Измерительный модуль перепада давления с тензорезистивным сенсором, защищенным от перегрузки давлением

Изобретение относится к средствам измерения давления и может использоваться в нефтегазовой, химической и т.п. отраслях промышленности. Измерительный модуль содержит двухчастевой цилиндрический корпус, на противолежащих торцевых поверхностях которого расположены разделительные мембраны. Внутри корпуса расположен трехчастевой цилиндрический корпус. В первой части корпуса размещен тензорезистивный сенсор, а в полости на границе средней и третьей частей корпуса расположен мембранный блок, прикрепленный жестким центром к средней части корпуса и включающий две упругие компенсационные мембраны. При этом мембраны блока расположены одна над другой с зазором между ними, образованным кольцевой вставкой, сваренной с мембранами по наружному диаметру. Обе упругие мембраны блока выполнены гофрированными с соответствующими друг другу гофрами. Тензорезистивный сенсор соединен с разделительными мембранами и компенсационными мембранами блока каналами подвода давления. Технический результат заключается в уменьшении габаритов измерительного модуля давления при сохранении хороших рабочих характеристик. 2 ил.

 

Изобретение относится к средствам измерения давления и может использоваться в нефтегазовой, химической и т.п. отраслях промышленности.

Известен преобразователь дифференциального давления FMD-78 разработки Endress+Hauser, представленный в технической информации TI 382P/00/ru Endress+Hauser, стр. 6 (см. Приложение 1 к заявке) и выбранный в качестве прототипа, наиболее близкого конструктивно к заявляемому техническому решению.

Известный измерительный модуль включает в себя цилиндрический корпус, выполненный из трех частей, на двух наружных поверхностях первой и третьей частей которого размещены разделительные гофрированные мембраны, на границе первой и средней частей расположен тензорезистивный сенсор, а на границе третьей и средней частей в заполненной маслом полости размещена плоская упругая компенсационная мембрана, при этом указанная полость соединена каналами с тензорезистивным сенсором и с разделительными мембранами, которые имеют несколько меньшие размеры, чем упругая мембрана.

Известная конструкция (см. Приложение 1 к заявке) работает следующим образом.

При воздействии с двух сторон на разделительные мембраны 9 равного давления перемещения деталей модуля не происходит и сигнал чувствительного элемента остается постоянным.

При воздействии перепада давления на разделительную мембрану 9 со стороны Pi эта мембрана перемещается и, воздействуя через масло, прогибает упругую мембрану 7, что создает перепад давления на тензорезистивном сенсоре 6. По мере дальнейшего повышения перепада давления объем масла из зазора между разделительной мембраной 9 и корпусом перетекает в зазор между прогибающейся компенсационной мембраной 7 и корпусом до тех пор, пока перемещение разделительной мембраны 9 не ограничится профильной поверхностью корпуса, при этом прекратится перемещение компенсационной мембраны 7 и повышение перепада давления на сенсоре 6.

При воздействии перепада давления на разделительную мембрану 9 со стороны Р2 имеет место прогиб компенсационной мембраны 7 в противоположном направлении до момента ограничения перемещения разделительной мембраны 9 профильной поверхностью корпуса со стороны Р2.

Известный модуль обеспечивает защиту тензорезистивного сенсора от воздействия перегрузки в обе стороны и хорошие рабочие характеристики.

Недостатком известного измерительного модуля являются его значительные габариты, обусловленные тем, что для обеспечения достаточно малого перемещения упругой мембраны в процессе работы с целью исключения явления гистерезиса она должна иметь большие размеры, что приводит к значительным габаритам модуля и увеличивает его стоимость. При этом большой диаметр упругой мембраны ведет к большому объему жидкости в ее полости, что не лучшим образом влияет на метрологические характеристики датчика и надежность работы при низких (-40°С) и высоких температурах.

Задачей является уменьшение габаритов измерительного модуля давления при сохранении хороших рабочих характеристик.

Поставленная задача решается тем, что в измерительном модуле перепада давления с тензорезистивным сенсором, защищенным от перегрузки давлением, снабженном двумя разделительными гофрированными мембранами и включающем в себя корпус, выполненный трехчастевым относительно его поперечной оси, на границе первой и средней частей которого расположен тензорезистивный сенсор, а на границе третьей и средней частей которого в заполненной маслом полости размещена упругая компенсационная мембрана, при этом указанная полость соединена проточными каналами с разделительными мембранами и с тензорезистивным сенсором, согласно изобретению упомянутый трехчастевой корпус размещен внутри цилиндрического корпуса в его центральной части, а разделительные мембраны размещены на двух наружных торцевых поверхностях цилиндрического корпуса, при этом в качестве упругой компенсационной мембраны использован мембранный блок, прикрепленный жестким центром к средней части корпуса и включающий две упругие компенсационные мембраны, расположенные одна над другой с зазором между мембранами, образованным кольцевой вставкой, сваренной по наружному диаметру с обеими мембранами, которые выполнены гофрированными с соответствующими друг другу гофрами.

Размещение трехчастевого корпуса внутри цилиндрического корпуса в его центральной части, а разделительных мембран на двух наружных торцевых поверхностях цилиндрического корпуса, использование в качестве упругой компенсационной мембраны мембранного блока, прикрепленного жестким центром к средней части корпуса и включающего две упругие компенсационные мембраны, расположенные одна над другой с зазором между мембранами, образованным кольцевой вставкой, сваренной по наружному диаметру с обеими мембранами, которые выполнены гофрированными с соответствующими друг другу гофрами (что обеспечивает при их меньших диаметрах большую компенсационную способность), дает возможность существенно уменьшить размеры измерительного модуля, обеспечивая надежную защиту чувствительного элемента при перегрузках давлением и хорошие рабочие характеристики.

Технический результат - уменьшение габаритов при обеспечении высокой надежности защиты сенсора от перегрузок давлением.

Заявляемый измерительный модуль обладает новизной в сравнении с прототипом, отличаясь от него такими существенными признаками, как размещение трехчастевого корпуса внутри цилиндрического корпуса, а разделительных мембран на двух наружных торцевых поверхностях цилиндрического корпуса, использование в качестве упругой компенсационной мембраны мембранного блока, прикрепленного жестким центром к средней части корпуса и включающего две упругие компенсационные мембраны, расположенные одна над другой с зазором между мембранами, образованным кольцевой вставкой, сваренной по наружному диаметру с обеими мембранами, которые выполнены гофрированными с соответствующими друг другу гофрами, обеспечивающими в совокупности достижение заданного результата.

Заявителю не известны технические решения, обладающие указанными отличительными признаками, которые обеспечивали бы в совокупности достижение заданного результата, поэтому он считает заявляемую конструкцию соответствующей критерию «изобретательский уровень».

Заявляемый измерительный модуль может найти широкое применение в нефтегазовой, химической и других отраслях промышленности для измерения перепада давления и потому соответствует критерию «промышленная применимость».

Изобретение иллюстрируется чертежами, где показаны:

фиг. 1 - измерительный модуль с защищенным от перегрузки высоким давлением тензорезистивным сенсором в разрезе;

фиг. 2 - мембранный блок в разрезе.

Измерительный модуль содержит двухчастевой цилиндрический корпус 1, на противолежащих торцевых поверхностях которого расположены разделительные мембраны 2 и 3. Внутри корпуса 1 расположен трехчастевой цилиндрический корпус 4. В первой части корпуса 4 размещен тензорезистивный сенсор 5, а в полости на границе средней и третьей частей корпуса 4 расположен мембранный блок 6, прикрепленный жестким центром 7 к средней части корпуса 4 и включающий две упругие компенсационные мембраны 8 и 9. При этом мембраны блока 6 (см. фиг. 2) расположены одна над другой с зазором 10 между ними, образованным кольцевой вставкой 11, сваренной с мембранами по наружному диаметру. Обе упругие мембраны 8 и 9 блока 6 выполнены гофрированными с соответствующими друг другу гофрами. Тензорезистивный сенсор 5 соединен с разделительными мембранами 2 и 3 и компенсационными мембранами блока 6 каналами подвода давления 12 и 13.

Измерительный модуль работает следующим образом. При воздействии с двух сторон на разделительные мембраны 2 и 3 равного давления перемещения деталей модуля не происходит и сигнал тензорезистивного сенсора 5 остается постоянным.

При повышении перепада давления на разделительной мембране 2 со стороны Pi мембрана 2 перемещается и, воздействуя через масло в каналах 12, прогибает в противоположных направлениях (друг от друга) упругие мембраны 8 и 9 блока 6, что создает перепад давления на тензорезистивном сенсоре 5. По мере дальнейшего повышения перепада давления объем масла из зазора между разделительной мембраной 2 и профильной поверхностью корпуса 1 перетекает в зазор между прогибающимися компенсационными мембранами 8 и 9 блока 6 до тех пор, пока перемещение разделительной мембраны 2 не ограничится профильной поверхностью корпуса 1 со стороны P1, при этом прекратится перемещение мембран блока 6 и повышение перепада давления на сенсоре 5.

При воздействии перепада давления на разделительную мембрану 3 со стороны Р2 мембрана 3 перемещается и, воздействуя через масло в каналах 13, прогибает в противоположных направлениях (друг к другу) упругие мембраны 8 и 9 блока 6 до момента ограничения перемещения разделительной мембраны 3 профильной поверхностью корпуса 1 со стороны Р2, при этом прекратится перемещение мембран блока 6 и повышение перепада давления на сенсоре 5.

В сравнении с прототипом заявляемая конструкция модуля с защищенным от перегрузки высоким давлением тензорезистивным сенсором имеет меньшие габариты при сохранении хороших рабочих характеристик.

Измерительный модуль перепада давления с тензорезистивным сенсором, защищенным от перегрузки давлением, снабженный двумя разделительными гофрированными мембранами и включающий в себя корпус, выполненный трехчастевым относительно его поперечной оси, на границе первой и средней частей которого расположен тензорезистивный сенсор, а на границе третьей и средней частей которого в заполненной маслом полости размещена упругая компенсационная мембрана, при этом указанная полость соединена проточными каналами с разделительными мембранами и с тензорезистивным сенсором, отличающийся тем, что упомянутый трехчастевой корпус размещен внутри цилиндрического корпуса в его центральной части, а разделительные мембраны размещены на двух наружных торцевых поверхностях цилиндрического корпуса, при этом в качестве упругой компенсационной мембраны использован мембранный блок, прикрепленный жестким центром к средней части корпуса и включающий две упругие компенсационные мембраны, расположенные одна над другой с зазором между мембранами, образованным кольцевой вставкой, сваренной по наружному диаметру с обеими мембранами, которые выполнены гофрированными с соответствующими друг другу гофрами.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур.

Изобретение относится к измерительной технике, в частности к технике измерения неэлектрических величин, а именно к тензорезисторным датчикам абсолютного давления на основе кремний-на-изоляторе (КНИ) микроэлектромеханической системы.

Изобретение относится к измерительной технике и может использоваться для измерения избыточного или абсолютного давления в условиях работы с возможным воздействием большого перегрузочного давления до 1000 бар.

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для измерения давления жидких и газообразных сред в условиях воздействия нестационарных температур измеряемой среды.

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений.

Изобретение относится к оборудованию для гранулирования измельченного полуфабриката растительного происхождения. Прессующий ролик пресс-гранулятора содержит обечайку, подшипники качения, торцевые крышки для фиксации обечайки относительно наружных колец подшипников и измеритель нормальных напряжений на рабочей поверхности ролика.

Изобретение относится к измерительной технике и может быть использовано для прецизионного измерения давления на основе тензомостового интегрального преобразователя давления в широком диапазоне рабочих температур.

Изобретение относится к измерительной технике и может быть использовано для измерения давления, массы, деформаций и напряжений. Устройство содержит тензорезисторы, которые размещены в контролируемых точках объекта и соединены с внешними конденсаторами в фазирующую RC-цепочку, образуя совместно с усилителем генератор гармонических колебаний, соединенный через преобразователь частота-код и микроконтроллер, программа которого снабжена градуировочной характеристикой зависимости частоты от контролируемой массы или деформации, с цифровым индикатором.

Изобретение относится к оборудованию для гранулирования предварительно измельченных материалов и может быть использовано для определения напряженного состояния в клиновидном рабочем пространстве вальцово-матричных пресс-грануляторов.

Способ настройки термоустойчивого датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы относится к области измерительной техники и предназначен для измерения давления при воздействии нестационарной температуры измеряемой среды.

Изобретение относится к средствам измерения давления и может использоваться в нефтегазовой, химической и т.п. отраслях промышленности. Устройство содержит двухчастевой цилиндрический корпус, на противолежащих торцевых поверхностях которого расположены разделительные мембраны. Внутри корпуса расположен трехчастевой цилиндрический корпус. В первой части корпуса размещен тензорезистивный сенсор, а в полости на границе средней и третьей частей корпуса расположена первая упругая компенсационная мембрана и дополнительно введенная вторая упругая компенсационная мембрана. При этом мембрана расположена над мембраной с зазором между ними. Зазор образован сваркой периферийных поверхностей мембран с торцевыми уступами на средней части корпуса, расположенными на разных уровнях. Обе упругие мембраны размещены с одной стороны сенсора и выполнены гофрированными с соответствующими друг другу гофрами. Тензорезистивный сенсор соединен с разделительными мембранами и упругими компенсационными мембранами каналами подвода давления. Технический результат заключается в уменьшении габаритов измерительного модуля давления при сохранении хороших рабочих характеристик. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Тензопреобразователь давления содержит квадратную плоскую диафрагму из монокристаллического кремния с опорной рамкой и четыре продольных тензорезистора. Тензорезисторы расположены на планарной поверхности диафрагмы, содержащей 12 одинаковых квадратных углублений со стороной не менее длины тензорезистора и глубиной не больше половины толщины диафрагмы. Четыре углубления расположены в центре, а восемь остальных - парами у краев диафрагмы симметрично ее срединным осям. Зазор между углублениями одинаков и равен ширине тензорезисторов, которые расположены между углублениями, два - в центре, а два - у краев диафрагмы, образуя мостовую схему. Технический результат - повышение чувствительности тензопреобразователя давления. 5 ил.
Наверх