Способ сборки поглощающего элемента ядерного реактора



Способ сборки поглощающего элемента ядерного реактора
Способ сборки поглощающего элемента ядерного реактора
Способ сборки поглощающего элемента ядерного реактора

 


Владельцы патента RU 2621908:

Публичное акционерное общество "Машиностроительный завод" (RU)

Изобретение относится к ядерной технике. Способ сборки поглощающего элемента (ПЭЛ) ядерного реактора включает подготовку оболочки в виде трубы, герметизацию ее аргоно-дуговой сваркой с одного торца с помощью нижнего наконечника, имеющего коническую форму, загрузку оболочки поглощающими материалами в виде таблеток или порошка, фиксацию поглощающего материала от осевого перемещения c установкой прокладки при порошкообразном состоянии поглощающего материала, герметизацию оболочки с другого торца контактно-стыковой сваркой с помощью верхнего наконечника, содержащего утяжеляющую часть. Фиксация поглощающего материала от осевого перемещения производится с помощью пружинного фиксатора, устанавливаемого в компенсационном объеме ПЭЛ. Изобретение позволяет увеличить надежность способа сборки ПЭЛ и повысить работоспособность при сохранении эффективности ПЭЛ. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к ядерной технике, в частности к процессу сборки поглощающих элементов (ПЭЛ) систем управления и защиты ядерных реакторов с водой под давлением, например ВВЭР-1000, АЭС-2006 и др.

Конструкция ТВС реактора ВВЭР-1000 (см. Кириллов П.Л. и др. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат,1990, рис. П8.3., стр. 318) содержит твэлы и направляющие каналы для ПЭЛ, расположенные по правильной треугольной сетке.

Как правило, ПЭЛ состоит из поглощающего материала, оболочки, верхнего наконечника, утяжелителя, хвостовой части для закрепления ПЭЛ в приводе, и нижнего наконечника, выполненного в виде цилиндра с коническим окончанием.

В настоящее время существует множество конструкций ПЭЛ, содержащих различные поглощающие материалы как в виде порошка, так и в виде спеченных таблеток. Оболочка и наконечники ПЭЛ выполнены из одного и того же материала, например сплава 42ХНМ.

Поглощающие материалы, расположенные внутри оболочки, обычно состоят из двух частей: верхней из карбида бора (В4С), имеющей с нейтронами (n,α) реакцию, и нижней, которая первой вдвигается в активную зону реактора, имеющей с нейтронами (n, γ) реакцию.

Современная конструкция ПЭЛ ВВЭР-1000 имеет нижнюю часть поглотителя, выполненную из виброуплотненного титаната диспрозия (Dy2O3TiO2) (см. В.К. Резепов и др. Реакторы ВВЭР-1000 для атомных электростанций, ФГУП ОКБ «ГИДРОПРЕСС». М.: Академкнига, 2004, стр. 272-276).

Выбор в качестве материала нижней части титаната диспрозия приводит к стабилизации основных параметров ПЭЛ, поскольку титанат диспрозия, во-первых, незначительно изменяет эффективность поглощения нейтронов в процессе облучения, а во-вторых, закон изменения эффективности поглощения нейтронов имеет выраженный линейный характер, что позволяет более точно проводить расчет эффективности ПЭЛ по кампании.

Достаточно надежная экранировка карбида бора от распухания обеспечивается при длине части столба поглотителя, занимаемой титанатом диспрозия, не менее 2% от всей длины столба поглотителя нейтронов.

Кроме того, наличие в нижней части ПЭЛ титаната диспрозия значительно увеличивает суммарную массу, т.к. плотность титаната диспрозия более чем в четыре раза выше плотности карбида бора. Увеличение массы ПЭЛ повышает скорость введения его в активную зону при срабатывании аварийной защиты, что повышает безопасность реактора.

Известный способ сборки таких ПЭЛ содержит операции подготовки оболочки в виде трубы и герметизации ее с нижнего торца с помощью нижнего наконечника посредством аргоно-дуговой сварки (АДС).

Далее производится загрузка оболочки поглощающими материалами в виде порошка с виброуплотнением и/или таблеток, фиксация поглотителя с помощью пробки и никелевой сетки от осевого перемещения.

В компенсационном объеме при выполнении карбида бора в форме таблеток может в финальной стадии загрузки поглотителя устанавливаться пружинный фиксатор (см. патент RU 2389088, 2010 г.).

После загрузки поглощающего материала ПЭЛ вакуумируется и заполняется инертным газом под давлением. Во внутреннюю полость ПЭЛ вводится утяжелитель, соединенный с верхним наконечником, и далее верхний наконечник соединяется с оболочкой посредством АДС.

При этом надежность и работоспособность ПЭЛ зависит от герметичности сварных соединений, что напрямую связано с точностью изготовления посадочных мест (наконечники и торцевые части оболочки) и их подготовкой, а также с квалификацией оператора, проводящего АДС.

Существенным недостатком известного способа сборки ПЭЛ является довольно длительный процесс сварки АДС, который занимает несколько минут на каждое сварное соединение.

За это время значительно снижается давление внутри ПЭЛ, а также возможно проникновение воздуха внутрь оболочки, что негативно сказывается на надежности и работоспособности элементов ПЭЛ.

Предлагается герметизацию ПЭЛ проводить с помощью контактно-стыковой сварки (КСС) верхнего наконечника и оболочки, что позволяет свести к минимуму указанные недостатки известного способа сборки ПЭЛ.

Данное сварное соединение находится выше активной зоны в зоне БЗТ, поэтому для обоснования его прочности не требуются реакторные испытания.

При данном способе герметизации существенно сокращается время сварки, при этом утяжелитель исключается из внутренней полости оболочки и переносится в верхний наконечник для исключения шунтирования сварочного тока, что приводит к уменьшению длины оболочки и что в свою очередь приводит к увеличению прочности и жесткости ПЭЛ.

Задачей изобретения является разработка способа сборки ПЭЛ, приводящего к увеличению его надежности и повышению работоспособности при сохранении эффективности ПЭЛ.

Задача решается тем, что герметизация ПЭЛ при сборке производится сваркой верхнего наконечника с оболочкой с помощью КСС, что дает заявленный эффект.

В настоящее время КСС широко применяется при изготовлении твэлов ядерных реакторов, причем процесс вакуумирования, заполнения инертным газом и сварки полностью автоматизирован.

На фиг. 1 приведен общий вид ПЭЛ, позволяющего реализовать предлагаемый способ сборки.

Оболочка 1 и нижний наконечник 2 подготавливаются для сварки АДС.

Первоначально оболочка 1 сваривается с нижним наконечником 2 с помощью АДС.

Затем в оболочку 1 засыпается и виброуплотняется порошок титаната диспрозия 3 в количестве не менее 2% общей длины поглощающего материала. Далее засыпается порошок карбида бора 4 и фиксируется с помощью пробки и никелевой сетки 5.

При выполнении карбида в форме таблеток фиксацию поглотителя можно проводить с помощью пружинного фиксатора, устанавливаемого в компенсационном объеме ПЭЛ (см. патент RU №2389088, 2010 г.).

Далее производится вакуумирование и заполнение внутренней полости ПЭЛ инертным газом. Одновременно ПЭЛ герметизируется верхним наконечником 6, содержащим утяжелитель, с помощью сварки КСС 9 с оболочкой 1.

На фиг. 2 приведен общий вид узла КСС 9 в ПЭЛ, при этом карбид бора загружен в виде спеченных таблеток 7, которые фиксируются в оболочке 1 с помощью пружинного фиксатора 8.

Изобретение поясняется следующими графическими материалами.

На фиг. 1 - общий вид ПЭЛ с поглощающими материалами в виде порошка.

На фиг. 2 - общий вид ПЭЛ с карбидом бора в виде таблеток.

1. Способ сборки поглощающего элемента (ПЭЛ) ядерного реактора, включающий подготовку оболочки в виде трубы, герметизацию ее аргоно-дуговой сваркой с одного торца с помощью нижнего наконечника, имеющего коническую форму, загрузку оболочки поглощающими материалами в виде таблеток или порошка, фиксацию поглощающего материала от осевого перемещения c установкой прокладки при порошкообразном состоянии поглощающего материала, герметизацию оболочки с другого торца контактно-стыковой сваркой с помощью верхнего наконечника, содержащего утяжеляющую часть, отличающийся тем, что фиксация поглощающего материала от осевого перемещения производится с помощью пружинного фиксатора, устанавливаемого в компенсационном объеме ПЭЛ.

2. Способ сборки поглощающего элемента ядерного реактора по п. 1, отличающийся тем, что в верхнюю часть столба поглощающего материала загружается карбид бора (В4С), а в нижнюю - титанат диспрозия (Dy2O3TiO2).

3. Способ сборки поглощающего элемента ядерного реактора по п. 1, отличающийся тем, что герметизация оболочки производится с помощью наконечников, выполненных из того же материала, что и оболочка, например сплава 42ХНМ.



 

Похожие патенты:

Изобретение относится к ядерной технике, а более конкретно к системе управления и защиты ядерного реактора, и может быть применено в направляющих гильзах рабочего органа системы управления и защиты ядерного реактора (РО СУЗ) и в инструментах для установки, фиксации и извлечения гильз.

Изобретение относится к системам управления и защиты ядерных реакторов. Устройство управления стержнями (CRDM) содержит направляющий винт, двигатель, закрепленный на резьбе с направляющим винтом для линейного движения направляющего винта в направлении ввода или обратно в направлении изъятия, фиксирующее приспособление, соединенное с направляющим винтом и предназначенное для (i) сцепления с соединительным стержнем и (ii) расцепления от соединительного стержня, и разъединяющий механизм, предназначенный для селективного расцепления фиксирующего приспособления от соединительного стержня.

Изобретение относится к системам управления и защиты (СУЗ) ядерного реактора. Исполнительный механизм СУЗ ядерного реактора содержит привод и канал, внутри которого коаксиально расположена штанга.

Изобретение относится к ядерным реакторам деления на бегущей волне, имеющим спектр быстрых нейтронов. Изобретение характеризует сборку регулирования реактивности, систему регулирования реактивности, реактор ядерного деления на бегущей волне, способ регулирования реактивности в реакторе, способы управления реактором, способ и систему определения применения регулируемо подвижного стержня.

Изобретение относится к ядерной технике и предназначено для использования в качестве стержней управления и защиты ядерных реакторов, преимущественно в реакторах на быстрых нейтронах с металлическим теплоносителем, например натриевым, свинцовым, свинцово-висмутовым.

Изобретение относится к ядерной технике и предназначено для использования в качестве стержней управления и защиты ядерных реакторов, преимущественно в реакторах на быстрых нейтронах с металлическим теплоносителем.

Изобретение относится к ядерной технике, в частности к поглощающим элементам системы управления и защиты корпусного водоохлаждаемого ядерного реактора, и может быть использовано в регулирующих органах, выполненных в виде одиночных поглощающих элементов с различным поперечным сечением или сборок, содержащих набор поглощающих элементов (ПЭЛ) или набор топливных элементов и ПЭЛ.

Изобретение относится к области ядерной энергетики, в частности к конструкции ампулы облучательного устройства ядерного реактора, и предназначено для производства источников гамма-излучения.

Изобретение относится к области ядерной энергетики, касается, в частности, конструкции звена облучательного устройства для ядерных канальных реакторов и может использоваться для производства гамма-источников из радиоактивного кобальта.

Изобретение может быть использовано при изготовлении сваркой оплавлением стальной детали, в частности подшипникового кольца. При осуществлении стыковой сварки производят оплавление и осадку с получением сварного шва (24).

Изобретение может быть использовано для соединения секций железнодорожных рельсов стыковой сваркой оплавлением с использованием виброоборудования. Предварительно осуществляют настройку и прикрепление виброоборудования на железнодорожный рельс.

Настоящее изобретение относится к шовообжимной клети. Она включает в себя комбинацию неподвижного участка 10, установленного в месте соединения линии производства свариваемых электросваркой сопротивлением труб, в котором обжимные валки, за исключением левого и правого верхних валков, разъемно собраны, и подвижного участка 20, располагающегося над неподвижным участком 10, внутри которого левый и правый верхние валки разъемно собраны, при этом подвижный участок наклоняется, принимая сторону задней поверхности в качестве точки поворота, по направлению к этой же стороне из положения сборки на неподвижном участке 10 в отведенное положение для открывания верхней части неподвижного участка 10.

Изобретение относится к улучшенному кольцу подшипника и способу его изготовления. Кольцо (160) подшипника имеет внутреннюю и наружную периферию, также имеет дорожку качения для элементов качения на одной из упомянутых периферий, причем кольцо подшипника имеет зубчатую структуру на одной из упомянутых периферий, а также имеет по меньшей мере одно сварное соединение (151).

Изобретение может быть использовано при изготовлении детали подшипника, например в виде сварного кольца или сегмента кольца, которая подвергается переменным механическим напряжениям, в частности, при качении или качении и скольжении.

Изобретение относится к кольцу (1) подшипника с фланцем (7), которое изготовлено из сортового проката фасонного профиля из высокоуглеродистой стали и содержит по меньшей мере одно сварное соединение, полученное при стыковой сварке оплавлением.

Изобретение относится к кольцу (1) подшипника, в частности роликового подшипника, которое изготавливается из сортового проката (2) прямого профиля, который изгибается в кольцевую форму, при этом кольцо (1) подшипника соединяется в процессе сварки встык оплавлением и дополнительно содержит дополнительный компонент (8), заключенный в материал кольца подшипника.

Изобретение может быть использовано при контактной стыковой сварке длинномерных изделий, в т.ч. профильного проката и труб.
Изобретение может быть использовано при контактной стыковой сварке труб из углеродистых и легированных сталей. Во внутреннюю полость труб перед сваркой подают инертный газ, в который вводят газообразные галогениды при следующем соотношении инертного газа и газообразных галогенидов, мас.%: инертный газ 80…97, газообразные галогениды 3…20.

Изобретение относится к строительству трубопроводов и может быть использовано при укладке с баржи подводных трубопроводов большого диаметра из стальных труб с бетонной изоляцией.
Наверх