Дифференциальный операционный усилитель для работы при низких температурах

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала. Для этого предложен дифференциальный операционный усилитель для работы при низких температурах, который содержит первый (1) входной полевой транзистор, первый (2) вход устройства, первый (3) вспомогательный транзистор, первый (4) токостабилизирующий двухполюсник, первую (5) шину источника питания, второй (6) входной полевой транзистор, второй (7) вход устройства, второй (8) вспомогательный транзистор, второй (9) токостабилизирующий двухполюсник, первый (10) выход устройства, вторую (11) шину источника питания, первый (12) резистор отрицательной обратной связи, первый (13) выходной транзистор, второй (14) выходной транзистор, первую (15) цепь смещения потенциалов, первый (16) дополнительный транзистор, второй (17) дополнительный транзистор, вторую (18) цепь смещения потенциалов, первый (19) и второй (20) входы выходного дифференциального каскада (21). 3 з.п. ф-лы, 9 ил.

 

Изобретение относится к области электроники, измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков.

В современной информационно-измерительной технике, приборостроении, датчиковых системах, различных аналого-цифровых интерфейсах находят широкое применение дифференциальные (ДУ) и операционные (ОУ) усилители на полевых транзисторах с управляющим p-n-переходом [11-13], которые обеспечивают усиление дифференциального сигнала (ud) и повышенное ослабление синфазной составляющей входных напряжений (uc) в диапазоне низких температур [14-16]. При этом для повышения линейности ДУ в его схему вводится резистор местной отрицательной обратной связи (R0=1-10 кОм), что существенно ухудшает один из важнейших параметров ДУ - коэффициент ослабления входного синфазного сигнала (Кос.сф).

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный усилитель по патенту RU 25713299 (рис. 1, рис. 2). Он содержит (фиг. 1) первый 1 входной полевой транзистор, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора, а сток через первый 4 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 7 входом устройства, исток подключен к стоку второго 8 вспомогательного транзистора, а сток через второй 9 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, первый 10 выход устройства, вторую 11 шину источника питания, первый 12 резистор отрицательной обратной связи, включенный между истоками первого 1 и второго 6 входных полевых транзисторов.

Существенный недостаток известного ОУ состоит в том, что в связи с применением JFet полевых транзисторов, удовлетворительно работающих при криогенных температурах, он имеет невысокий коэффициент ослабления входного синфазного сигнала.

Основная задача предлагаемого изобретения состоит в повышении коэффициента ослабления входного синфазного сигнала.

Поставленная задача достигается тем, что в усилителе фиг. 1, содержащем первый 1 входной полевой транзистор, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора, а сток через первый 4 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 7 входом устройства, исток подключен к стоку второго 8 вспомогательного транзистора, а сток через второй 9 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, первый 10 выход устройства, вторую 11 шину источника питания, первый 12 резистор отрицательной обратной связи, включенный между истоками первого 1 и второго 6 входных полевых транзисторов, предусмотрены новые элементы и связи - затвор первого 3 вспомогательного транзистора подключен к эмиттеру первого 13 выходного транзистора, затвор второго 8 вспомогательного транзистора соединен с эмиттером второго 14 выходного транзистора, исток первого 3 вспомогательного транзистора связан с эмиттером первого 13 выходного транзистора, исток второго 8 вспомогательного транзистора связан с эмиттером второго 14 выходного транзистора, база которого соединена с базой первого 13 выходного транзистора и подключена к первой 15 цепи смещения потенциалов, сток первого 1 входного транзистора соединен с эмиттером первого 16 дополнительного транзистора, сток второго 6 входного транзистора соединен с эмиттером второго 17 дополнительного транзистора, база которого подключена к базе первого 16 дополнительного транзистора и соединена со второй 18 цепью смещения потенциалов, коллектор первого 16 дополнительного транзистора связан с эмиттером первого 13 выходного транзистора, коллектор второго 17 дополнительного транзистора соединен с эмиттером второго 14 выходного транзистора, причем коллекторы первого 13 и второго 14 выходных транзисторов связаны с соответствующими первым 19 и вторым 20 входами выходного дифференциального каскада 21, согласованного со второй 11 шиной источника питания, выход которого соединен с выходом устройства 10.

На фиг. 1 показана схема усилителя-прототипа, а на фиг. 2 - схема заявляемого устройства в соответствии с п. 1 формулы изобретения.

На фиг. 3 приведена схема заявляемого устройства в соответствии с п. 2, а на фиг. 4 в соответствии с п. 3 формулы изобретения.

На фиг. 5 представлена схема заявляемого устройства в соответствии с п. 4 формулы изобретения.

На фиг. 6 представлена схема усилителя-прототипа фиг. 1 в среде PSpice на радиационно-зависимых моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г.Минск) для определения его коэффициента передачи входного синфазного сигнала от объединенных входов (V3) на выход (out).

На фиг. 7 представлена схема заявляемого устройства фиг. 3 в среде PSpice на радиационно-зависимых моделях интегральных транзисторов АБМК_1_4 НПО «Интеграл» (г. Минск) для определения его коэффициента передачи входного синфазного сигнала от объединенных входов (V3) на выход (out).

На фиг. 8 показана частотная зависимость коэффициента передачи входного синфазного сигнала в сравниваемых усилителях (фиг. 6 и фиг. 7).

На фиг. 9 показана частотная зависимость коэффициента ослабления входного синфазного сигнала известного (фиг.6) и заявляемого устройств (фиг. 7).

Дифференциальный операционный усилитель для работы при низких температурах фиг. 2 содержит первый 1 входной полевой транзистор, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора, а сток через первый 4 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, второй 6 входной полевой транзистор, затвор которого соединен со вторым 7 входом устройства, исток подключен к стоку второго 8 вспомогательного транзистора, а сток через второй 9 токостабилизирующий двухполюсник соединен с первой 5 шиной источника питания, первый 10 выход устройства, вторую 11 шину источника питания, первый 12 резистор отрицательной обратной связи, включенный между истоками первого 1 и второго 6 входных полевых транзисторов. В схему введены новые элементы и связи между ними - затвор первого 3 вспомогательного транзистора подключен к эмиттеру первого 13 выходного транзистора, затвор второго 8 вспомогательного транзистора соединен с эмиттером второго 14 выходного транзистора, исток первого 3 вспомогательного транзистора связан с эмиттером первого 13 выходного транзистора, исток второго 8 вспомогательного транзистора связан с эмиттером второго 14 выходного транзистора, база которого соединена с базой первого 13 выходного транзистора и подключена к первой 15 цепи смещения потенциалов, сток первого 1 входного транзистора соединен с эмиттером первого 16 дополнительного транзистора, сток второго 6 входного транзистора соединен с эмиттером второго 17 дополнительного транзистора, база которого подключена к базе первого 16 дополнительного транзистора и соединена со второй 18 цепью смещения потенциалов, коллектор первого 16 дополнительного транзистора связан с эмиттером первого 13 выходного транзистора, коллектор второго 17 дополнительного транзистора соединен с эмиттером второго 14 выходного транзистора, причем коллекторы первого 13 и второго 14 выходных транзисторов связаны с соответствующими первым 19 и вторым 20 входами выходного дифференциального каскада 21, согласованного со второй 11 шиной источника питания, выход которого соединен с выходом устройства 10.

На фиг. 2 выходной дифференциальный каскад 21 содержит (в частном случае) токовое зеркало 22 и буферный усилитель 23, согласованные со второй 11 шиной источника питания. Причем выход буферного усилителя 23 подключен к выходу устройства 10.

В соответствии с п. 2 формулы изобретения на фиг. 3 исток первого 3 вспомогательного транзистора связан с эмиттером первого 13 выходного транзистора через первый 24 дополнительный резистор, а исток второго 8 вспомогательного транзистора связан с эмиттером второго 14 выходного транзистора через второй 25 дополнительный резистор.

В соответствии с п. 3 формулы изобретения, в схему фиг. 4 введены третий 26 входной полевой транзистор, затвор которого соединен с третьим 27 входом устройства, сток подключен к эмиттеру второго 17 дополнительного транзистора, исток соединен со стоком третьего 28 вспомогательного транзистора, затвор введенного в схему четвертого 29 входного полевого транзистора соединен с четвертым 30 входом устройства, сток подключен к первому 16 дополнительному транзистору, исток соединен со стоком четвертого 31 вспомогательного транзистора, между истоками третьего 26 входного полевого транзистора и стоком четвертого 29 входного полевого транзистора включен второй 32 резистор отрицательной обратной связи, затвор третьего 28 вспомогательного транзистора соединен с эмиттером второго 14 выходного транзистора, затвор четвертого 31 вспомогательного транзистора соединен с эмиттером первого 13 выходного транзистора, исток третьего 28 вспомогательного транзистора соединен с эмиттером второго 14 выходного транзистора через третий 33 дополнительный резистор, а исток четвертого 31 вспомогательного транзистора соединен с эмиттером первого 13 выходного транзистора через четвертый 34 дополнительный резистор.

В соответствии с п. 4 формулы изобретения на фиг. 5 в качестве первого 13 выходного транзистора, второго 14 выходного транзистора, первого 16 дополнительного транзистора, второго 17 дополнительного транзистора используются соответствующие полевые транзисторы, затвор каждого из которых соответствует базе биполярного транзистора, исток - эмиттеру биполярного транзистора, а сток - коллектору биполярного транзистора.

Рассмотрим работу ОУ фиг. 2.

При изменении входного синфазного сигнала на первом 2 и втором 7 входах устройства uc=uc1=uc2 изменяются токи стоков первого 3 (ic3) и второго 8 (ic8) вспомогательных транзисторов:

где S=S3=S8 - крутизна стокозатворной характеристики первого 3 и второго 8 вспомогательных транзисторов;

μ3, μ8=10-2÷10-3 - коэффициент внутренней обратной связи первого 3 и второго 8 вспомогательных транзисторов в схеме с общим затвором.

Приращения токов ic3, ic8 передаются через первый 1 и второй 6 входные полевые транзисторы в эмиттерные, а затем в коллекторные цепи первого 16 и второго 17 дополнительных транзисторов:

В результате, изменения токов в эмиттерах первого 13 и второго 14 выходных транзисторов определяются формулами

,

.

где - коэффициент усиления по току базы первого 16 и второго 17 дополнительных транзисторов.

Как следствие, токи ошибки первого 19 и второго 20 входов дифференциального каскада 21 в заявляемом усилителе существенно (в β раз) уменьшаются. При прочих равных условиях (например, при асимметрии входов выходного каскада 21 или применении в его структуре неидентичных резисторов нагрузки) это улучшает К ос.сф. Данный вывод подтверждается графиками фиг. 8, фиг. 9, которые показывают, что предлагаемое устройство обеспечивает более глубокое ослабление входных синфазных сигналов.

Таким образом, в сравнении с прототипом заявляемое устройство является более прецизионным при работе с синфазными сигналами.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Patent US 5.648.743, fig. 3.

2. Patent US 4.538.155, fig. 2.

Схемы с входными ПТ

3. Patent US 4.596.958, fig. 2.

4. Patent US 4.537.578, fig. 1.

5. Patent US 8.169.263, fig. 5.

6. Patent US 7.2020.738, fig. 7, fig. 11.

7. Patent US 4.198.610, fig. 4.

8. Patent US 6.407.537, fig. 1.

9. Patent US 5.367.271, fig. 2.

10. Патент РФ 2070768, фиг. 1.

11. Патент РФ 2571399, фиг. 2.

12. Патент РФ 2571578, фиг. 3.

13. Патент US 2008/0088374.

14. Дворников О.В. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 1 / О.В. Дворников, В.А. Чеховский Н.Н., В.Л. Дятлов, Н.Н. Прокопенко. Современная электроника №4. 2015. С. 44-49.

15. Дворников О.В. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О.В. Дворников, В.А. Чеховский Н.Н., В.Л. Дятлов, Н.Н. Прокопенко. Современная электроника №5. 2015. С. 24-28.

16. Дворников О.В. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 3/ О.В. Дворников, В.А. Чеховский Н.Н., В.Л. Дятлов, Н.Н. Прокопенко. Современная электроника №6. 2015. С. 34-39.

1. Дифференциальный операционный усилитель для работы при низких температурах, содержащий первый (1) входной полевой транзистор, затвор которого соединен с первым (2) входом устройства, исток подключен к стоку первого (3) вспомогательного транзистора, а сток через первый (4) токостабилизирующий двухполюсник соединен с первой (5) шиной источника питания, второй (6) входной полевой транзистор, затвор которого соединен со вторым (7) входом устройства, исток подключен к стоку второго (8) вспомогательного транзистора, а сток через второй (9) токостабилизирующий двухполюсник соединен с первой (5) шиной источника питания, первый (10) выход устройства, вторую (11) шину источника питания, первый (12) резистор отрицательной обратной связи, включенный между истоками первого (1) и второго (6) входных полевых транзисторов, отличающийся тем, что затвор первого (3) вспомогательного транзистора подключен к эмиттеру первого (13) выходного транзистора, затвор второго (8) вспомогательного транзистора соединен с эмиттером второго (14) выходного транзистора, исток первого (3) вспомогательного транзистора связан с эмиттером первого (13) выходного транзистора, исток второго 8 вспомогательного транзистора связан с эмиттером второго (14) выходного транзистора, база которого соединена с базой первого (13) выходного транзистора и подключена к первой (15) цепи смещения потенциалов, сток первого (1) входного транзистора соединен с эмиттером первого (16) дополнительного транзистора, сток второго (6) входного транзистора соединен с эмиттером второго (17) дополнительного транзистора, база которого подключена к базе первого (16) дополнительного транзистора и соединена со второй (18) цепью смещения потенциалов, коллектор первого (16) дополнительного транзистора связан с эмиттером первого (13) выходного транзистора, коллектор второго (17) дополнительного транзистора соединен с эмиттером второго (14) выходного транзистора, причем коллекторы первого (13) и второго (14) выходных транзисторов связаны с соответствующими первым (19) и вторым (20) входами выходного дифференциального каскада (21), согласованного со второй (11) шиной источника питания, выход которого соединен с выходом устройства (10).

2. Дифференциальный операционный усилитель для работы при низких температурах по п. 1, отличающийся тем, что исток первого (3) вспомогательного транзистора связан с эмиттером первого (13) выходного транзистора через первый (24) дополнительный резистор, а исток второго (8) вспомогательного транзистора связан с эмиттером второго (14) выходного транзистора через второй (25) дополнительный резистор.

3. Дифференциальный операционный усилитель для работы при низких температурах по п. 2, отличающийся тем, что в схему введены третий (26) входной полевой транзистор, затвор которого соединен с третьим (27) входом устройства, сток подключен к эмиттеру второго (17) дополнительного транзистора, исток соединен со стоком третьего (28) вспомогательного транзистора, затвор введенного в схему четвертого (29) входного полевого транзистора соединен с четвертым (30) входом устройства, сток подключен к первому (16) дополнительному транзистору, исток соединен со стоком четвертого (31) вспомогательного транзистора, между истоками третьего (26) входного полевого транзистора и стоком четвертого (29) входного полевого транзистора включен второй (32) резистор отрицательной обратной связи, затвор третьего (28) вспомогательного транзистора соединен с эмиттером второго (14) выходного транзистора, затвор четвертого (31) вспомогательного транзистора соединен с эмиттером первого (13) выходного транзистора, исток третьего (28) вспомогательного транзистора соединен с эмиттером второго (14) выходного транзистора через третий (33) дополнительный резистор, а исток четвертого (31) вспомогательного транзистора соединен с эмиттером первого (13) выходного транзистора через четвертый (34) дополнительный резистор.

4. Дифференциальный операционный усилитель для работы при низких температурах по п. 3, отличающийся тем, что в качестве первого (13) выходного транзистора, второго (14) выходного транзистора, первого (16) дополнительного транзистора, второго (17) дополнительного транзистора используются соответствующие полевые транзисторы, затвор каждого из которых соответствует базе биполярного транзистора, исток - эмиттеру биполярного транзистора, а сток - коллектору биполярного транзистора.



 

Похожие патенты:

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению в разомкнутом дифференциальном операционном усилителе при высокой температурной и радиационной стабильности статического режима транзисторов его промежуточного каскада.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входных синфазных сигналов инструментального усилителя.

Изобретение относится к области радиоэлектроники. Технический результат: повышение коэффициента усиления по напряжению разомкнутого мультидифференциального операционного усилителя при сохранении высокой стабильности нулевого уровня.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат заключается в повышении коэффициента усиления дифференциального сигнала в разомкнутом состоянии двухкаскадного ОУ до уровня 90÷400 дБ.

Изобретение относится к области радиотехники. Технический результат: повышение разомкнутого коэффициента усиления по напряжению операционного усилителя (ОУ) при сохранении высоких показателей по стабильности напряжения смещения нуля.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Техническим результатом является расширение диапазона изменения выходного напряжения устройства до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля.

Изобретение относится к области радиотехники. Технический результат: создание энергоэкономичного устройства для усиления разности двух входных токов и подавления их синфазной составляющей.

Изобретение относится к области радиоэлектроники. Технический результат заключается в расширении диапазона изменения выходного напряжения до уровней, близких к напряжениям на положительной и отрицательной шинах питания.

Изобретение относится к области радиоэлектроники, а именно к прецизионным устройствам усиления сигналов. Технический результат - повышение коэффициента усиления дифференциального сигнала в разомкнутом состоянии ОУ до уровня 90÷100 дБ.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления сигналов. Технический результат - уменьшение напряжения смещения нуля, повышение стабильности при низких температурах и воздействии радиации. Мультидифференциальный операционный усилитель содержит первый входной биполярный транзистор, первый входной полевой транзистор с управляющим р-n переходом, первое токовое зеркало, источник питания, второй входной биполярный транзистор, второй входной полевой транзистор с управляющим р-n переходом, второе токовое зеркало, первое дополнительное токовое зеркало, второе дополнительное токовое зеркало. 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: повышение коэффициента усиления по напряжению (Ку) при сохранении высокой температурной и радиационной стабильности напряжения смещения нуля. Двухкаскадный дифференциальный операционный усилитель с повышенным коэффициентом усиления содержит входной дифференциальный каскад, первый выходной транзистор, коллектор которого связан со входом токового зеркала, источник питания, второй выходной транзистор, первый вспомогательный транзистор, второй вспомогательный транзистор, третий вспомогательный транзистор, первый дополнительный повторитель напряжения, четвертый вспомогательный транзистор и второй дополнительный повторитель напряжения. 11 ил.

Изобретение относится к области аналоговой усилительной техники. Технический результат: повышение значения коэффициента передачи по напряжению. Для этого предложен дифференциальный инструментальный усилитель с парафазным выходом, который содержит неинвертирующий вход (1) устройства и синфазный ему неинвертирующий выход (2) устройства, инвертирующий вход (3) устройства и синфазный ему инвертирующий выход (4) устройства, первый (5) входной дифференциальный каскад, второй (8) входной дифференциальный каскад, выходной дифференциальный каскад (14), при этом в схему введен дополнительный дифференциальный каскад (20), неинвертирующий вход (21) которого соединен с неинвертирующим (1) входом устройства, инвертирующий вход (22) дополнительного дифференциального каскада (20) подключен к инвертирующему (3) входу устройства, первый (23) токовый выход дополнительного дифференциального каскада (20) связан с первым (12) токовым выходом второго (8) входного дифференциального каскада, а второй (24) токовый выход дополнительного дифференциального каскада (20) связан со вторым (16) токовым выходом второго (8) входного дифференциального каскада. 5 ил.

Изобретение относится к области радиоэлектроники и вычислительной техники. Технический результат заключается в обеспечении дополнительно к режиму последовательного во времени преобразования входных потенциальных сигналов в выходное напряжение, алгебраического суммирования входных дифференциальных и недифференциальных напряжений, а также изменения их фазы в процессе мультиплексирования. Мультиплексор содержит N входных дифференциальных каскадов, имеющих инвертирующий и неинвертирующий входы, логический потенциальный вход для включения/выключения дифференциального каскада, и токовый выход, связанный с входом выходного буферного усилителя. Причем каждый из N входных дифференциальных каскадов имеет диапазон линейной работы по дифференциальному входу, превышающий максимальную амплитуду его входного дифференциального напряжения, потенциальный выход выходного буферного усилителя соединен с инвертирующим входом первого входного дифференциального каскада, неинвертирующий вход которого связан с общей шиной источника питания, причем каждый логический потенциальный вход включения/выключения каждого входного дифференциального каскада связан с выходом соответствующих из N триггеров, входы управления состоянием которых соединены с выходами цифрового управляющего устройства. 17 ил.

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала при работе в диапазоне низких температур. Указанный результат достигается посредством инструментального усилителя для работы при низких температурах, который содержит первый входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым входом устройства, исток подключен к стоку первого вспомогательного транзистора первого дифференциального каскада, а сток через первый двухполюсник нагрузки связан с первой шиной источника питания и соединен с первым выходом, второй входной полевой транзистор первого дифференциального каскада. Между второй шиной источника питания и истоком второго выходного транзистора включен второй токостабилизирующий двухполюсник, причем второй и первый выходы соединены с соответствующими входами выходного каскада, выход которого, являющийся потенциальным выходом устройства, связан с четвертым входом устройства через цепь общей отрицательной обратной, а третий вход устройства соединен с общей шиной источников питания. 2 з.п. ф-лы, 7 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления электрических сигналов различных датчиков. Технический результат заключается в повышении точности за счет уменьшения систематической составляющей напряжения смещения нуля низкотемпературного радиационно-стойкого мультидифференциального операционного усилителя (МОУ). Он содержит дифференциальные каскады на основе транзисторов, связанных друг с другом. Токовый выход первого (1) дифференциального каскада соединен с первой (15) шиной источника питания через первый (18) токостабилизирующий двухполюсник и подключен к эмиттеру первого (19) согласующего транзистора, второй (12) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (20) согласующего транзистора и через второй (21) токостабилизирующий двухполюсник соединен с первой (15) шиной источника питания. Причем первый (11) токовый выход второго (8) дифференциального каскада соединен с эмиттером второго (26) выходного транзистора и подключен к коллектору первого (19) согласующего транзистора, коллектор второго (26) выходного транзистора связан со вторым (28) входом выходного дифференциального каскада (25), выход которого соединен с выходом устройства (17). 3 з.п. ф-лы, 15 ил.

Изобретение относится к области аналоговой микроэлектроники. Технический результат: повышение быстродействия ОУ в режиме большого сигнала до уровня 20000 В/мкс. Это обеспечивается за счет исключения динамической перегрузки промежуточного каскада ОУ, выполненного в виде комплементарных «перегнутых» каскодов. Таким образом, предложен многоканальный быстродействующий операционный усилитель, который содержит входной дифференциальный каскад с первым и вторым входами и четырьмя токовыми выходами, первый-четвертый выходные транзисторы, буферный усилитель и корректирующий конденсатор, два токовых зеркала, причем в качестве входного дифференциального каскада используются каскады с широким диапазоном активной работы, а каждый первый, второй, третий и четвертый токостабилизирующие двухполюсники выполнены в виде соответствующих резисторов. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат: уменьшение систематической составляющей напряжения смещения нуля, а также создание условий для применения в схеме заявляемого устройства КМОП транзисторов. Низкотемпературный радиационно-стойкий мультидифференциальный операционный усилитель содержит первый (1) дифференциальный каскад на основе первого (2) и второго (3) входных транзисторов, связанных друг с другом инжектирующими выводами. Первый (4) токовый выход первого (1) дифференциального каскада и первый (11) токовый выход второго (8) дифференциального каскада подключены ко входу первого (15) токового зеркала, второй (12) токовый выход второго (8) дифференциального каскада подключен к выходу второго (18) токового зеркала и соединен со входом дополнительного инвертирующего усилителя (20), согласованного со второй (19) шиной источника питания, токовый выход которого соединен с токовым выходом устройства (17). 8 з.п. ф-лы, 10 ил.

Изобретение относится к области радиоэлектроники и может быть использовано в качестве прецизионного устройства усиления широкополосных сигналов. Технический результат заключается в уменьшении систематической составляющей напряжения смещения нуля. Радиационно-стойкий мультидифференциальный операционный усилитель для работы при низких температурах содержит первый и второй входные биполярные транзисторы, первый и второй входные полевые транзисторы, первое и второе токовые зеркала, первую и вторую шины источника питания, при этом в схему введены первый и второй дополнительные полевые транзисторы. 3 з.п. ф-лы, 16 ил.

Изобретение относится к области электроники и радиотехники. Технический результат: уменьшение коэффициента передачи входного синфазного сигнала. Технический результат достигается за счет новых элементов и связей, введенных в дифференциальный усилитель с повышенным ослаблением синфазного сигнала: второй (3) токовой выход входного дифференциального каскада (1) связан со входом второго (9) токового зеркала через первую (10) цепь согласования потенциалов, а четвертый (5) токовый выход входного дифференциального каскада (1) связан со входом первого (7) токового зеркала через вторую (11) цепь согласования потенциалов. 5 ил.

Изобретение относится к области электроники. Технический результат - повышение коэффициента ослабления входного синфазного сигнала. Для этого предложен дифференциальный операционный усилитель для работы при низких температурах, который содержит первый входной полевой транзистор, первый вход устройства, первый вспомогательный транзистор, первый токостабилизирующий двухполюсник, первую шину источника питания, второй входной полевой транзистор, второй вход устройства, второй вспомогательный транзистор, второй токостабилизирующий двухполюсник, первый выход устройства, вторую шину источника питания, первый резистор отрицательной обратной связи, первый выходной транзистор, второй выходной транзистор, первую цепь смещения потенциалов, первый дополнительный транзистор, второй дополнительный транзистор, вторую цепь смещения потенциалов, первый и второй входы выходного дифференциального каскада. 3 з.п. ф-лы, 9 ил.

Наверх