионизации атомов газа. Анодная область газоразрядной камеры 1 характеризуется анодным падением напряжения, плотностью тока на электроде и определенной протяженностью.

Одним из необходимых условий существования тлеющего разряда является наличие всех приэлектродных зон. Известно, что с уменьшением давления длина прикатодных зон увеличивается, так как эти зоны, главным образом, определяются количеством ионизирующих столкновений электронов с нейтральными частицами. Если в первом приближении принять разряд холодным, то можно найти критическое давление, при котором еще возможен классический тлеющий разряд. При длине разрядного промежутка порядка 10 см и числа свободных пробегов порядка 10 получаем критическое значение длины свободного пробега λ=1 см. Такое значение λ соответствует давлению

Таким образом, при давлениях порядка 10-2 Торр существование тлеющего разряда затрудняется, а при 10-3 Торр вовсе становится невозможным.

Достижение технического результата возможно только при создании разных концентраций нейтральных атомов в разных областях межэлектродного пространства, при котором в прикатодной области концентрация частиц газа должна быть как в случае с магнетронным устройством [5], а в других зонах тлеющего разряда концентрация частиц газа должна быть достаточной для того, чтобы электрон испытал десятки столкновений.

Такие требования можно удовлетворить в том случае, если в межэлектродном пространстве создать сверхзвуковую, со скоростью выше 300 м/с, прокачку газа в направлении, перпендикулярном электрическому полю, а в остальной области межэлектродного пространства обеспечить давление от P=10 Торр и ниже.

Если принять, что длина катодных частей порядка 10λ, то все межэлектродное пространство состоит из прикатодных областей, необходимых для поддержания разряда. Этот разряд относится к нормальному тлеющему разряду с горизонтальной вольтамперной характеристикой.

При регулировке системой изменения положения 13 расположение диффузора 7 и конфузора 8 относительно межэлектродного пространства анода 4 и катода 5 также изменяются размеры приэлектродных зон. Приближая ось диффузора 7 и конфузора 8 к катоду 5, размеры прикатодных зон уменьшаются, а положительного столба тлеющего разряда 14 увеличиваются. Также изменяются распределение внутренних характеристик тлеющего разряда, таких как распределение потенциала, приведенная напряженность электрического поля E/N (E - напряженность электрического поля, N - концентрация частиц), распределение концентраций электронов и ионов, температура газа.

Технический результат в предлагаемых способе осуществления тлеющего разряда и устройстве для его реализации заключается в обеспечении горения тлеющего разряда при давлении от 10 Торр и ниже.

При осуществлении тлеющего разряда при давления 10-3 Торр и ниже возможно распыление мишени или термообработка катода при сверхчистой атмосфере, что позволит получать новые, особо чистые материалы, соединения материалов и покрытия с новыми свойствами.

Дополнительным преимуществом по сравнению с прототипом является возможность управления распределением внутренних характеристик тлеющего разряда, таких как распределение потенциала, приведенная напряженность электрического поля E/N (E - напряженность электрического поля, N - концентрация частиц), распределение концентраций электронов и ионов, температура газа.

Использованные источники

1. Райзер Ю.П. Физика газового разряда: Учеб руководство: М., «Наука». Гл. ред. физ.-мат. лит, 1992, с. 252.

2. Кузьмичев А.И. Магнетронные распылительные системы. Кн 1. Введение в физику и технику магнетронного распыления. - К.: Аверс, 2008. с. 22.

3. Берлин Е.В., Сейдман Л.А. Ионно-плазменные процессы в тонкопленочной технологии. Москва: Техносфера, 2010. с. 14.

4. Е.П. Велихов и др. Тлеющий разряд в потоке газа. Успехи физических наук. Том 137. Вып. 1. Май 1982 с. 118.

5. Кузьмичев А.И. Магнетронные распылительные системы. Кн 1. Введение в физику и технику магнетронного распыления. - К.: Аверс, 2008. с. 22.

1. Способ осуществления тлеющего разряда, включающий зажигание тлеющего разряда между анодом и катодом в газоразрядной камере с поперечным к направлению электрического поля потоком рабочего газа, отличающийся тем, что при зажигании тлеющего разряда устанавливают давление в газоразрядной камере от Р=10 Торр и ниже, создают разные концентрации частиц газа в различных областях межэлектродного пространства, за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с.

2. Устройство для осуществления тлеющего разряда, содержащее откачную вакуумную систему, подключенную к газоразрядной камере, с размещенными в ней анодом, катодом, патрубками для подачи и откачки рабочего газа, устройством для формирования потока рабочего газа, отличающееся тем, что содержит конфузор, а устройство для формирования потока рабочего газа выполнено как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода, также имеется патрубок для откачки остаточного газа из газоразрядной камеры.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в малогабаритных приборах ЯМР- и ЭПР-спектроскопии высокого спектрального разрешения. Технический результат состоит в повышении степени однородности магнитного поля в рабочей области системы и увеличении его напряженности.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, расстояние от катода до анода выбирается таким, при котором разряд без проволочки самопроизвольно не возникает, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки.

Изобретение относится к плазменной технике и может быть использовано в газоразрядных устройствах с самонакаливаемым полым катодом. Способ изготовления самонакаливаемого полого катода из нитрида титана для систем генерации плазмы включает формирование трубчатого изделия из смеси порошков, содержащей нитрид титана, 10 вес.% титана, не более 2 вес.% пластификатора поливинилбутираля, импульсным или статическим прессованием, экструзией, шликерным литьем или альтернативным способом, отжиг трубчатого изделия в вакуумной печи в потоке азота при давлении 1 Па при температуре 500°С в течение 1 ч для термического разложения пластификатора и удаления продуктов разложения из объема трубчатого изделия, установку трубчатого изделия в качестве катодного электрода в электроразрядную систему, содержащую анодный электрод, постоянную прокачку азота через трубчатое изделие, приложение между анодом и трубчатым изделием напряжения и зажигание тлеющего разряда между трубчатым изделием и анодом, ток которого постепенно увеличивают по мере прекращения дугообразования, что обеспечивает удаление поверхностных загрязнений и рост температуры трубчатого изделия, переход разряда в термоэмиссионный дуговой режим и нагрев катода до температуры 2000°С.

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки.

Изобретение относится к плазменной технике, в частности к источникам получения и управления потоком плазмы атмосферного давления. Источник образован цилиндрической трубкой из диэлектрического материала, с входной частью - трактом для поступления газа и выходной частью - соплом для вывода плазмы.

Изобретение относится к области плазменной техники. Система (1) водяного охлаждения для плазменной пушки (2), способ охлаждения плазменной пушки (2) и способ увеличения срока службы плазменной пушки (2).

Изобретение относится к плазменным технологиям, в частности к способам измерения поглощенной мощности в СВЧ-разрядах. При реализации предложенного способа измерения мощности, поглощаемой единицей объема СВЧ-разряда, получают СВЧ-разряд в водородсодержащем газе, фотографируют плазму СВЧ-разряда через светофильтр, выделяющий линию серии Бальмера, по интенсивности оптического излучения определяют границу плазмы разряда, вычисляют занимаемый плазмой объем, а также поглощаемую плазмой полную мощность.

Изобретение относится к электрореактивным двигателям прямоточного типа (ПЭРД), в которых в качестве рабочего вещества используется газообразная окружающая среда. ПЭРД предназначен для управления движением низкоорбитального космического аппарата.

Изобретение относится к области плазменной техники. Предложен электродуговой плазмотрон.

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая размещается между электродами, расстояние от катода до анода выбирается таким, при котором разряд без проволочки самопроизвольно не возникает, а между электродами создаются условия для лавинного пробоя разрядного промежутка, возникающего при наличии в воздухе паров испаряющейся проволочки.

Изобретение относится к электроду для плазменных горелок для плазменной резки и применению электрода для указанной плазменной горелки. Электрод для плазменных резаков, выполненный в соответствии с изобретением, содержит держатель электрода и эмиссионную вставку, которые соединены друг с другом запрессовкой и/или подгонкой по форме. Эмиссионная вставка вдоль своей продольной оси имеет по меньшей мере одну секцию, которая расположена между двумя другими секциями или рядом с другой секцией и имеет уменьшенный наружный диаметр при вращательно-симметричной конструкции эмиссионной вставки, или имеет уменьшенную поверхность поперечного сечения при вращательно несимметричной эмиссионной вставке по отношению к другой(им) секции(ям). Секция (7.22), имеющая постоянный наружный диаметр или постоянную поверхность поперечного сечения, расположена между указанной секцией (7.23) с уменьшенным наружным диаметром или уменьшенной поверхностью поперечного сечения и конически сужающейся секцией. Технический результат - повышение срока службы и качества резки. 2 н. и 9 з.п. ф-лы, 22 ил.

Изобретение относится к области генерирования химически активных частиц физическими методами воздействия и может быть использовано в биомедицинских исследованиях. Основу изобретения составляет искровой электрический разряд на воздухе, создающий плазму, излучение которой создает в обрабатываемой жидкости химический эффект. Технический результат - увеличение энергетической эффективности воздействия. Способ генерирования химически активных частиц в жидкости с использованием электрического разряда содержит этап, при котором на обрабатываемый объект воздействуют импульсным ультрафиолетовым излучением плазмы электрического разряда (200-280 нм), величина разрядной емкости С составляет 3.3 нф, величина высокого напряжения 11 кВ, величина балластного сопротивления R=14 МОм, зазор между разрядными электродами 3 мм. Мощность импульса электрического разряда оптимизирована для получения максимального химического эффекта в жидкости. Положение максимума спектра излучения плазмы выбрано в районе 220 нм. При увеличении мощность разряда максимум спектра сдвигается в область более коротких волн, когда большая часть энергии поглощается воздухом, а при уменьшении мощности максимум спектра сдвигается в область более длинных волн, химическая активность которых меньше. Кроме того, при большой мощности разряда активные частицы, образующиеся в жидкости под действием излучения, гибнут во взаимодействиях между собой, не производя химического эффекта. 2 ил., 2 табл.

Изобретение относится к плазменной технике и технологии и может быть использовано для получения электрического разряда в большом объеме. Технический результат - увеличение объема горения электрического разряда. По первому варианту в способе получения электрического разряда, включающем подачу напряжения между электродами, один из которых твердый, а другой - электролит, в качестве другого электрода используют проточный электролит, напряжение между электродами устанавливают высокочастотное в пределах от 1000 до 6000 В. По второму варианту в способе получения электрического разряда, включающем подачу напряжения между электродами, один из которых твердый, а другой - электролит, в качестве другого электрода используют непроточный электролит, напряжение между электродами устанавливают высокочастотное в пределах от 1000 до 6000 В. По обоим вариантам в качестве твердого электрода могут использовать электрод из металла, или сплава, или диэлектрика, или пористого материала. По третьему варианту в способе получения электрического разряда, включающем подачу напряжения между электродами, один из которых электролит, один из электродов представляет собой струю электролита, а другой - проточный электролит, напряжение между электродами устанавливают высокочастотное в пределах от 1000 до 6000 В. По четвертому варианту в способе получения электрического разряда, включающем подачу напряжения между электродами, один из которых электролит, в качестве электродов используют струи электролита, которые образуют между собой угол 0≤α≤180°, напряжение между электродами устанавливают высокочастотное в пределах от 1000 до 6000 В. 4 н. и 2 з.п. ф-лы, 8 ил.

Изобретение относится к области переработки зольных отходов угольных тепловых электростанций с целью их утилизации в качестве, в частности, материалов для производства строительных изделий. В способе переработки золы-уноса угольных теплоэлектростанций, включающем высокотемпературную обработку в атмосфере азота, процесс ведут в присутствии мочевины при соотношении зола-унос:мочевина, равном 1:1, а высокотемпературную обработку осуществляют в потоке азотной плазмы при температуре плазмы 4000-6000°С при мощности плазмотрона 25 кВт и скорости потока плазмы 60-100 м/с с последующим охлаждением в атмосфере азота, подаваемого со скоростью 60-80 м/с, и разделением разнодисперсных фракций в условиях вихревого циклонирования и фильтрации на рукавном фильтре. Технический результат – утилизация отходов, расширение ассортимента полезных продуктов, получаемых в результате утилизации золы. 2 ил., 1 пр.

Изобретение обеспечивает генерацию плотной объемной импульсной плазмы и может быть использовано для интенсификации процессов взаимодействия частиц в объеме и одновременного ограничения температуры поверхности изделий, нагреваемых ионным потоком из плазмы. Способ генерации плотной объемной импульсной плазмы основан на возбуждении разряда с самонакаливаемым полым катодом в газоразрядной системе источника электронов с плазменным эмиттером и формировании широкого электронного пучка, ионизирующего и возбуждающего газ в объеме. Разряд с самонакаливаемым полым катодом зажигают в импульсно-периодическом режиме, при этом сочетание параметров режима (амплитуда, длительность и частота повторения импульсов) выбирают таким образом, чтобы приращение температуры эмитирующей поверхности полого катода за время импульса (Tmax-Tmin) обеспечивало требуемую величину импульсного тока термоэмиссии катода, а отвод тепла в объем полого катода и излучение с его внешней поверхности за время паузы не привели к снижению температуры эмитирующей поверхности полого катода ниже минимального уровня Tmin, обеспечивающего минимальный стартовый ток термоэмиссии для развития разряда при подаче импульса напряжения, причем значения температур определяются из соотношения Ричардсона-Дэшмана Imax=AT2maxexp(-eϕ/koTmax)S1и Imin=AT2minехр(-eϕ/koTmin)S1, длительность импульса t и частота повторения импульсов f определяются из соотношений (Tmax-Tmin)=(2q/λ)(αt/π)1/2, q=k1UIImax/S1, k1ImaxU⋅f⋅t~k2σT4minS2, где Imax, Imin - требуемая амплитуда тока и минимальный стартовый ток термоэлектронной эмиссии катода, S1, S2 - площадь эмитирующей и внешней поверхности полого катода, А - термоэлектрическая постоянная, Tmax, Tmin - максимальная импульсная и минимальная стартовая температура полого катода, еϕ - работа выхода электронов из материала полого катода, е - заряд электрона, ko - постоянная Больцмана, q - импульсная плотность мощности, выделяющейся на эмитирующей поверхности полого катода, λ и α - коэффициенты теплопроводности и температуропроводности материала полого катода соответственно, π=3,14; k1 - доля ионного тока в общем токе на полый катод, U - напряжение горения импульсного разряда; k2 - коэффициент излучения (степень черноты) внешней поверхности полого катода, σ - постоянная Для нанесения покрытий в плазме электронного пучка могут быть использованы совместно с электронным источником распылительная система, формирующая поток атомов в направлении обрабатываемых изделий, а также плазмохимические реакции с участием компонентов газовой смеси, активируемой низкоэнергетическим электронным пучком. Технический результат - повышение эффективности возбуждения и ионизации газа и обеспечение возможности изменять структурно-фазовое состояние и функциональные характеристики изделий. 6 ил.

Группа изобретений относится к источникам излучения, в частности к лампам барьерного разряда, и может быть использована в различных областях науки и техники, где необходима подсветка коротковолновым ультрафиолетовым или вакуумным ультрафиолетовым излучением, например в фотохимии, в фотобиологии, фотоионизационных приборах. Технический результат - упрощение конструкции, получение плазменных струй атмосферного давления в воздухе без принудительной прокачки воздуха и снижение расхода газа в средах, содержащих смеси легкоионизуемых газов с электроотрицательными газами. Способ заключается в том, что зажигают искровой разряд между двумя острийными электродами, один электрод оставляют под плавающим потенциалом, причем на второй электрод подают высоковольтные импульсы напряжения положительной полярности с фронтом нарастания 0.1<τ<10 мкс, зажигание разряда осуществляют между электродами, установленными под углом 0<α<160°, формируя плазменную струю в месте максимальной кривизны токового канала. Устройство, реализующее способ, содержит два острийных электрода, образующих искровой разрядный промежуток, один электрод является свободным, высоковольтный источник питания, второй электрод, расположенный под углом 0<α<160° к первому, является высоковольтным и имеет положительную полярность напряжения с фронтом нарастания 0.1<τ<10 мкс, разрядный промежуток составляет 5<d<20 мм. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к средствам формирования плазмы высокочастотных разрядов и может быть использовано, например, для травления поверхности, проведении газофазных плазмохимических реакций, спектрального анализа жидких и твердых проб. Устройство для генерации высокочастотного разряда содержит катод и анод, установленные через разрядный промежуток. Анод электрически соединен с фидером высоковольтного высокочастотного генератора. Катод выполнен в виде дополнительного электрода, соединенного электрически с одной из обкладок конденсатора переменной емкости. Другая обкладка этого конденсатора электрически изолирована как от шины заземления, так и общего провода высоковольтного ВЧ-генератора. Техническим результатом является возможность формирования неравновесной плазмы высокочастотных разрядов, электронная температура которой сопоставима с электронной температурой плазмы факельного разряда, а газовая температура сопоставима с газовой температурой плазмы дугового разряда. 3 ил.

Изобретение относится к области термообработки посредством плазменной горелки. Расходуемый компонент горелки для термообработки включает в себя приемник, размещенный внутри упомянутой горелки для термообработки, причем расходуемый компонент содержит:- корпус расходуемого компонента; и- сигнальное устройство, содержащее опознавательную метку идентификации по радиочастотным сигналам (RFID), расположенную на или в корпусе расходуемого компонента, для передачи сигнала, связанного с расходуемым компонентом, причем сигнал является независимым от выявляемой физической характеристики расходуемого компонента. Сигнальное устройство выполнено с возможностью хранения информации, которая должна быть передана сигналом, идентифицирующим два или более из наименования, торгового знака, изготовителя, серийного номера, предыстории использования, по меньшей мере одного рабочего параметра и типа расходуемого материала, и при этом упомянутое сигнальное устройство расположено внутри упомянутой горелки для термообработки, когда расходуемый компонент установлен в эту горелку для термообработки, и сигнальное устройство выполнено с возможностью позволять сигналу быть считываемым упомянутым приемником внутри горелки для термообработки. Технический результат - облегчение управления и оптимизация работы плазменной горелки. 5 н. и 26 з.п. ф-лы, 4 ил.

Изобретение относится к области плазменной техники. Устройство включает в себя ускоритель плазмы с воронкообразным участком высокой степени сжатия, отходящим от входа ускорителя, и вытянутым участком, соединенным с воронкообразным участком высокой степени сжатия, который может располагаться между концом воронкообразного участка и выходом ускорителя. Воронкообразный участок может иметь в продольном разрезе форму крутого конуса, тогда как вытянутый участок может обладать более пологой и плавной конусностью по всей своей длине в направлении выхода. Указанное устройство также включает в себя источник питания для возбуждения импульса ускорения, генерирующего толкающий магнитный поток, который обеспечивает ускорение и сжатие тора плазмы по всей длине ускорителя. Импульс тока может иметь такую форму, чтобы его величина за тором плазмы на выходе вытянутого участка была значительно меньше величины импульса тока у первого конца вытянутого участка, а давление тора плазмы на выходе вытянутого участка превышало давление тора плазмы в начале вытянутого участка. Технический результат - расширение функциональных возможностей устройства. 2 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к области плазменной техники. Источник (1) плазмы, предназначенный для нанесения покрытия на подложку (9) и выполненный с возможностью соединения с источником (Р) энергии, содержит электрод (2), магнитный узел (4), находящийся на периферии упомянутого электрода и содержащий совокупность магнитов, соединенных между собой магнитной опорой (46), включающий в себя по меньшей мере первый и второй центральные магниты (43, 44) и по меньшей мере один головной магнит (45), электрически изолирующую оболочку (5), расположенную таким образом, чтобы окружать электрод и магниты. Технический результат - повышение качества покрытия путем повышения плотности и однородности плазмы. 2 н. и 18 з.п. ф-лы, 7 ил., 2 табл.
Наверх