Газовый эжектор

Эжектор предназначен для откачки газов. Эжектор содержит приемную камеру, камеру смешения с диффузором и соосно расположенное сопло. Эжектор выполнен многоканальным. Многосопловая камера жестко закреплена в стационарном корпусе. Многоканальный корпус выполнен из термопластических или композитных материалов, или металлов с плотностью не более 5 г/см3. Каждый канал многоканального корпуса представляет собой приемную камеру, камеру смешения и выхлопной диффузор. Каждому соплу соответствует свой канал. Расходно-напорные характеристики эжектора обеспечиваются геометрическими соотношениями и диапазонами размеров эжектора. Технический результат – повышение коэффициента эжекции, уменьшение массы и удобство эксплуатации эжектора. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к струйной технике, а конкретно к газовым эжекторам со сверхзвуковыми соплами и сужающимися камерами смешения, может быть использовано в авиации и индустриальной промышленности для откачки газов, пылевоздушных смесей в пылезащитных устройствах, а также в системах обогрева, вентиляции и кондиционирования воздуха на вертолетах.

Известны различные эжекторы, представляющие собой соосно установленные сопло активного газа и жестко закрепленную цилиндрическую камеру смешения с выхлопным коническим диффузором (Соколов Е.Я., Зингер Н.М. Струйные аппараты, 3 изд., перераб. - М.: Энергоатомиздат, 1989 г.; Сборник работ по исследованию сверхзвуковых газовых эжекторов, ЦАГИ 1961 г.).

Наиболее близким к заявляемому техническому решению является газовый эжектор, содержащий сужающуюся камеру смешения, горло, дозвуковой диффузор и центральное сверхзвуковое сопло. На выходной кромке сопла равномерно размещены малогабаритные вихреобразователи, выполненные в виде табов (патент RU 2341691, приоритет от 09.01.2007 г. МПК F04F 5/18, F04F 5/44).

Недостатками эжекторов, рассматриваемых в данных публикациях, являются: неоптимальные конфигурации сопла активного газа, приемной камеры, камеры смешения и выхлопного диффузора, что не обеспечивает в полной мере достижения необходимого соотношения коэффициента эжекции и разрежения на входе в приемную камеру. Также в качестве недостатков можно отметить большие габариты (вследствие необходимости использования длинной камеры смешения, порядка 4…8 калибров) и отсутствие легких, быстроразъемных либо открывающихся конструкций эжекторов.

Задачами заявляемого технического решения является повышение коэффициента эжекции k≥7, уменьшение массы и общего габарита с целью оптимизации компоновки изделия, а также выполнение конструкции в быстроразъемном исполнении.

Поставленная задача решается, благодаря тому, что газовый эжектор, содержащий приемную камеру, камеру смешения с диффузором и соосно расположенное сопло, согласно заявляемому изобретению - эжектор выполнен многоканальным в виде жестко закрепленной в стационарном корпусе многосопловой камеры и многоканального корпуса, выполненного из термопластических или композитных материалов, или металлов с плотностью не более 5 г/см3, при этом каждый канал представляет собой приемную камеру, камеру смешения и выхлопной диффузор, причем каждому соплу соответствует свой канал, а расходно-напорные характеристики эжектора обеспечиваются следующими геометрическими соотношениями и диапазонами размеров:

n≥2

l1/d=0,1…1,5,

l2/d=0,7…4,

α1=10…30°,

Dэкв/d=7,5…9,

L1/Dэкв=0,75…2,5,

L2/Dэкв=1,5…6,

L3/Dэкв=3,5…8,

α4=10…30°,

где n - количество сопел в многосопловой камере,

d - внутренний диаметр сопла,

l1 - длина проходного сечения сопла,

l2 - длина отрезка раскрытия сопла,

α1 - угол раскрытия сопла,

Dэкв - эквивалентный диаметр камеры смешения,

L1 - длина участка от среза сопла до входа в камеру смешения,

L2 - длина камеры смешения,

L3 - длина выхлопного диффузора,

α4 - угол раскрытия выхлопного диффузора.

При этом многоканальный корпус выполнен с возможностью открывания.

Предлагаемая многосопловая конструкция позволяет уменьшить габариты и массу эжектора с увеличением коэффициента эжекции до k≥7, при этом удобство эксплуатации достигается благодаря запорно-открывающемуся механизму с сохранением соосности сопловой камеры и многоканального корпуса.

Заявляемое изобретение поясняется чертежами:

фиг. 1 - общий вид эжектора с многосопловой камерой в приоткрытом состоянии;

фиг. 2 - вид на пружинный замок в разрезе;

фиг. 3 - общий вид эжектора в закрытом состоянии;

фиг. 4 - основные геометрические размеры сопла;

фиг. 5 - основные геометрические размеры эжектора в сборе.

Газовый эжектор (фиг. 1) состоит из стационарного корпуса 1 и открывающегося многоканального корпуса 2.

В стационарном корпусе 1 закреплена многосопловая камера 3 с фланцем 4 подвода активного газа и соплами 5 в количестве больше двух, например семи. Запорно-открывающийся механизм (фиг. 2) выполнен в виде петель 6 на стационарном корпусе 1 пружинных замков 7 и ответных элементов 8 под пружинные замки 7 на многоканальном корпусе, при этом по контуру стационарного корпуса 1 проложена уплотнительная прокладка 9 (фиг. 1), обеспечивающая герметичность прилегания стационарного 1 и многоканального 2 корпусов.

Открывающийся многоканальный корпус 2 (фиг. 3) эжектора состоит из приемных камер 10 и камер смешений 11 с выхлопными диффузорами 12 при том, что каждому каналу корпуса 2 соответствует свое сопло 5.

Многоканальный корпус 2 эжектора выполнен из термопластических материалов, со следующими основными характеристиками:

- Модуль упругости (Е) в пределах 4000…7000 МПа (предпочтительно 4000…5000 МПа);

- Относительное удлинение при разрыве 3…6% (предпочтительно 4…5%);

- Рабочая температура -60…+130C°.

Многоканальный корпус 2 может быть также выполнен из композитных материалов либо из металлов с плотностью не более 5 г/см3.

На фиг. 4 изображено сопло с указанием следующих параметров и соотношений:

угол раскрытия сопла α1=10…30° (предпочтительно α1=20…23°),

угол сужения перед соплом α2=30…60° (предпочтительно α1=40…43°),

l1/d=0,1…1,5 (предпочтительно l1/d=0,35…0,4),

l2/d=0,7…4 (предпочтительно l2/d=0,7…0,9),

где d - внутренний диаметр сопла,

l1 - длина проходного сечения сопла,

l2 - длина отрезка раскрытия сопла.

На фиг. 5 изображен эжектор в сборе с указанием следующих параметров и соотношений:

угол сужения приемной камеры α3=30…60° (предпочтительно α1=43…48°);

угол раскрытия выхлопного диффузора α4=10…30° (предпочтительно α1=20…23°);

Dэкв/d=7,5…9 (предпочтительно Dэкв/d=8…8,5);

L1/Dэкв=0,75…2,5 (предпочтительно L1/Dэкв=1,2…1,7);

L2/Dэкв=1,5…6 (предпочтительно L2/Dэкв=1,5…1,9);

L3/Dэкв=3,5…8 (предпочтительно L3/Dэкв=4…5),

где Dэкв - эквивалентный диаметр камеры смешения,

L1 - длина участка от среза сопла до входа в камеру смешения,

L2 - длина камеры смешения,

L3 - длина выхлопного диффузора.

Работа газового эжектора происходит следующим образом.

В сопловую камеру 3 в стационарном корпусе 1 через фланец 4 подают активный (эжектирующий) газ (направление А) (Фиг. 4) со следующими параметрами: Ga=0,11 кг/с; Pa=7,4 ата; t=280°C,

где Ga - расход активного газа,

Pa - давление активного газа,

t - температура активного газа.

Активный газ, распределяясь равномерно по многосопловой камере 3, со скоростью примерно 800 м/с выходит из сопел 5 и поступает в приемные камеры 10, соответствующие каждая своему соплу 5 (поток В, Фиг. 5).

Попадая в приемные камеры 10 (поток В фиг. 5), а затем в камеры смешения 11, активный газ передает часть своей кинетической энергии пассивному газу, находящемуся в покое, в результате чего происходит смешение газов и выравнивание скоростей, вследствие чего пассивный газ приобретает ускорение и происходит его подсос снаружи в приемные камеры 10, таким образом создается разрежение на входе в эжектор (поток В). Из камер смешения 11 поток газа поступает в выхлопные диффузоры 12 (направление С, фиг. 5), где происходит дальнейший рост давления, а на входе приемных камер 10, соответственно, дальнейшее понижение давления или рост разрежения.

Расход пассивного воздуха для данной конструкции составляет 0,86 кг/с при сопротивлении сети на входе в приемные камеры 10, равном нулю и 0,78 кг/с при сопротивлении сети на входе в приемные камеры эжектора, равным 300 мм вод.ст., что соответствует коэффициенту эжекции 7,1…7,8.

Открывают эжектор следующим образом - тянут за кольца пружинных замков 7 в направлении D (Фиг. 2, Фиг. 3), ответные элементы 8, расположенные на многоканальном корпусе 2, выйдут из зацепления с пружинными замками 7 и открывающийся многоканальный корпус 2 на петлях 6 откинется вниз.

Закрывают эжектор в обратном порядке - многоканальный корпус 2 поднимают и прижимают к стационарному корпусу 1, пружинные замки 7 за кольца отводятся в направлении D (Фиг. 2, Фиг. 3), многоканальный корпус 2 плотнее прижимают к уплотнительной прокладке 9, пружинные замки 7 отпускаются и входят в зацепление с ответными элементами 8 пружинных замков 7, таким образом многоканальный корпус 2 фиксируют в закрытом положении.

1. Газовый эжектор, содержащий приемную камеру, камеру смешения с диффузором и соосно расположенное сопло, отличающийся тем, что эжектор выполнен многоканальным в виде жестко закрепленной в стационарном корпусе многосопловой камеры и многоканального корпуса, выполненного из термопластических или композитных материалов, или металлов с плотностью не более 5 г/см3, при этом каждый канал представляет собой приемную камеру, камеру смешения и выхлопной диффузор, причем каждому соплу соответствует свой канал, а расходно-напорные характеристики эжектора обеспечиваются следующими геометрическими соотношениями и диапазонами размеров:

n≥2

l1/d=0,1…1,5,

l2/d=0,7…4,

α1=10…30o,

Dэкв/d=7,5…9,

L1/Dэкв=0,75…2,5,

L2/Dэкв=1,5…6,

L3/Dэкв=3,5…8,

α4=10…30°,

где n - количество сопел в многосопловой камере,

d - внутренний диаметр сопла,

l1 - длина проходного сечения сопла,

l2 - длина отрезка раскрытия сопла,

α1 - угол раскрытия сопла,

Dэкв - эквивалентный диаметр камеры смешения,

L1 - длина участка от среза сопла до входа в камеру смешения,

L2 - длина камеры смешения,

L3 - длина выхлопного диффузора,

α4 - угол раскрытия выхлопного диффузора.

2. Газовый эжектор по п. 1, отличающийся тем, что многоканальный корпус выполнен с возможностью открывания.



 

Похожие патенты:

Вентилятор предназначен для создания воздушной струи в комнате, в офисе или других помещениях. Безлопастной вентилятор содержит сопло (14), установленное на основании (12), и средство создания воздушного потока.

Изобретение относится к безмашинному способу прямого преобразования тепловой энергии в электрическую в жидкостных магнитогидродинамических генераторах (МГД-генераторах) и может быть использовано не только в стационарных и транспортных установках, но и в других комбинированных энергетических устройствах, утилизирующих излучаемое тепло существующих энергетических установок, повышая их кпд.

Изобретение относится к области машиностроения, в частности к струйным насосам и эжекторам. .

Изобретение относится к струйным аппаратам, применяемым в системах отопления и горячего водоснабжения зданий. .

Изобретение относится к области машиностроения, в частности к струйным насосам, компрессорам и эжекторам. .

Изобретение относится к струйным аппаратам. .

Изобретение относится к области струйной техники, преимущественно к струйным насосам (элеваторам) систем теплоснабжения и регулирования температуры горячей воды в системе водяного отопления.

Изобретение относится к струйным насосам перемещения жидких сред. .

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. В эжекторе, содержащем распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру. Каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет переменное поперечное сечение, сужающееся по ходу движения потока, а на внутренней поверхности отверстия втулки выполнены кольцевые канавки, расположенные по винтовой траектории. Кроме того, камера смешения состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет постоянное поперечное сечение. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. Аппарат содержит распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру, причем каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного полимерного материала, при этом втулка имеет возможность вращательного движения относительно обечайки за счет зазора между внутренней стенкой обечайки и внешней поверхности втулки, а на внутренней поверхности втулки закреплены лопасти. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 3 ил.
Наверх