Способ получения комплексов лантаноидов с 5, 15-дифенилтетрабензопорфином

Изобретение относится к способу получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином. Способ включает взаимодействие фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, сплавление полученного 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он с фенилуксусной кислотой и солью лантаноида при температуре 320-330°C в течение 50-60 мин, выделение и очистку целевых продуктов методом хроматографии. Техническим результатом изобретения являются более высокие выходы целевых соединений при меньшем числе химических стадий. 1 з.п. ф-лы, 9 ил, 7 табл., 7 пр.

 

Изобретение относится к химической промышленности, а именно, к получению комплексов индия, европия, гадолиния, гольмия, эрбия, иттербия и лютеция с 5, 15-дифенилтетрабензопорфином.

За прототип принят способ получения комплексов трехвалентных металлов, в том числе индия и гадолиния, с 5,15-дифенилтетрабензопорфином. Он включает синтез исходного дибензопиррометена, темплатный синтез на его основе комплекса с цинка с 5,15-дифенйлтетрабензопорфином, его деметаллирование соляной кислотой и взаимодействие основания 5,15-дифенилтетрабензопорфина с хлоридом металла в растворителе. [Н.Е. Галанин // Дисс. докт. хим. наук. 2010. Иваново. Ивановский гос. хим.-технол. университет. 300 с.].

Способ реализуется в четыре стадии:

I стадия. Темплатный синтез 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она путем конденсации фталимида с ацетатом цинка.

Реакцию вели при температуре 230-240°C в течение 20-30 минут. Полученную реакционную массу измельчали, кипятили 10 минут в 200 мл 10%-ной соляной кислоты, осадок отфильтровывали, промывали водой и очищали колоночной хроматографией, используя в качестве элюента ацетон. Получен 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он. Выход - 40%.

II стадия. Темплатный синтез комплекса цинка с 5,15-дифенилтетрабензопорфином путем конденсации 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она с фенилуксусной кислотой и оксидом цинка.

Реакцию вели при температуре 340°C в течение 1 часа. Реакционную массу измельчали, комплекс цинка экстрагировали бензолом и очищали колоночной хроматографией, используя в качестве элюента бензол. Получен 5,15-дифенилтетрабензопорфиринат цинка. Выход - 32%.

III стадия. Деметаллирование комплекса цинка с 5,15-дифенилтетрабензопорфирином путем обработки соляной кислотой.

Комплекс цинка растворяли хлороформе, добавляли соляную кислоту, перемешивали 2 часа, разбавляли водой, органический слой отделяли, промывали водой, разбавленным раствором аммиака, растворитель отгоняли. Порфирин очищали колоночной хроматографией, используя в. качестве элюента бензол. Получен 5,15-дифенилтетрабензопорфирин. Выход - 75%.

IV стадия. Синтез комплексов индия или гадолиния с 5,15-дифенилтетрабензопорфирином путем взаимодействия основания порфирина с хлоридами металлов в кипящем ДМФА.

0.1 мМоля 5,15-дифенилтетрабензопорфирина растворяли в 20 мл ДМФА, добавляли 2 ммоля хлорида соответствующего металла и выдерживали полученную смесь при кипении в течение 3 часов. По завершении выдержки реакционную массу разбавляли водой, выпавший осадок отфильтровывали, промывали 200 мл воды и сушили на воздухе при 80°C. Полученные металлокомплексы очищали колоночной хроматографией, используя в качестве элюента бензол. Получены комплексы индия и гадолиния с 5,15-дифенилтетрабензопорфирином. Выход по стадии комплекса индия - 47%, комплекса гадолиния - 27%. В пересчете на исходный фталимид выход комплекса индия - 4.5%, комплекса гадолиния - 2.6%

Недостатками этого способа являются:

- Большое число химических стадий.

- Малый выход целевых продуктов;

Техническим результатом изобретения является поиск способа получения комплексов лантаноидов, в том числе индия, европия, гадолиния, гольмия, эрбия, иттербия и лютеция с 5,15-дифенилтетрабензопорфирином, который состоял бы из меньшего числа химических стадий и позволял бы получать целевые соединения с более высокими выходами.

Указанный результат достигается тем, что в способе получения комплексов лантаноидов с 5, 15-дифенилтетрабензопорфином, заключающемся во взаимодействии фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, выделении и очистке целевых продуктов методом хроматографии, согласно изобретению, полученный 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он сплавляют с фенилуксусной кислотой и солью лантаноида при температуре 320-330°C в течение 50-60 мин, а при очистке хроматографией в качестве элюента используют смесь толуола, ацетона и этанола в соотношении 1:1:1.

Изобретение позволяет:

1. Провести процесс в две химические стадии вместо четырех.

2. Повысить выход комплексов в расчете на фталимид до 7-12%, т.е. более чем в 2.5 раза.

Проведение синтеза целевых продуктов в несколько стадий с выделением промежуточных продуктов каждой стадии сопровождается их потерями. Сокращение числа стадий с четырех до двух позволило повысить общий выход целевых продуктов.

Изобретение поясняется чертежами, где на фиг. 1 приведен электронный спектр поглощения 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он в ацетоне; на фиг. 2 - масс-спектр (LDI-TOF) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он; на фиг. 3 - изотопное расщепление иона [М-Cl+Н]+ в масс-спектре комплекса лютеция с 5,15-дифенилтетрабензопорфирином: где а - найдено, b - вычислено; на фиг. 4 - изотопное расщепление иона [М-Cl+Н]+ в масс-спектре комплекса иттербия с 5,15-дифенилтетрабензопорфирином, где а - найдено, b - вычислено; на фиг. 5 - изотопное расщепление иона [М-Cl+Н]+ в масс-спектре комплекса, эрбия с 5,15-дифенилтетрабензопорфирином, где а - найдено, b - вычислено; на фиг. 6 - изотопное расщепление иона [М-Cl+Н]+ в масс-спектре комплекса гольмия с 5,15-дифенилтетрабензопорфирином, где а - найдено, b - вычислено; на фиг. 7 - изотопное расщепление иона [М-Cl+Н]+ в масс-спектре комплекса гадолиния с 5,15-дифенилтетрабензопорфирином, где а - найдено, b -вычислено; на фиг. 8 - изотопное расщепление иона [М-Cl+Н]+в масс-спектре комплекса европия) с 5,15-дифенилтетрабензопорфирином, где а - найдено, b - вычислено; на фиг. 9 - электронные спектры поглощения комплексов лютеция, иттербия, эрбия, гольмия, гадолиния и европия с 5,15-дифенилтетрабензопорфирином в ДМФА.

Для реализации способа используются следующие вещества:

Фталимид - ТУ 6-09-3635-75;

Ацетат цинка дигидрат - ГОСТ 5823-78;

Фенилуксусная кислота, импортная, CAS №103-82-2;

Индий треххлористый, импортный, CAS №10025-82-8;

Европий треххлористый 6-водный, импортный, CAS №10025-76-0;

Гадолиний треххлористый 6-водный, импортный, CAS №13450-84-5;

Гольмий треххлористый 6-водный, импортный, CAS №10138-62-2;

Эрбий треххлористый 6-водный, импортный, CAS №10025-75-9;

Иттербий треххлористый 6-водный, импортный CAS №10361-91-8;

Лютеций хлористый 6-водный, импортный, CAS №15230-79-2;

Способ реализуют следующим образом.

Пример 1.

I стадия. Взаимодействие фталимида с ацетатом цинка, по схеме:

Смесь 16 г фталимида и 25 г дигидрата ацетата цинка нагревают до 230-240°C и выдерживают при этой температуре 20-30 мин. После охлаждения плав извлекают, измельчают и промывают последовательно 10% раствором едкого натра, водой, 10% раствором соляной кислоты, водой до нейтральной реакции промывных вод и высушивают.

Получен 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он.

Выход 6.04 г (40%), порошок красного цвета, растворим в ацетоне, пиридине, ДМФА, уксусной кислоте, не растворим в воде. Тпл. 231-232°C.

Электронный спектр поглощения (ДМФА), λмакс., нм (А/Амакс): 354 (0.62), 469 пл., 500 (1.00), 534 (0.76).

1Н ЯМР, δН, м.д.: 9.73 с (1H, NH), 8.09-7.75 м (8Н, Ar-H), 5.82 с (1Н, мезо-H).

Масс-спектр (LDI-TOF, режим отрицательных ионов), m/z: 273.37 [М-H]-.

Найдено: С 74.40, Н 3.70, N 10.19. C17H10N2O2

Вычислено: С 74.45 Н 3.67, N 10.21.

II стадия. Взаимодействие 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она с фенилуксусной кислотой и треххлористым индием, по схеме:

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.16 г (0.72 ммоль) треххлористого индия сплавляли при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол - ацетон - этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс индия с 5, 15-дифенилтетрабензопорфином.

Выход 0.1 г (32%). В прототипе выход комплекса составил 0.014 г (4,5%). Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс., нм (lg ε): 636 (4.88), 434 (5.22).

Масс-спектр (MALDI), m/z: 775.28 [M-Cl]+.

Найдено, %: С 71.22; Н 3.51; N 6.14. C48H28ClInN4.

Вычислено, %: С 71.08; Н 3.48; N 6.91.

Результаты проведенной серии опытов приведены в таблице 1:

При температуре реакции ниже 320°C скорость реакции становится ниже, требуется большее время сплавки. Увеличение времени сплавки более 60 минут и (или) температуры более 330°C может привести к отщеплению заместителей и понижает выход целевого продукта.

Пример 2.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида европия.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.19 г (0.72 ммоль) треххлористого европия нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол-ацетон-этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс европия с 5, 15-дифенилтетрабензопорфином. Выход 0.056 г (18%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс., нм (lg ε): 630 (4.60), 427 (5.03).

Масс-спектр (MALDI), m/z: 814.24 [М-Cl]+.

Найдено, %: С 65.34; Н 3.58; N 6.10. C48H28ClEuN4⋅2H2O.

Вычислено, %: С 65.20; Н 3.65; N 6.34.

Результаты проведенной серии опытов приведены в таблице 2:

Выводы по результатам опытов аналогичны примеру 1.

Пример 3.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида гадолиния.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.19 г (0.72 ммоль) треххлористого гадолиния нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол-ацетон-этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс гадолиния с 5, 15-дифенилтетрабензопорфином.

Выход 0.07 г (23%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс. нм (lg ε): 629 (4.62), 427 (5.06).

Масс-спектр (MALDI), m/z: 819.22 [М-Cl]+.

Найдено, %: С 64.14; Н 3.60; N 6.01. C48H28ClGdN4⋅2H2O.

Вычислено, %: С 64.81; Н 3.63; N 6.30.

Результаты проведенной серии опытов приведены в таблице 3:

Выводы по результатам опытов аналогичны примеру 1.

Пример 4.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида гольмия.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.195 г (0.72 ммоль) треххлористого гольмия нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол-ацетон-этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс гольмия с 5, 15-дифенилтетрабензопорфином.

Выход 0.08 г (26%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс., нм (lg ε): 628 (4.64), 427 (5.05).

Масс-спектр (MALDI), m/z: 826.46 [М-Cl]+.

Найдено, %: С 64.33; Н 3.56; N 5.98. C48H28ClHoN4⋅2H2O.

Вычислено, %: С 64.26; Н 3.60; N 6.24.

Результаты проведенной серии опытов приведены в таблице 4:

Выводы по результатам опытов аналогичны примеру 1.

Пример 5.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида эрбия.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.197 г (0.72 ммоль) треххлористого эрбия нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол - ацетон - этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс эрбия с 5, 15-дифенилтетрабензопорфином.

Выход 0.093 г (30%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс., нм (lg ε): 628 (4.71), 426 (5.11).

Масс-спектр (MALDI), m/z: 829.45 [М-Cl]+.

Найдено, %: С 65.11; Н 3.44; N 6.22. C48H28ClErN4H2O.

Вычислено, %: С 65.40; Н 3.43; N 6.36.

Результаты проведенной серии опытов приведены в таблице 5:

Выводы по результатам опытов аналогичны примеру 1.

Пример 6.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида иттербия.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.2 г (0.72 ммоль) треххлористого иттербия нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол - ацетон - этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс иттербия с 5, 15-дифенилтетрабензопорфином.

Выход 0.085 г (27%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс, нм (lg ε): 628 (4.62), 425 (5.07).

Масс-спектр (MALDI), m/z: 835.48 [М-Cl]+.

Найдено, %: С 64.69; Н 3.52; N 6.13. C48H28ClYbN4⋅2H2O.

Вычислено, %: С 63.68; Н 3.56; N 6.19.

Результаты проведенной серии опытов приведены в таблице 6.

Выводы по результатам опытов аналогичны примеру 1.

Пример 7.

I стадия. Осуществляют по примеру 1.

II стадия. Осуществляют по примеру 1, с использованием гексагидрата хлорида лютеция.

Смесь 0.2 г (0.72 ммоль) 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-она, 0.3 г (2.2 ммоль) фенилуксусной кислоты и 0.2 г (0.72 ммоль) треххлористого лютеция нагревали при температуре 320°C в течение 1 ч, охлаждали, измельчали и экстрагировали ДМФА в аппарате Сокслета. Экстракт разбавляли водой, экстрагировали хлороформом, органический слой промывали водой, растворитель отгоняли, остаток растворяли в минимальном количестве ДМФА и хроматографировали на колонке, заполненной силикагелем Kieselgel 60, используя в качестве элюента смесь толуол - ацетон - этанол (1:1:1), собирая основную зеленую зону.

Получен комплекс лютеция с 5, 15-дифенилтетрабензопорфином.

Выход 0.09 г (29%).

Порошок зеленого цвета, не растворим в воде, хорошо растворим в ДМФА, ДМСО, хлороформе, ТГФ.

Электронный спектр поглощения в ДМФА, λмакс., нм (lg ε): 627 (4.73), 423 (5.10).

Масс-спектр (MALDI), m/z: 836.48 [М-Cl]+.

Найдено, %: С 64.23; Н 3.41; N 6.21. C48H28ClLuN4⋅H2O.

Вычислено, %: С 64.84; Н 3.40; N 6.30.

Результаты проведенной серии опытов приведены в таблице 7.

Выводы по результатам опытов аналогичны примеру 1.

1. Способ получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином, заключающийся во взаимодействии фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, выделении и очистке целевых продуктов методом хроматографии, отличающийся тем, что полученный 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он сплавляют с фенилуксусной кислотой и солью лантаноида при температуре 320-330°C в течение 50-60 мин.

2. Способ по п. 1, отличающийся тем, что при очистке целевых продуктов методом хроматографии в качестве элюента используют смесь толуола, ацетона и этанола в соотношении 1:1:1.



 

Похожие патенты:

Изобретение относится к порфиразину общей формулы в которой R представляет собой BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил). Изобретение также относится к порфиразиновому комплексу гадолиния и к применению порфиразина и порфиразинового комплекса гадолиния в качестве мультимодального агента фотодинамической терапии злокачественных новообразований.

Изобретение относится к способу повышения летучести комплексов лантаноидов. Способ включает получение бета-дикетонатных комплексов лантаноидов и их обработку кислородсодержащими органическими соединениями.

Изобретение относится к новым соединениям, которые могут быть использованы в качестве лигандов для комплексообразования с ионами f-элементов во флуоресцентном анализе и экстракционном разделении ионов редкоземельных элементов, общей формулы: ,где R = 3-сульфофенил или трет-бутил, A = 2,6-пиридил или 2,2'-бипиридил-6,6'-диил или 1,10-фенантролин-2,9-диил.

Изобретение относится к люминесцентным соединениям тербия и может быть использовано для создания люминесцентных меток, например для маркировки ценных бумаг. Описываются разнолигандные комплексные соединения тербия с фенантролином формулы Tb(L)3(phen) и их сольваты, за исключением трис-салицилата Tb(sal)3(phen), где Tb(L)3 - комплекс тербия с анионным органическим лигандом L, проявляющий при комнатной температуре ионную, регистрируемую визуально люминесценцию тербия, (phen) – фенантролин.

Изобретение относится к способу получения анилиновых комплексов палладия общей формулы [(acac)Pd(L)2]BF4, где асас - ацетилацетонат, L - замещенные анилины, такие как 2,6-диизопропиланилин, 2,6-диметиланилин, орто-метиланилин, пара-метиланилин.

Изобретение относится к бис-иминовому комплексу лантанидов. Комплекс имеет общую формулу (I): в которой Ln представляет металл ряда лантанидов, выбранный из неодима (Nd), лантана (La), празеодима (Pr); n является 0; R1 и R2 одинаковые или отличаются друг от друга и представляют атом водорода; или их выбирают из линейных или разветвленных С1-С20 алкильных групп; R3 и R4 одинаковые и их выбирают из линейных или разветвленных С1-С20 алкильных групп, необязательно замещенных циклоалкильных групп, необязательно замещенных арильных групп; или R1 и R3 необязательно могут быть связаны друг с другом с образованием вместе с другими атомами, с которыми они связаны, насыщенного, ненасыщенного или ароматического цикла, содержащего от 3 до 6 атомов углерода, необязательно замещенных линейными или разветвленными С1-С20 алкильными группами, указанный цикл необязательно содержит другие гетероатомы, такие как кислород, сера, азот, кремний, фосфор, селен; Х1, Х2 и Х3 одинаковые, представляют атом галогена, такой как хлор, бром, йод.

Изобретение относится к бис-имин пиридиновому комплексу лантанидов с общей формулой (I) где Ln представляет неодим (Nd), R1 и R2 одинаковы и выбираются из линейных или разветвленных С1-С20 алкильных групп, R3 и R4 одинаковы или отличаются друг от друга и выбираются из необязательно замещенных циклоалкильных групп, необязательно замещенных арильных групп, Х1, Х2 и Х3 одинаковы и представляют атом галогена, такой как хлор, бром, йод.

Изобретение относится к оксо-азотсодержащему комплексу лантанидов с общей формулой (I) или (II): Значения радикалов следующие: Ln представляет неодим, R1 и R2 одинаковые и их выбирают из линейных или разветвленных С1-С20 алкильных групп, R3 выбирают из необязательно замещенных арильных групп; или R3 представляет кетоиминную группу с формулой: где R' и Rʺ одинаковые и представляют атом водорода, Y представляет атом кислорода; или -N-R4 группу, где R4 выбирают из необязательно замещенных арильных групп, X1, Х2 и Х3 одинаковые и представляют атом галогена, такой как, например, хлор, бром, йод.

Изобретение относится к композиции катализатора полимеризации. Композиция содержит активатор катализатора и комплекс лантаноидного металла общей формулы где М представляет собой атом лантаноидного металла; L представляет собой нейтральное основание Льюиса; z представляет собой целое число от 0 до 2 включительно, при условии, что (1) все L являются одинаковыми, когда z равно 2, и (2) М представляет собой Nd или Gd, когда z равно 0; R1 представляет собой двухвалентный атом или группу, которая содержит по меньшей мере один из С, О, S, N, Р, Si, Se, Sn или В; каждый R2 независимо представляет собой Н, атом галогена, замещенную или незамещенную углеводородную группу, радикал гетероциклического соединения или содержащую гетероатом группу и R3 представляет собой галогенсодержащую группу, группу, содержащую атом Al, или R2, при условии, что (1) две группы R2 совместно с атомами, к которым присоединена каждая из этих групп, могут образовывать кольцевую структуру, (2) одна группа R2 и R1 или R3 совместно с атомами, к которым присоединена каждая из этих групп, могут образовывать кольцевую структуру и/или (3) R1 и R3 совместно с атомами, к которым присоединена каждая из этих групп, могут образовывать кольцевую структуру.

Изобретение относится к фторзамещенным ароматическим карбоксилатам лантанидов общей формулы Ln(C6F5-x-yHxAyCOO)3(H2O)n, где х=0, 1, 2, 3, у=0, 1, n=0, ½, 1, 2; для х=0, у=0 Ln=La, Pr, Nd, Sm, Ho, Tm, Yb, Lu, Tb0.5Eu0.5; для остальных сочетаний x и у Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, Er, Lu, Tb0.5Eu0.5; A= -Cl, -NH2, -COOCnH2n+1 (n=1, 2), -CH2R, где R=H, OH, Cl, F, NH2, CnH(2n+1) (n=1, 2).

Изобретение относится к получению нового производного фталоцианина, а именно тетра-4-{4-[1-метил-1-(4-сульфофенил)этил]фенокси}тетра-5-нитрофталоцианина кобальта формулы: Вышеуказанное производное фталоцианина проявляет каталитическую активность при окислении серосодержащих органических соединений.

Изобретение относится к порфиразину общей формулы в которой R представляет собой BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил). Изобретение также относится к порфиразиновому комплексу гадолиния и к применению порфиразина и порфиразинового комплекса гадолиния в качестве мультимодального агента фотодинамической терапии злокачественных новообразований.

Изобретение относится к тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианинам кобальта и никеля общей формулы Соединения обладают красящей способностью по отношению к полистиролу и капрону и могут быть использованы в качестве исходных соединений для синтеза металлокомплекса тетра-4-{4-[1-метил-1-(4-сульфофенил)этил]фенокси}тетра-5-нитрофталоцианина с кобальтом, проявляющего каталитическую активность при окислении серосодержащих органических соединений.

Изобретение относится к области нефтехимии, а именно к способу получения углеводородов, пригодных для использования в качестве компонентов дизельного топлива, заключающемуся в декарбонилировании/декарбоксилировании стеариновой кислоты в растворителе в атмосфере водорода при 350-400°С и давлении водорода 0,1-5 МПа в присутствии гетерогенного катализатора, представляющего собой октанатриевую соль 2,3,9,10,16,17,23,24-октакарбоксифталоцианина кобальта, нанесенную на оксид алюминия.

Настоящее изобретение относится к борированным производным фторированных бактериохлоринов и их металлокомплексов. Соединения имеют общую формулу I в которой М=2Н, X=Cs (Ia), M=Cu, X=Cs (Iб), М=Zn, X=Cs (Iв), М=Ni, X=Cs (Iг), M=Pd, X=Cs (Iд), M=2H, X=Na (Ie), M=Cu, X=Na (Iж), М=Zn, X=Na (Iз), М=Ni, X=Na (Iи), М=Pd, X=Na (Iк).
Изобретение относится к способу получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, включающего каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана с использованием отработанного катализатора, подачу водорода под давлением, в котором гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана осуществляют в смеси с катализатором, отработанным на стадии каталитического гидрирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, в течение 10-40 минут, при этом отношение 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана к отработанному катализатору составляет 3,0-5,0, а подачу водорода при проведении гидрирования осуществляют при достижении реакционной массой температуры 85-99°С.
Изобретение относится к области органической химии, конкретно к способу получения 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, используемого в качестве высокоэффективного взрывчатого вещества.

Изобретение относится к способу получения лиганда 2-гидроксифталоцианина формулы I, включающему смешанную циклизацию незамещенного фталонитрила с 4-(о-гидроксиметилбензилокси)фталонитрилом в присутствии метилата лития и ацетата магния при кипячении в течение 3-5 ч в изоамиловом спирте, последующее отделение нерастворимого симметричного продукта - фталоцианина магния - путем простого фильтрования, разделение смеси растворимых продуктов низкосимметричного строения с помощью гельпроникающей хроматографии, гидролиз и деметаллирование выделенного 2-(о-гидроксиметилбензилокси)фталоцианина магния концентрированной серной кислотой или хлорной кислотой в растворе ацетонитрила.

Изобретение относится к соединению формулы I, в которой кольцо А и кольцо В представляют собой конденсированную бициклическую группу, R1 обозначает заместитель, выбранный из водорода, галогена или ORf7; каждый R2a, R2b, R2c, R3 независимо выбраны из водорода, галогена, -CN, -ORf7 или C1-6 алкила, в случае необходимости замещенного одним или более заместителями, выбранными из =O и Е1; X обозначает прямую связь; Y обозначает -арилен-, -гетероарилен-, причем -арилен- и -гетероарилен- могут быть замещены Е3, причем Е3 обозначает галоген, или -гетероциклоалкилен-, в случае необходимости замещенный одним или более заместителями, выбранными из =O и Е4, RN обозначает водород или C1-6 алкил, в случае необходимости замещенный одним или более заместителями, выбранными из =O и Е5; Z обозначает -С(О)-[Т1] - или -С(О)N(Rx3)-[Т1]-, в которых Т1 обозначает -(СН2)0-4-Т2- и Т2 обозначает прямую связь или -С(O)-N(Н)-СН2-; или его фармацевтически приемлемый сложный эфир, амид, причем эти соединения являются пригодными для использования в лечении заболеваний, в которых желательно и/или требуется ингибирование протеин- или липид-киназы (например, PI3-K, особенно класса I PI3K, семейства киназ PIM и/или mTOR), и особенно в лечении рака.
Настоящее изобретение относится к способу получения фталоцианина кобальта и его галогензамещенных производных. Способ включает взаимодействие фталевого ангидрида и/или его галогенпроизводного, взятого в виде ангидрида или соли моногалогенфталевой кислоты, карбамида, хлористого аммония и соли кобальта при повышенной температуре.

Изобретение относится к гомогенным катализаторам окисления диэтилдитиокарбамата натрия на основе тетра-4-(4'-карбоксифениламино)фталоцианина кобальта(II), модифицированного нитрогруппами или фрагментами аминобензойной кислоты общей формулы: где X = NH. Изобретение позволяет получить катализаторы окисления диэтилдитиокарбамата натрия, обладающие высокой каталитической активностью. 4 ил., 1 табл., 3 пр.
Наверх