Способ управления индикаторной гироскопической платформой и устройство для его осуществления

Изобретение относится к точному приборостроению, а именно к гироскопической технике, и может быть использовано в индикаторных гиростабилизаторах. Технический результат - выравнивание скоростей управления платформой. Для этого индикаторная гироскопическая платформа содержит электромеханическую часть, состоящую из гироскопа, дифференциальных датчиков угла первого и второго канала гироскопа, первого и второго датчиков момента первого канала гироскопа, первого и второго датчиков момента второго канала гироскопа, шунтирующих резисторов, датчиков угла платформы, двигателей стабилизации платформы, оси управления X и Y и электронную часть, состоящую из первого и второго усилителей управления платформой, первого и второго усилителей стабилизации платформы, диодов. Способ выравнивания скоростей управления платформой заключается в регулировке шунтирующими резисторами тока, протекающего в обмотках датчиков момента гироскопа, таким образом, чтобы моменты, создаваемые каждым датчиком момента гироскопа, и как следствие скорости управления платформой были одинаковы. 2 н.п. ф-лы, 1 ил.

 

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в индикаторных гиростабилизаторах.

Задача управления гиростабилизатором возникает при необходимости разворота стабилизированной платформы по какому-либо закону относительно некоторой системы координат к заданному углу.

Известен способ [1] управления платформой путем подачи управляющего сигнала в датчики момента гироскопа.

Недостатком данного способа является разница скоростей управления каналов платформы из-за неодинаковых параметров датчиков момента гироскопа, что приводит к неточности приведения платформы к заданному углу.

Известна гироскопическая индикаторная платформа [1], содержащая гироскоп, датчики угла и датчики момента гироскопа, вход управления платформы, двигатели стабилизации платформы.

Недостатком данного устройства является отсутствие регулировки скоростей управления платформой, что приводит к неточности приведения платформы к заданному углу.

Наиболее близким к заявленному способу является способ [2], реализуемый в гиростабилизаторе, который заключается в подаче управляющего сигнала на датчики момента гироскопа.

Недостатком данного способа является разница скоростей управления платформой и наличие дополнительной скорости в перекрестном канале, что приводит к неточности приведения платформы к заданному углу.

Наиболее близким к заявленному устройству является гироскопическая индикаторная платформа [2], содержащая платформу, гироскоп, два датчика момента по каждой оси, причем оси датчиков момента развернуты относительно осей платформы на 45°, датчики угла контура стабилизации, двигатели стабилизации по каждой оси, усилители стабилизации по каждому каналу. Недостатком данного устройства является отсутствие регулировки скоростей управления платформой, что приводит к неточности приведения платформы к заданному углу.

Техническим результатом изобретений является повышение точности приведения платформы к заданному углу и снижение трудоемкости изготовления гиростабилизатора за счет исключения необходимости подбора датчиков момента гироскопа и регулировки усилителей управления.

Задачей, на решение которой направлены настоящие изобретения, является выравнивание скоростей управления платформой.

Поставленная задача достигается тем, что в способе управления индикаторной гироскопической платформой, заключающемся в подаче управляющего сигнала на датчики момента гироскопа, согласно изобретению токи, протекающие по обмоткам датчиков момента, регулируют посредством регулировочных резисторов, таким образом, что момент, создаваемый каждым датчиком момента, обеспечивает одинаковую скорость управления по каждому каналу в каждом направлении.

В индикаторную гироскопическую платформу, состоящую из гироскопа с ротором на сферической опоре и двумя каналами, содержащими дифференциальные датчики угла и два диаметрально расположенных датчика момента в каждом канале, входы управления платформы, датчики угла платформы и двигатели стабилизации платформы, причем дифференциальные датчики угла гироскопа соединены через усилители и стабилизации с соответствующими двигателями стабилизации платформы, согласно изобретению дополнительно введены регулировочные резисторы, параллельно подключенные к каждому датчику момента гироскопа.

К существенным отличиям предложенного способа относится то, что регулировка резисторами, подключенными параллельно к каждому датчику момента гироскопа, тока, протекающего через катушку датчика момента, обеспечивает выставку одинаковой скорости управления платформой в каждом направлении, что исключает необходимость подбора датчиков момента и обеспечивает полную взаимозаменяемость электромеханической и электронной частей платформы.

Скорость управления индикаторной платформой соответствует скорости управления гироскопом и определяется формулой:

где w - скорость управления гироскопом;

М - момент, создаваемый датчиком момента гироскопа;

Н - кинетический момент гироскопа.

Если, к примеру, в качестве датчика момента гироскопа используется электромагнит, работающий на постоянном токе, то формула для определения электромагнитного момента, создаваемого датчиком момента согласно [3], имеет следующий вид:

,

где F - намагничивающая сила;

G - магнитная проводимость;

Ψ - угол отклонения ротора от нейтрального положения.

Намагничивающая сила для любого электромагнита определяется формулой:

,

где I - ток в катушке датчика момента;

W - число витков в катушке.

Подставляя в (1), получим

,

где - крутизна управления гироскопа или крутизна датчика момента гироскопа.

Изменяя регулировочными резисторами ток, протекающий через обмотку датчика момента, можно добиться одинаковой скорости платформы во все направления.

К существенным отличиям устройства относится введение в него регулировочных резисторов, подключенных параллельно каждому датчику момента гироскопа, обеспечивающих возможность регулировки тока, протекающего через обмотку датчика момента гироскопа.

Предлагаемое изобретение иллюстрируется чертежом, где представлены гироскоп 1, дифференциальный датчик 2 угла первого канала гироскопа, дифференциальный датчик 3 угла второго канала гироскопа, первый датчик 4.1 момента, второй датчик 4.2 момента первого канала гироскопа, первый датчик 5.1 момента, второй датчик 5.2 момента второго канала гироскопа, входы 6, 7 усилителей 14, 15 управления платформы, диоды 16,17,18,19, датчики 8, 9 угла платформы, двигатели 10, 11 стабилизации платформы, усилители 12, 13 стабилизации платформы, оси управления X 20 и Y 21, регулировочные резисторы 22, 23, 24, 25.

Дифференциальный датчик 2 угла первого канала гироскопа 1 соединен через усилитель 12 стабилизации платформы с двигателем 10 стабилизации платформы. Дифференциальный датчик 3 угла второго канала гироскопа 1 соединен через усилитель 13 стабилизации платформы с двигателем 11 стабилизации платформы.

Вход 6 усилителя управления платформой соединен с усилителем 14 управления платформы, выход которого подключен в прямом направлении через диод 16 ко второму датчику 4.2 момента первого канала гироскопа и в обратном направлении через диод 17 к первому датчику 4.1 момента первого канала гироскопа, а выходы обоих датчиков 4.1 и 4.2 момента подключены к общему проводу. Вход 7 усилителя управления платформой соединен с усилителем 15 управления платформы, выход которого подключен в прямом направлении через диод 19 ко второму датчику 5.2 момента второго канала гироскопа и в обратном направлении через диод 18 - к первому датчику 5.1 момента второго канала гироскопа, а выходы обоих датчиков 5.1 и 5.2 момента подключены к общему проводу. Параллельно датчикам 4.1, 4.2, 5.1, 5.2 момента гироскопа подключены регулировочные резисторы 22, 23, 24, 25.

Способ управления индикаторной гироскопической платформой осуществляется следующим образом.

При подаче на вход 6 усилителя 14 управления, например положительного сигнала с выхода усилителя 14 управления, через диод 16 сигнал поступает на датчик 4.2 момента гироскопа, который создает момент, заставляющий прецессировать ротор гироскопа с угловой скоростью w4.2.

В дифференциальных датчиках 2 и 3 угла гироскопа появляются сигналы рассогласования, которые поступают на усилители 12, 13 стабилизации платформы. Сигналы с выходов 12, 13 усилителей стабилизации поступают на двигатели 10, 11 стабилизации платформы, которые приводят в движение платформу с угловой скоростью w4.2, отслеживая движение ротора гироскопа. Резистором 22 скорость управления гироскопа, а значит и платформы, регулируется до значения

w4-2=wРЕГ, где

w4-2 – скорость, создаваемая датчиком момента 4.2,

wРЕГ – скорость, отрегулированная резистором 22.

Аналогично, при подаче на вход 7 усилителя 15 управления положительного сигнала с выхода усилителя 15 управления через диод 19 сигнал поступает на датчик 5.2 момента гироскопа, который создает момент, заставляющий прецессировать ротор гироскопа с угловой скоростью w5-2.

В дифференциальных датчиках 2 и 3 угла гироскопа появляются сигналы рассогласования, которые поступают на усилители 12, 13 стабилизации платформы. Сигналы с выходов усилителей 12, 13 стабилизации поступают на двигатели 10, 11 стабилизации платформы, которые приводят в движение платформу с угловой скоростью w5-2, отслеживая движение ротора гироскопа. Резистором 23 скорость управления гироскопа, а значит и платформы, регулируется до значения

w5-2=wРЕГ, где

w5-2 – скорость, создаваемая датчиком момента 5.2,

wРЕГ – скорость, отрегулированная резистором 23.

При подаче на входы 6, 7 управления отрицательных сигналов управления резисторами 24 и 25 регулируются скорости управления, создаваемые датчиками 4.1 и 5.1 момента гироскопа

w4-1=wРЕГ и w4-2=wРЕГ, где

w4-1 и w4-2 – скорости, создаваемые датчиками момента 4.2 и 5.2 соответственно;

wРЕГ – скорость, отрегулированная резисторами 24 и 25.

Т.к. скорости управления гироскопа одинаковы, то и проекции этих скоростей на оси управления платформой будут одинаковы. В перекрестном канале проекции этих скоростей взаимно уничтожатся и влияния канала на канал при управлении не будет, что в конечном итоге приведет к повышению точности приведения платформы к заданному углу.

Предложенные изобретения использованы в гиростабилизированной платформе и показали хорошие результаты.

Источники информации:

1. Гироскопические системы, ч. II, под редакцией Д.С. Пельпора, М., Высшая школа, 1977 г., стр. 115, 116, 139, 140, рис. 3.6.

2. Патент РФ №2391630, G01C 19/44, 2006 г.

3. Гироскопические системы, ч. III, под общей редакцией Д.С. Пельпора, М., Высшая школа, 1972 г., стр. 406, 407, 412, 413, 414.

1. Способ управления индикаторной гироскопической платформой, заключающийся в подаче управляющего сигнала на датчики момента гироскопа, отличающийся тем, что токи, протекающие по обмоткам датчиков момента, регулируют посредством регулировочных резисторов, таким образом, что момент, создаваемый каждым датчиком момента, обеспечивает одинаковую скорость управления платформы по каждому каналу в каждом направлении.

2. Устройство для осуществления способа управления платформой, состоящее из гироскопа с ротором на сферической опоре и двумя каналами, содержащими дифференциальные датчики угла и два диаметрально расположенных датчика момента в каждом канале, входы управления платформы, датчики угла платформы и двигатели стабилизации платформы, причем дифференциальные датчики угла гироскопа соединены через усилители стабилизации с соответствующими двигателями стабилизации платформы, отличающееся тем, что в него введены регулировочные резисторы, параллельно подключенные к каждому датчику момента гироскопа.



 

Похожие патенты:

Изобретение относится к твердотельным волновым гироскопам (ТВГ), работающим в режиме датчика углового положения. Способ компенсации дрейфа ТВГ включает предварительное определение математических параметров модели температурной скорости дрейфа ТВГ, определение углового положения волны резонатора в рабочем режиме и алгоритмическую компенсацию его температурной скорости дрейфа в соответствии с этой моделью, рассчитывают значения производной частоты резонатора, при этом модель дрейфа использует значения углового положения волны, частоту резонатора и производную частоты и рассчитывается в виде функции где Ak, Bk - полиномы степени N по члену f и степени M по члену g; θ - значение углового положения волны; - резонансная частота твердотельного волнового гироскопа; g - значение производной резонансной частоты; N - максимальная степень в функциональной зависимости величины дрейфа от частоты; M - максимальная степень в функциональной зависимости величины дрейфа от производной частоты; K - количество гармоник в функциональной зависимости дрейфа от угла; параметры ak,i,j, bk,i,j находят для конкретного прибора путем проведения съемов значений электрического угла θ, скорости изменения электрического угла, резонансной частоты производной резонансной частоты g для различных температур и скоростей изменения температур на неподвижном основании.

Изобретение относится к трехосным гироскопам средней и повышенной точности, а конкретно к способу оценки их систематических погрешностей. Технический результат заключается в повышении точностных характеристик трехосного гироскопа за счет повышения достоверности оценки систематических погрешностей трехосного гироскопа, с одновременным уменьшением трудоемкости процесса измерений.

Изобретение относится к области прецизионного приборостроения и может быть использовано при создании и эксплуатации навигационных систем на базе гироскопических устройств (ГУ).

Изобретение относится к области приборостроения, в частности к измерительной технике, и предназначено для измерения угловой скорости, например, в системах управления, навигации, стабилизации и наведения.

Изобретение относится к регулирующим устройствам. Заявлена группа изобретений, включающая регулирующее устройство, датчик угловой скорости, способ эксплуатации регулирующего устройства с гармонической задающей величиной.

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов трехосных лазерных гироскопов (ТЛГ) с взаимно ортогональными осями чувствительности при проведении калибровки (паспортизации) бесплатформенных инерциальных навигационных систем, построенных на основе ТЛГ, или их составных частей.

Изобретение относится к области авиационно-космического приборостроения и может найти применение для пространственной угловой ориентации орбитальных космических аппаратов (КА), в которых применяются системы ориентирования, построенные по принципу орбитального гирокомпасирования.

Изобретение относится к области авиационно-космического приборостроения и может найти применение для повышения точности угловой ориентации орбитальных космических аппаратов (КА), в которых применяются системы ориентирования с использованием орбитальных гирокомпасов (ОГК).

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Двухстепенной поплавковый гироскоп содержит корпус с двумя торцевыми крышками, цилиндрическую поплавковую гирокамеру, установленную в корпусе на камневых опорах, поддерживающую жидкость, заполняющую зазор между корпусом гироскопа и поплавковой гирокамерой, обмотку обогрева и обмотку термодатчика, размещенные на наружной цилиндрической поверхности корпуса, датчик угла, датчик момента, при этом внутри корпуса соосно с ним установлен цилиндр, на внутренней поверхности которого вдоль поплавковой камеры изолированно от корпуса установлены две идентичные системы из m электродов, где m=2(n+2), n=1,2 …, жестко связанных с цилиндром, геометрический центр поверхности плоской развертки одной системы электродов лежит по одну сторону от плоскости, перпендикулярной продольной оси гироскопа, делит цилиндрическую поверхность встроенного цилиндра на две равные части и симметричен геометрическому центру поверхности плоской развертки второй системы.

Изобретение относится к следящим системам (СС) с гироскопическим приводом в качестве исполнительного механизма (ИМ). Технический результат - обеспечение устойчивой работы СС.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер. Заявленный гиростабилизатор оптических элементов, содержащий трехстепенной гироскоп, у которого во внешней рамке установлен гироузел, с которым кинематически шарнирно связан оптический элемент, и коррекционный двигатель, при этом оптический элемент представляет два зеркала, установленные во внешней рамке гироскопа симметрично относительно оси подвеса гироузла, а в кинематические шарнирные связи введены пружины, причем оси вращения зеркал параллельны оси подвеса гироузла, на котором с одной стороны в направлении оси ротора гиромотора установлена штанга с закрепленным на ее конце шарикоподшипнике, а на противоположном конце закреплена направляющая механического арретира, при этом шарикоподшипник штанги может перемещаться по направляющей бугеля, которая имеет П-образное сечение и средний радиус, равный длине штанги от центра подвеса гироузла до шарикоподшипника, при этом ось вращения бугеля находится в корпусе прибора и перпендикулярна оси подвеса внешней рамки. Технический результат состоит в увеличении угла обзора и угловых скоростей слежения с увеличением точности управления оптическими элементами с уменьшением массы и габаритов. 2 з.п. ф-лы, 7 ил.

Изобретение относится к микромеханическим гироскопам (ММГ) вибрационного типа. Сущность изобретения заключается в том, что в ММГ с квадратурными электродами и источниками напряжения, соединенными с ними, введены последовательно сумматор и делитель, обеспечивающие компенсацию изменений зазора, и источники напряжения выполнены управляемыми, при этом вход их управления соединен с выходом делителя. Технический результат - повышение точности ММГ. 1 ил.

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что электроды на внутренней поверхности цилиндра двухстепенного поплавкового гироскопа устанавливают таким образом, что плоскость симметрии i-той пары электродов в каждой системе, проходящая через продольную ось корпуса, составляет с плоскостью, проходящей через ось вращения ротора гиромотора и продольную ось корпуса, угол, равный α=180⋅(2i+1)/m, где m - количество электродов в одной системе, i=0, 1, 2… - порядковый номер плоскости симметрии пары электродов. Технический результат – уменьшение времени готовности гироскопа, расширение диапазона функционирования гироскопа без потери точности. 3 ил.

Изобретение относится к области приборостроения, а именно к высокоточным комплексным навигационным системам с использованием астроизмерений, и может найти применение в составе бортового оборудования авиационно-космических объектов. Технический результат - повышение точности астровизирования. Для этого осуществляют выбор звезды, доступной визированию в данной точке местоположения визирующего объекта в данный момент времени, вычисляют ее декартовые координаты в проекциях на оси сопровождающего трехгранника и углы наведения на нее телеблока, последующее визирование звезды с определением ее фактических координат, которые пересчитываются в ошибки корректируемой системы, при этом на этапе визирования звезды основание телеблока устанавливается в плоскости местного горизонта. Причем определенные в проекциях на оси сопровождающего трехгранника декартовы координаты звезды перепроектируются на оси базового приборного трехгранника перемножением вектора ее декартовых координат на транспонированную матрицу ориентации визирующего объекта, и по полученным декартовым координатам в проекциях на оси приборного трехгранника вычисляются углы наведения телеблока, которые используются в качестве целеуказания при визировании звезды. 5 ил.

Предложен способ для определения факта выхода гироскопа на установившийся режим работы, позволяющий его использовать для достоверных измерений, и устройство для реализации данного способа. Заявленный способ оптимизации времени включения Кориолисова гироскопа заключается в том, что система масс указанного гироскопа приводится в состояние возбуждающих колебаний параллельно первой оси (х), причем отклонение системы масс в результате действия Кориолисовой силы вдоль второй оси (y), заданной перпендикулярно первой оси (х), проверяют с использованием выходного сигнала Кориолисова гироскопа, содержащего определение амплитуды (А) возбуждающих колебаний Кориолисова гироскопа в заданный момент времени, и генеририруют нормированный выходной сигнал (S0) от Кориолисова гироскопа путем умножения определенного выходного сигнала (S) на отношение амплитуды (А0) возбуждающих колебаний Кориолисова гироскопа в установившемся состоянии к определенной амплитуде (А), на основании которого судят о выходе гироскопа на установившийся режим работы, и тем самым оптимизируют процесс использования гироскопа с момента его включения. Указанный способ реализуется при помощи соответствующего устройства, включающего в себя специальные электронные блоки. Данная группа изобретений позволяет более оптимально использовать Кориолисов гироскоп, начиная с момента его включения. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к устройствам, осуществляющим арретирование ротора электродвигателя-маховика в магнитном подвесе и может быть использовано в космической технике. Устройство арретирования ротора электродвигателя-маховика в магнитном подвесе, содержит две конические опоры, по меньшей мере одна из которых подвижна с возможностью поворота вокруг своей оси при одновременном перемещении в осевом направлении, приводной двигатель арретирующего устройства, ротор которого установлен на подвижном элементе, кольцевой ограничитель радиальных и угловых перемещений вала ротора, который при контактном взаимодействии с валом вращающегося ротора в режиме снятого электропитания с электромагнитных опор и приводного двигателя арретирующего устройства перемещает подвижную опору в окружном и осевом направлениях до жесткого контакта вала подвижной опоры с валом ротора электродвигателя-маховика и валом второй опоры и последующего совместного вращения ротора и валов обеих опор. Каждая опора содержит двигатель вращения вала опоры, который при функционирующем магнитном подвесе и вращающемся роторе электродвигателя-маховика вращает вал опоры в направлении, совпадающем с направлением вращения ротора, так, что угловая скорость вращения вала опоры равна или близка к угловой скорости вращения вала ротора. Технический результат – повышение надежности и долговечности устройства арретирования. 6 ил.
Наверх