Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной двигательной установки (ДУ). Несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие – корпусные. Боковые панели скреплены между собой по периметру в чередующейся последовательности. По периметру каждой боковой панели расположены каркасные уголки, скрепленные разъемными элементами. На внешней поверхности второй торцевой панели закреплена панель ДУ. Бак хранения топлива закреплен с помощью кронштейнов на панели ДУ со стороны внутренней плоскости и размещен в вырезе второй торцевой панели. На внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением. Техническим результатом изобретения является уменьшение массы КМ. 7 ил.

 

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ), массой до 1000 кг, являющимся обеспечивающими конструктивно-компоновочными устройствами автоматических космических аппаратов (КА) оптико-электронного наблюдения Земли.

Известно техническое решение, принятое при проектировании КМ, предназначенного для создания малых КА различного назначения, запускаемых на орбиту искусственного спутника Земли (см. патент РФ 2389660 от 27.12.2007).

КМ содержит несущую конструкцию, снабженную осевым проемом, систему терморегулирования (СТР), со средством отвода тепла в космическое пространство, двигательную установку с топливным баком, размещенным в осевом проеме несущей конструкции. КМ содержит также систему энергопитания (СЭП) с источником электрической энергии в виде трех солнечных батарей (СБ) с возможностью их раскрытия и бортовую аппаратуру (БА). Несущая конструкция для установки БА КМ выполнена в виде плоской трехслойной панели в форме шестиугольника с несущими слоями и заполнителем, причем ее периметр составлен из чередующихся при его обходе коротких и длинных сторон.

Несущая конструкция выполнена в форме прямой призмы с основанием в виде правильного треугольника, вдоль ребер которой пропущены продольные силовые элементы, при этом боковые стенки призмы ориентированы параллельно длинным сторонам космического модуля. Средства радиосвязи размещены на внешних элементах несущей конструкции. Панель имеет размещенный по ее центру вырез, в который частично введен топливный бак двигательной установки.

СТР снабжена тремя каскадами тепловых труб (ТТ), а средство отвода тепла в космическое пространство выполнено в виде трех радиаторов-излучателей. Каскады ТТ выполнены с обеспечением возможности теплового контакта между ТТ первого и второго каскадов, а также второго и третьего каскадов. Радиаторы-излучатели выполнены в виде прямоугольных трехслойных панелей с сотовым заполнителем, размещенных параллельно боковым стенкам несущей конструкции и тыльными сторонами присоединенных встык к торцам длинных сторон модуля. ТТ первого и второго каскадов проложены внутри сотового заполнителя модуля, при этом ТТ первого каскада на большей части своей длины проложены между боковыми стенками несущей конструкции и торцом модуля с обеспечением теплового контакта с несущими слоями панели модуля.

ТТ второго каскада на большей части своей длины размещена вдоль торцов длинных сторон космического модуля. ТТ третьего каскада проложены внутри сотового заполнителя радиаторов-излучателей с обеспечением теплового контакта с несущими слоями панелей радиаторов-излучателей. При этом установка БА производится на модуле между несущей конструкцией и торцом комического модуля.

На концах силовых элементов размещены узлы соединения для крепления космического модуля к системе разделения смежного блока космической головной части.

Существенные недостатки, характерные для аналога, заключаются в следующем: КМ выполнен по типу горизонтальной компоновки и не имеет жесткого корпуса, обеспечивающего конструктивный интерфейс с целевой нагрузкой - оптико-электронным модулем (ОЭМ) для наблюдения Земли.

В целом рассматриваемый КМ не приспособлен для работы с современными космическими телескопами оптико-электронного наблюдения Земли, имеющими вертикально-продольную базовую ось.

В качестве прототипа к изобретению предлагается многофункциональный КМ вертикальной компоновки AstroSat 1000 of EADS Astrium SAS (см. https://directory.eoportal.org/web/eoportal/satellite-missions/p/pleiades).

Космический модуль является обеспечивающим устройством в каждом из двух спутников нового поколения Pleiades-1A и Pleiades-1B оптико-электронного наблюдения Земли.

КМ содержит силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8 …, с торцевыми панелями, имеющими вырезы, один в первой торцевой панели для корпуса ОЭМ, цилиндрической формы, с блендой и второй вырез во второй торцевой панели для крепления блока реактивной двигательной установки. При этом корпус KM AstroSat - 1000 выполнен в виде контейнерного блока, имеющего форму шестигранной призмы (n=6). Вдоль ребер призмы - несущей конструкции пропущены продольные силовые элементы, а боковые грани закрыты боковыми стенками. Закрывают призму первая (верхняя) и вторая (нижняя) торцевые панели. В первой торцевой панели предусмотрен вырез под ОЭМ. Продольная ось призмы совпадает с продольной осью ОЭМ, корпус которого имеет форму цилиндра. На верхнюю часть цилиндра ОЭМ установлена бленда. Второй вырез выполнен во второй торцевой панели и предназначен для крепления блока реактивной двигательной установки.

КМ содержит также плоский бандаж, скрепляющий первую часть корпуса ОЭМ, в месте установки бленды, с силовым корпусом космического модуля. Для скрепления, на внешней плоскости первой торцевой панели по периметру, в каждом углу многогранника (шестигранника, в рассматриваемом примере), установлены основаниями n/2 V-образных элемента силовой части конструкции КМ (три, в рассматриваемом примере). При этом каждый из элементов имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника (шестигранника) панели, и вершинами закрепленные с угловым расстоянием в 360°/(n/2)=720°/n градусов к внутренней поверхности плоского бандажа (в рассматриваемом примере для n=6, угловое расстояние 120°).

Несущая панель, установленная на второй части ОЭМ, скреплена через ферму с интерфейсным диском, на который установлен блок двигательной установки, имеющий корпус в виде цилиндра. При этом блок закреплен в вырезе второй торцевой панели корпуса КМ.

К несущей панели ОЭМ крепится БА, обеспечивающая работу КМ, в частности оптико-волоконный гироскопический измеритель вектора угловой скорости, моноблок регистрации видеоданных и управления ОЭМ, вычислительные средства и другие приборы. Причем для установки аппаратуры используются отдельные приборные панели. Терморегулирование БА осуществляется средствами СТР, включающими ТТ, проложенными в панелях, радиаторы с ТТ, терморегулирующие покрытия и экранно-вакуумную тепловую изоляцию.

Интерфейсные замки для стыка космического модуля со средствами выведения, закреплены на внешней плоскости второй торцевой панели. На второй торцевой панели КМ устанавливаются, через одну грань корпуса призмы, n/2 СБ (три, в конкретном примере). При этом в раскрытом положении каждая из батарей поддерживается двумя штангами, прикрепленными одним концом к боковым торцевым частям СБ, а другим к упорам, расположенным на ребрах призмы корпуса космического модуля.

Боковые стороны конструкции, образованные указанными V-образными элементами, закрыты стенками. Кольцевая форма бандажа дополнена по периметру вытянутыми угловыми выступами. Бандаж играет роль поддерживающей конструкции для ОЭМ в верхней его части и дополнительной скрепляющей детали между корпусом космического модуля и блендой.

Кроме того, в углах на верхней бандажной плоскости и в одном из промежутков между ними крепятся антенны радиосистем. Все антенны размещены таким образом, что при орбитальной ориентации КМ они направлены на Землю (оси направленности антенн сонаправлены продольной оси базовой системы координат КМ).

В качестве основного недостатка в рассмотренном КМ отмечается разделение функций ее конструкции на силовую и тепловую. Использование в прочностной схеме только отдельных внутренних силовых элементов для обеспечения жесткости, прочности, геометрической стабильности и термоупругости приводит к дополнительному увеличению массы КМ.

Технической результатом изобретения является улучшение конструктивно-технологической структуры построения КМ, направленное на уменьшение ее массы.

Для достижения технического результата в КМ, содержащем силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8 …, с торцевыми панелями, имеющими вырезы, один вырез - в первой торцевой панели для корпуса ОЭМ, имеющего цилиндрическую форму, с блендой, и второй вырез - во второй торцевой панели для крепления блока реактивной двигательной установки, плоский бандаж, скрепляющий первую часть корпуса ОЭМ, в месте установки бленды, с силовым корпусом КМ, n/2 V-образных элемента силовой части конструкции, установленных на внешней плоскости первой торцевой панели, несущую панель, установленную на второй части ОЭМ, скрепленную через ферму с интерфейсным диском, блок двигательной установки с корпусом цилиндрической формы, установленным на интерфейсный диск и закрепленным в вырезе второй торцевой панели корпуса КМ, интерфейсные замки для стыка космического модуля со средствами выведения, закрепленные на внешней плоскости второй торцевой панели, n/2 солнечных батарей, установленных через одну грань, на внешней плоскости второй торцевой панели, при этом каждый из элементов силовой части конструкции имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника панели, и вершинами закрепленные с угловым расстоянием в 720°/n градусов к внутренней поверхности плоского бандажа, в отличие от известного несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные, при этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями, с указанными вырезами под ОЭМ и реактивную двигательную установку, при этом по периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы, на второй торцевой панели по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей со стороны установки приборных панелей, на внутренней поверхности второй торцевой панели установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели ОЭМ, при этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели указанного ОЭМ, установленной во второй части его корпуса, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели, на внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.

Заявляемое решение космического модуля иллюстрируется следующими материалами:

фиг. 1 - аксонометрическое изображение конструкции корпуса КМ;

фиг. 2 - аксонометрическое изображение КМ со стороны первой (верхней) торцевой панели, укомплектованной для штатной работы, с установленным ОЭМ;

фиг. 3 - вид на КМ со стороны второй (нижней) торцевой панели космического модуля;

фиг. 4 - аксонометрическое изображение размещения бака ДУ на панели;

фиг. 5 - аксонометрическое изображение размещения силовых элементов конструкции на нижней торцевой панели КМ;

фиг. 6 - аксонометрическое изображение корпуса ОЭМ с установленной несущей панелью;

фиг. 7 - компоновка приборной панели.

В общем случае несущая конструкция корпуса призмы состоит из n многослойных боковых сотовых панелей, где n=4, 6, 8 …, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные. При этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями. В торцевых панелях предусмотрены вырезы под ОЭМ и реактивную ДУ. По периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы.

В качестве примера реализации, на фиг. 1 представлен корпус КМ, с несущей конструкцией, вертикальной компоновки, выполненной в виде прямой правильной шестигранной призмы (n=6), содержащей шесть трехслойных панелей, состоящих из двух несущих слоев и сотового заполнителя. Из указанных панелей три приборных: 1 - первая; 2 вторая; 3 третья, с проложенными внутри ТТ, и три корпусные: 4 - четвертая; 5 - пятая; 6 - шестая. Закрывает призму сверху и снизу соответственно первая (верхняя для примера конкретного КМ) 7 и вторая (нижняя) 8 торцевые трехслойные сотовые панели. По периметру, внутри каждой панели, расположены каркасные уголки, которые между собой соединяются штифтовыми (направляющими) и резьбовыми (скрепляющими) элементами, образуя при этом форму правильной шестигранной призмы. В углах шестигранников, с внутренних сторон верхней 7 и нижней 8 торцевых панелей, вдоль граней призмы, установлены уголковые крепления 9, ограниченной длины, обеспечивающие дополнительную жесткость, прочность и устойчивость корпуса призмы. В верхней торцевой панели предусмотрен круговой вырез под ОЭМ, а в нижней торцевой панели - вырез под размещение топливного бака, установленного на панели ДУ.

На фиг. 2 представлен КМ в сборке с ОЭМ и размещенным на ней оборудованием и приборами. На внешней плоскости первой (верхней) торцевой панели КМ установлены: бленда 10 ОЭМ, первая 11 и вторая 12 панели высокоскоростной радиолинии (ВРЛ), на которых установлена бортовая аппаратура (БА) ВРЛ - передатчики Х-диапазона, блоки наведения антенн. На установочных кронштейнах, закрепленных к верхней плоскости, верхней торцевой панели, установлены перенацеливаемые антенны ВРЛ - первая 13 и вторая 14 соответственно. На верхней торцевой панели также закреплен электромагнитный исполнительный орган (ЭМИО) 15 системы ориентации КМ. Со стороны верхнего торца бленды 10, на ее наружной поверхности крепится антенна служебного канала управления (СКУ) 16, установленная на кронштейне 17.

Таким образом, на внешней плоскости первой торцевой панели установлены бленда ОЭМ, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.

Со стороны граней второй торцевой панели крепятся узлы раскрытия трех СБ 18, 19, 20 по сторонам установки приборных панелей 1-3. Кроме того, на фиг. 2 показаны:

21, 22 - два тяговых модуля (ТМ), каждый из которых включает в себя электроракетный двигатель (ЭРД) и блок газораспределения;

23, 24 - радиаторы тяговых модулей;

25, 26 - радиаторы аккумуляторных батарей (АБ), первый и второй соответственно;

27, 28 - бленды первого и второго звездных датчиков (ЗД) соответственно;

29 - радиатор ОЭМ.

Показаны также оси базовой системы координат KM (XYZ)KM и образованные ими строительные плоскости I-IV. Остальные обозначения соответствуют ранее введенным на фиг. 1.

На фиг. 3 представлен вид КМ со стороны нижней (второй) торцевой панели 8, на которой со стороны внешней поверхности (оси «минус YKM»), закреплена панель ДУ 30, представляющая собой плоскую трехслойную панель с сотовым наполнителем, выполненную в виде шестигранника. В свою очередь, на панели ДУ 30 установлено оборудование хранения и подачи топлива, восемь газовых двигателей (ГД1…8), позиции с 31 по 38 соответственно, и два ТМ: 39 и 40. Панель ДУ 30 сверху закрывается радиационным экраном. На нижней торцевой панели со стороны верхней плоскости также установлены антенны системы астронавигации (АСН) 41, 42 и СКУ 43. Кроме того, на фиг. 3 показаны узлы 44 механизмов раскрытия СБ, радиаторы для ТМ 45 и 46, а также бленда 47 третьего ЗД 48.

На второй (нижней) торцевой панели 8 по внешнему периметру установлены силовые фитинги 49-51, в которые закрепляются замки для организации разделяемого стыка КП с ракетой-носителем.

На панели ДУ 30, представленной на фиг. 4, введены обозначения топливного бака 52 и кронштейнов его крепления 53 и 54. При этом топливный бак 52, закрепленный с помощью кронштейнов на панели ДУ 30, размещается в вырезе второй (нижней) торцевой панели 8 (см. фиг. 1).

Таким образом, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели.

На внутренней поверхности второй торцевой панели КМ установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели оптико-электронного модуля.

В конкретной рассматриваемой КМ (см. фиг. 5), три скрепляющих V-образных силовых элемента 55 фермы установлены своими основаниями по краям шестигранника второй (нижней) торцевой панели 8 со стороны корпусных панелей 4-6 (см. фиг. 1), направленные вершинами в сторону несущей панели оптико-электронного модуля (оси «плюс YKM»).

На нижней торцевой панели 8 со стороны нижней плоскости (см. фиг. 5) установлены также никель-водородные АБ1 56 и АБ2 57 со своим блоком коммутации 58. Корпуса АБ1 56 и АБ2 57 охватывают, со стороны боковых поверхностей, контурные тепловые трубы (КТТ) 59 и 60 соответственно.

При этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели ОЭМ, установленной во второй части его корпуса. Вершины V-образных силовых элементов 55 закрепляются в базовые отверстия кронштейнов сплошной несущей панели 61 ОЭМ, выполненной в виде правильного треугольника со срезанными вершинами, установленной на корпусе 62 ОЭМ (см. фиг. 6). На нижнюю плоскость несущей панели ОЭМ также крепятся приборы 63, входящие в состав ОЭМ, терморегулирование которого осуществляется с помощью ТТ 64 и радиатора 29 (см. фиг. 2 и фиг. 6).

На нижней плоскости несущей панели 61, в местах условных вершин треугольника, установлены три ЗД 27, 28, 47 (см. фиг. 3), с угловым расстоянием в 120°. При этом компоновка КМ выполнена таким образом, что ЗД с блендами, выступающими над поверхностями корпусных панелей шестигранника, находятся посередине в междуреберном пространстве призмы. Кроме того, на фиг. 6 показаны: оси связанного базиса системы оптико-электронного наблюдения (СОЭН) Земли (0XYZ)СОЭН, включающей ОЭМ и БА регистрации видеоданных и управления космическим модулем; оси крепления ОЭМ на КМ (оси одного из базовых кронштейнов крепления на несущей панели ОЭМ) (0XYZ)Б; базовые оси ЗД 28 (OXYZ)ЗД28 (для примера).

Боковые стороны призмы корпуса (см. фиг. 1) образованы трехслойными сотовыми панелями, три из которых предназначены для установки приборного состава КМ. Каждая из приборных панелей включает в себя закладные втулки, предназначенные для крепления приборов, и элементы СТР-ТТ (всего 6), а также электрические нагреватели.

В качестве примера, на фиг. 7 представлена компоновка приборной панели 1, на которой показана установка приборов и ТТ 65. Кроме того, указана постановка панели в строительных осях КА (XYZ)КА, определяющих построение силового корпуса призмы (см. фиг. 1). Таким образом, приборная панель является силовым элементом корпуса КМ и КА одновременно. На приборных панелях исходя из равномерного распределения моментов инерции КА относительно строительных осей, размещен приборный состав служебной бортовой аппаратуры КМ и ОЭМ.

ОЭМ при компоновке в предлагаемом КМ размешается в одном месте, на V-образных элементах силовой части конструкции (в рассмотренном примере в трех опорных точках), установленных на внутренней поверхности второй торцевой панели. В прототипе ОЭМ на КМ крепится в двух местах, одним из которых (первой частью которого) является бандажное крепление, поддерживаемое V-образными элементами силовой части конструкции, установленными на внешней плоскости первой торцевой панели. Таким образом, масса КМ-прототипа увеличивается на массу бандажа.

Панель двигательной установки в предлагаемой КМ закрепляется непосредственно на второй торцевой панели. В прототипе ДУ также закрепляется на второй торцевой панели, но при этом используется дополнительная ферменная конструкция с интерфейсным диском. Таким образом, ОЭМ устанавливается в КМ, второй своей частью, через крепление к интерфейсному диску модульного блока ДУ и через него - ко второй (нижней) торцевой панели космического модуля.

В данном случае масса прототипа увеличивается на массу фермы и интерфейсного диска.

Все приборы служебного борта и ОЭМ в предлагаемом КМ размещаются на боковых сотовых панелях, являющихся несущими конструкциями корпуса призмы и радиаторами СТР. Т.е. приборные панели одновременно обеспечивают температурные условия работы приборного состава и одновременно являются силовыми элементами корпуса призмы. В прототипе для части приборного состава, расположенного на несущей панели ОЭМ, требуются при установке отдельные приборные панели со своими средствами терморегулирования.

Таким образом, масса прототипа увеличивается на массу приборных панелей и элементов СТР, отдельно устанавливаемых на КМ.

На второй торцевой панели, в предлагаемом КМ, по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей. Выбор места размещения указанных элементов при компоновке КМ, с расположением их со стороны установки приборных панелей, являющихся элементами несущей конструкции, позволил исключить дополнительные крепления для СБ. В прототипе в раскрытом положении каждая из батарей поддерживается двумя штангами, прикрепленными одним концом к боковым торцевым частям СБ, а другим к упорам, расположенным на ребрах призмы корпуса КМ.

Таким образом, указаны основные места компоновки КМ, по которым принимались технические решения, направленные на уменьшение массы конструкции космического модуля.

В результате сравнительной оценки масса заявляемой КМ примерно на 10-12 кг меньше массы КМ-прототипа.

При этом функциональное предназначение рассматриваемых КМ одинаковое - они являются обеспечивающими конструктивно-компоновочными устройствами автоматических КА, предназначенных для оптико-электронного зондирования Земли. Они принадлежат также к одному классу малых КМ, массой до 1000 кг.

Космический модуль, содержащий силовой корпус блочного типа, выполненный в виде скрепленных ребер n-гранной правильной призмы, где n=4, 6, 8…, с торцевыми панелями, имеющими вырезы, один вырез - в первой торцевой панели для корпуса оптико-электронного модуля, имеющего цилиндрическую форму, с блендой, и второй вырез - во второй торцевой панели для крепления блока реактивной двигательной установки, плоский бандаж, скрепляющий первую часть корпуса оптико-электронного модуля в месте установки бленды, с силовым корпусом космического модуля, n/2 V-образных элемента силовой части конструкции, установленных на внешней плоскости первой торцевой панели, несущую панель, установленную на второй части оптико-электронного модуля, скрепленную через ферму с интерфейсным диском, блок двигательной установки с корпусом цилиндрической формы, установленным на интерфейсный диск и закрепленным в вырезе второй торцевой панели корпуса космического модуля, интерфейсные замки для стыка космического модуля со средствами выведения, закрепленные на внешней плоскости второй торцевой панели, n/2 солнечных батарей, установленных через одну грань, на внешней плоскости второй торцевой панели, при этом каждый из элементов силовой части конструкции имеет растяжки, закрепленные основаниями по внешнему периметру, в каждом углу многогранника панели, и вершинами закрепленные с угловым расстоянием в 720°/n градусов к внутренней поверхности плоского бандажа, отличающийся тем, что несущая конструкция корпуса призмы выполнена из n многослойных боковых сотовых панелей, где n=4, 6, 8…, одни из которых - приборные, с проложенными внутри тепловыми трубами, а другие - корпусные, при этом все боковые панели скреплены между собой по периметру в чередующейся последовательности, а также с первой и второй корпусными торцевыми панелями, с указанными вырезами под оптико-электронный модуль и реактивную двигательную установку, при этом по периметру каждой боковой панели расположены каркасные уголки, которые между собой скреплены разъемными элементами, образуя форму правильной призмы, на второй торцевой панели по внешнему периметру установлены силовые фитинги, в которые закреплены замки для стыка с ракетой-носителем и узлы раскрытия солнечных батарей со стороны установки приборных панелей, на внутренней поверхности второй торцевой панели установлены, со стороны корпусных панелей, V-образные элементы силовой ферменной части конструкции, которые своими основаниями закреплены в углах многогранника второй торцевой панели, направленные вершинами в сторону несущей панели оптико-электронного модуля, при этом вершины V-образных силовых элементов закреплены в базовые отверстия кронштейнов несущей панели указанного оптико-электронного модуля, установленной во второй части его корпуса, на внешней поверхности второй торцевой панели закреплена панель двигательной установки, при этом бак хранения топлива закреплен с помощью кронштейнов на панели двигательной установки со стороны внутренней плоскости и размещен в вырезе второй торцевой панели, на внешней плоскости первой торцевой панели установлены бленда оптико-электронного модуля, а также панели и кронштейны для оборудования радиолиний и электромагнитного исполнительного органа системы управления движением.



 

Похожие патенты:

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел крепления к корпусу космического корабля, телескопический шток с механизмом выдвижения, шарнирно связанную с телескопическим штоком опорную тарель.

Изобретение относится к космической технике. В узле крышки транспортно-пускового контейнера (ТПК), состоящем из поворотной крышки, закрепленной на неподвижном элементе ТПК, размещено по меньшей мере по одному установленному на оси вращения поворотному упору с выступами, один из которых плоский, а другой сферический.

Изобретение относится к авиационно-космической технике. Воздушно-реактивная стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся опорные штанги для космической ракеты.

Изобретение относится к авиационно-космической технике. Воздушно-реактивная с электрическим запуском стартовая система космической ракеты содержит основание, выполненное из верхнего невращающегося кольца, к которому крепятся одними своими концами опорные штанги для космической ракеты.

Группа изобретений относится к технологиям осуществления сверхбыстрых полетов в атмосфере планет. Конструкция и рабочие режимы летательных аппаратов для этой цели обеспечивают высокую синергию теплофизических и газодинамических процессов взаимодействия с атмосферой.

Изобретение относится к воздушно-космической технике. Летательный аппарат содержит блок управления с возможностью выдачи импульсных или непрерывных напряжений, прямоугольную камеру с амортизатором внутри с закруглениями между стенками.

Использование: в области электротехники при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите.

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика.

Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения.

Группа изобретений относится к ракетной технике. Ракета-носитель (РН) содержит как минимум одну возвращаемую ступень с крыльями и хвостовым оперением, маршевую и управляющую двигательные установки.

Изобретение относится к способам управления движением ракет космического назначения (РКН). Способ управления угловым движением РКН заключается в управлении углами тангажа и рыскания путем отклонения в двух взаимно-перпендикулярных плоскостях установленной в карданном подвесе камеры сгорания основного двигателя, в управлении углом крена с помощью двух пар газовых сопел и двух аэродинамических рулей, отклоняемых с помощью своих электрогидравлических сервоприводов (ЭГС). Определяют рассогласования между командным сигналом на отклонение аэродинамических рулей и фактическими углами их отклонения. При превышении по абсолютной величине любым из двух рассогласований заранее выбранного предельно-допустимого значения формируют признак отказа ЭГС аэродинамического руля. В случае формирования признака отказа ЭГС дополнительно отклоняют камеру сгорания основного двигателя по тангажу и аэродинамический руль с исправным ЭГС, дополнительно управляют углом рыскания с помощью пар газовых сопел. Техническим результатом изобретения является повышение вероятности успешного завершения полета РКН в случае отказа одного из исполнительных органов системы управления. 4 ил.

Изобретение относится к конструктивным элементам средств выведения полезных нагрузок (ПН), в частности, микроспутников. Адаптер включает ферму с двумя ярусами треугольных решеток: верхний ярус выполнен в форме цилиндра, а нижний - в форме усеченного конуса. Опорные узлы (4, 8) образуют верхний и нижний пояса. Ярусы стыкуются через опорные узлы промежуточного пояса. Первые средства (10) крепления попутных ПН (41) содержат корпуса в виде ящиков. Их донные панели могут быть снабжены выступами для установки блоков управления (42) отделением ПН (41). Вторые средства (20) крепления попутных ПН (41) содержат каркас в виде прямой треугольной призмы, закрепленный на нижнем ярусе фермы. Средства (10, 20) крепления обеспечивают отделение ПН (41) в боковом, по отношению к оси (40), направлении. Техническим результатом изобретения является снижение массы адаптера для выведения значительного числа микроспутников класса «Кубсат», при наличии точечного стыка адаптера с разгонным блоком и основной ПН. 4 з.п. ф-лы, 17 ил.

Изобретение относится к многосредным транспортным средствам и может применяться, в частности, для исследований в ближнем и дальнем космосе. Аквааэрокосмический летательный аппарат включает в себя корпус в виде двояковыпуклой линзы, накрытой снизу и сверху полусферами титановых обтекателей. Корпус подкреплен несущей стальной рамой с элементами жесткости, на которой смонтирована силовая установка. Эта установка содержит четыре группы двигателей: четыре подъемно-маршевых турбореактивных двухконтурных двигателя, два маршевых ракетных двигателя, четыре ракетных двигателя вертикальной тяги и два водометных двигателя. Летательный аппарат имеет стойки шасси. Для стыковки и сообщения с межпланетной космической станцией (МКС) служит герметизируемый люк шлюза. На корпусе аппарата установлены фары освещения задней полусферы и бортовые аэронавигационные огни. Техническим результатом изобретения является создание многорежимного многофункционального аппарата для исследований и других операций в ближнем и дальнем космосе, с использованием для его дозаправки МКС и небесных тел, например планет и их спутников. 10 з.п. ф-лы, 11 ил.

Изобретение относится к ракетно-космической технике, а именно к способам доставки полезного груза - комплекса научной аппаратуры к небесным телам (планетам, астероидам, кометам и др.) для их исследования и пенетраторам - устройствам с полезным грузом, отделяемым от основного космического аппарата и представляющим собой ударный проникающий зонд, внедряющийся в грунт небесного тела для исследования его параметров и параметров его грунта. В данном изобретении предложен способ доставки полезного груза к небесному телу и устройства его реализации, по которому полезный груз помещают внутрь балласта, служащего для полезного груза дополнительным защитным телом, а в качестве материала для балласта используют высокопрочные модификации льда: льда-VII или льда-VIII или льда-Х. После ударного внедрения в грунт пенетратора освобождают балласт с содержащимся в нем комплексом научной аппаратуры из защитного корпуса, удаляют балласт, освобождая полезный груз, и проводят исследования грунта небесного тела. Технический результат - повышение ударостойкости полезного груза и повышение точности измерений параметров грунта и небесного тела. 4 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА), где требуется снижение ударных нагрузок и импульса от действия средства разделения на точность выведения конечных ступеней объекта, в частности в заднем узле крепления разгонных блоков крылатых ракет. Узел стыковки разделяемых объектов ЛА содержит корпус с фиксаторами для крепления отделяемого элемента по сферической поверхности. Каждый фиксатор представляет собой гильзу, содержащую плунжер-упор, удерживаемый в гильзе шариковым замком. Плунжер-упор базируется в гильзе по сопрягаемым диаметрам, образующим дифференциальную площадь привода снятия фиксации узла стыковки разделяемых объектов. Срабатывание фиксаторов обеспечивается одновременной подачей давления в шариковые замки, которые освобождают плунжеры-упоры. Разделение объектов осуществляется перемещением плунжеров-упоров. Технический результат - надежная стыковка объектов ЛА без напряжений от допускаемых и возможных отклонений стыкуемых объектов. 2 ил.

Изобретение относится к области ракетно-космической техники. Способ управления движением ракеты космического назначения при выведении космических объектов на орбиту заключается в том, что в заданные моменты времени определяют текущее положение ракеты космического назначения с помощью навигационной системы, прогнозируют с помощью бортовой цифровой вычислительной машины оставшуюся траекторию полета с прежним управлением и определяют выполнимость условия обеспечения с заданной точностью терминальных условий полета и, при невыполнимости этих условий, выбирают новое управление и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета, кроме того, выбирают новые терминальные условия, находящиеся в области достижимости ракеты космического назначения, и новое управление движением ракеты космического назначения и реализуют его с помощью исполнительных органов до следующего, заданного момента времени полета. Техническим результатом изобретения является повышение эффективности функционирования выводимого космического объекта. 1 ил.
Изобретение относится к области обеспечения долговременного устойчивого развития космической деятельности и может быть использовано для предупреждения столкновений космического аппарата с преднамеренно сближающимся активным объектом. Cпособ защиты космического аппарата от столкновения с преднамеренно сближающимся активным объектом, согласно которому экран выпускают при обнаружении непрерывной последовательности сигналов с нарастающей амплитудой, а направление движения экрана определяют по данным о пространственной ориентации детекторов с максимальными показаниями амплитуды регистрируемых сигналов среди набора плоских детекторов на поверхности двух сферических оболочек, которые устанавливают на защищаемом космическом аппарате и на малом космическом аппарате, сопровождающем защищаемый космический аппарат. Техническим результатом является обеспечение высокой надежности идентификации потенциально опасных ситуаций и повышение оперативности выполнения защитных мероприятий.

Изобретение относится к ракетно-космической технике, а именно к конструкции двигательных установок (ДУ) космического назначения. ДУ состоит из топливных баков с газовой и топливной горловинами, системы подачи топлива, системы исполнительных органов, включающей, как минимум, отклоняющие двигатели со смесительной головкой и двигатели стабилизации и ориентации. Согласно изобретению баки жестко и герметично соединены топливными горловинами со смесительной головкой отклоняющих двигателей с помощью разъемного либо неразъемного соединения. При этом часть соединения, расположенного в смесительной головке, образует коллектор распределения топлива по каналам, выполненным в смесительной головке к отклоняющим двигателям, а смесительная головка отклоняющих двигателей обеспечивает жесткое крепление баков между собой. Техническим результатом заявленного изобретения является снижение массы ДУ и обеспечение живучести конструкции ДУ и КА в целом. 5 з.п. ф-лы, 9 ил.

Изобретение относится, главным образом, к конструкции высокоскоростных двухступенчатых ракет. Первой ступенью может служить носовой обтекатель, а второй – остальная часть ракеты. Предлагаемое устройство включает в себя устройство отделения и узел электрической стыковки. Данный узел установлен перпендикулярно внешней поверхности второй ступени и содержит закрепленную в корпусе втулку с электрическим разъемом. На верхней части втулки закреплена крышка с пазом для размещения жгута. Верхняя поверхность крышки повторяет внешний обвод ракеты. Устройство отделения выполнено из двух частей: одна представляет собой срезной механизм, а другая содержит жестко соединенную с корпусом первой ступени трубку с ограничителем, параллельную оси ракеты, и кассету для размещения сложенного жгута. Кассета шарнирно соединена с трубкой и закреплена на корпусе первой ступени. Тяга срезного механизма установлена с возможностью продольного перемещения в трубке до контакта с ограничителем. Техническим результатом изобретения является снижение динамических нагрузок, в частности, на обтекатель при его отделении, а также улучшение обтекаемости ракеты. 6 ил.

Изобретение относится к области ракетно-космической техники, а именно к транспортно-пусковым контейнерам (ТПК). В ТПК для запуска малых космических аппаратов, выполненном в виде корпуса с четырьмя боковыми стенками, из которых две противоположные стенки имеют направляющие, задней стенкой, переходной рамкой и поворотной крышкой. Поворотная крышка крепится к переходной рамке и оснащена по меньшей мере одной пружиной, переводящей в свободном состоянии поворотную крышку в открытое положение, а также расположенными внутри корпуса стартовой пружиной и толкателем с размещенным на нем магнитом. На переходной рамке корпуса установлен узел фиксации поворотной крышки, подпружиненными стопорами взаимодействующий с пазами поворотной крышки в момент ее открытия на заданный угол. На толкателе размещены подшипники, взаимодействующие с направляющими корпуса. Техническим результатом изобретения является повышение надежности ТПК и точности запуска малых космических аппаратов. 1 з.п. ф-лы, 4 ил.
Наверх