Высоковольтный гибридный фоточувствительный прибор для регистрации излучения малой интенсивности

Изобретение относится к гибридным фоточувствительным приборам, предназначенным для регистрации излучения малой интенсивности. Технический результат - обеспечение функции стробирования гибридного фоточувствительного прибора при больших напряжениях. Технический результат достигается за счет того, что высоковольтный гибридный фоточувствительный прибор для регистрации излучений малой интенсивности содержит последовательно расположенные в вакуумном корпусе фотокатод, проводящую сетку, выполненную из материала с низким коэффициентом вторичной эмиссии, электронно-чувствительную матрицу формирования изображения, а также расположенный за пределами вакуумного корпуса блок питания для подачи напряжения на фотокатод, сетку и матрицу, обеспечивающий подачу переменного напряжения противоположных полярностей между фотокатодом и сеткой для запирания и отпирания фотокатода.1 ил.

 

Изобретение относится к гибридным фоточувствительным приборам, предназначенным для регистрации излучения малой интенсивности. Данные системы могут бы же в гражданской индустрии.

Из уровня техники известны гибридные фоточувствительные приборы, служащие для регистрации излучения и усиления изображения. Например, известен патент на твердотельный измерительный преобразователь, усиливающий яркость изображения RU 2297070 от 09.10.2002, МПК H01J 31/50. Твердотельный измерительный преобразователь, усиливающий яркость изображения, содержит фотокатод, микроканальную пластину (МКП), твердотельный формирователь сигналов изображения, первый электрический вывод для приложения напряжения между фотокатодом и микроканальной пластиной, второй электрический вывод для приложения напряжения между микроканальной пластиной и твердотельным формирователем сигналов изображения; электрический вывод для выведения усиленного сигнала изображения с твердотельного формирователя сигналов изображения; вакуумный корпус, содержащий собранные в единый блок фотокатод, микроканальную пластину и твердотельный формирователь сигналов изображения.

Как правило, напряжение между фотокатодом и входом МКП используется в подобных приборах для включения и выключения прибора, а также для осуществления режима стробирования. Когда напряжение на фотокатоде смещено в отрицательную сторону относительно входа МКП, то поток электронов выходит из фотокатода, поступает в МКП, и на выход прибора поступает усиленный сигнал. Если же напряжение на фотокатоде положительно по отношению ко входу МКП и его значение превышает начальную энергию вылетевших фотоэлектронов, то фотоэлектроны не могут преодолеть потенциальный барьер (фототок не попадет в МКП) и прибор будет заперт.

Известен фотодетектор для регистрации излучения малой интенсивности (заявка US 2011/0256655, от 20.10.2011, МПК H01L 31/18). Данное устройство содержит фотокатод, электронно-чувствительную матрицу формирования изображения, расположенную на малом расстоянии от фотокатода, и источник создания электрического поля между фотокатодом и матрицей.

Недостаток данного технического решения заключается в том, что необходимая для работы прибора разность потенциалов между фотокатодом и матрицей составляет несколько киловольт, а для запирания прибора требуется подать между ними напряжение противоположной полярности, т.е. диапазон изменения напряжения должен составить несколько киловольт. Быстрое изменение (на уровне наносекунд) напряжения в таких пределах технически очень сложно и на практике нереализуемо. Из-за этого прибор не может использоваться в режиме стробирования, что ограничивает его области применения.

Задача настоящего технического решения заключается в создании высоковольтного гибридного фоточувствительного прибора для регистрации излучений малой интенсивности. Технический результат - обеспечение функции стробирования гибридного фоточувствительного прибора при больших напряжениях.

Это достигается за счет того, что высоковольтный гибридный фоточувствительный прибор для регистрации излучений малой интенсивности содержит последовательно расположенные в вакуумном корпусе фотокатод, проводящую сетку, выполненную из материала с низким коэффициентом вторичной эмиссии, и электронно-чувствительную матрицу формирования изображения, а также расположенный за пределами вакуумного корпуса блок питания для подачи напряжения на фотокатод, сетку и матрицу, обеспечивающий подачу переменного напряжения противоположных полярностей между фотокатодом и сеткой для запирания и отпирание фотокатода.

Данное техническое решение изображено на рис. 1.

Высоковольтный гибридный фоточувствительный прибор содержит герметичный вакуумный корпус 1, входное окно 2 с нанесенным на его внутреннюю сторону фотокатодом 3, проводящую сетку 4, выполненную с низким коэффициентом вторичной эмиссии, электронно-чувствительную матрицу формирования изображения (ЭЧ матрица) 5, расположенную на основании 6. В качестве матрицы формирования изображения может быть использована электронно-чувствительная ПЗС-матрица или КМОП-матрица. Вакуумный герметичный корпус 1 состоит из металлических контактных колец 7 (контакт на фотокатод) и 8 (контакт на матрицу) и керамического изолятора 9, расположенного между ними. Керамическое кольцо 9 обеспечивает необходимое расстояние между контактными кольцами 7 и 8 для подачи достаточно высоких напряжений. Благодаря специфической конструкции входного окна 2 образуется малый промежуток между фотокатодом 3 и ЭЧ матрицей 5.

Проводящая сетка 4 прикреплена к вакуумному корпусу 1 посредством узла 10, обеспечивающего контакт на сетку. Проводящая сетка 4 выполнена из материала с низким коэффициентом вторичной эмиссии, то есть малочувствительного к высокоэнергетичным электронам, например, из медно-никелевого полотна. Конфигурация проводящей сетки 4 может быть различной: например сетчатой, линейной, круговой или любой другой с различным шагом и/или размером ячейки сетки.

Прибор работает следующим образом. Для включения прибора на промежуток между фотокатодом 3 и основанием 6 подают разность потенциалов несколько киловольт (1,5-7 кВ). Это достигается за счет того, что на контактные кольца 7 и 8 герметичного корпуса подают разное напряжения, например на контактное кольцо 7 подают отрицательное напряжение -4 кВ, на контакт сеточного узла 10 подают отрицательное напряжение, например -3.8 кВ, тогда как контактное кольцо 8 заземлено. Напряжение подается на межэлектродные промежутки (фотокатод - сетка и сетка - матрица), что обеспечивает формирование между ними ускоряющего электрического поля: 200 В между фотокатодом и сеткой и 3.8 кВ между сеткой и матрицей. За счет приложения большого ускоряющего напряжения между фотокатодом 3 и матрицей 5 достигается значительный коэффициент усиления, достаточный для регистрации изображений малой интенсивности.

Электромагнитное излучение, проходя через входное окно 2, поступает на фотокатод 3, где в результате фотоэффекта образуются электроны. Под действием электрического поля электроны вылетают из фотокатода 3 по направлению к сетке 4 и электронно-чувствительной матрице формирования изображения 5, проходят сквозь ячейки сетки, на промежутке между фотокатодом и ЭЧ матрицей разгоняются за счет ускоряющего напряжения и бомбардируют ЭЧ матрицу 5 со стороны утоненной подложки. В результате бомбардировки матрицы электронами большой энергии (в нашем примере это 4 кэВ) достигается значительный коэффициент усиления, достаточный для регистрации изображений малой интенсивности, и формируется усиленный электрический сигнал. Данный сигнал выводится за пределы герметичного вакуумного корпуса 1 посредством специальных электродов (на рис. не показаны).

Для того чтобы запереть прибор, на проводящую сетку через контакт 10 подают отрицательное напряжение, большее, чем напряжение на фотокатоде, например -4,01 кВ. Так как начальная энергия фотоэлектронов составляет всего несколько электрон-вольт, то даже небольшая разность потенциалов (10 В) создаст непреодолимый потенциальный барьер, т.е. такое напряжение на проводящей сетке запирает фотокатод, и ток в приборе прекращает течь. Таким образом, между фотокатодом и сеткой разность потенциалов меняется в небольших пределах: в нашем примере это от ускоряющих 200 В до запирающих минус 10 В, т.е. всего на 210 В. Такие небольшие значения напряжений можно изменять быстро. При этом большая разность потенциалов между сеткой и матрицей (в нашем примере это 3,8 кВ) остается неизменной. Это позволяет использовать прибор в режиме стробирования, в том числе совместно с источником лазерного излучения. Аналогичным образом можно осуществлять запирание прибора путем изменения потенциала фотокатода, при этом потенциал сетки остается неизменным. В нашем примере в этом случае на сетке сохраняется потенциал -3,8 кВ, а на контакт фотокатода для запирания подается потенциал -3,79 кВ (вместо -4,0 кВ в открытом режиме), т.е. потенциал фотокатода изменяется всего на 210 В. Таким образом, за счет данного технического решения обеспечивается функция стробирования гибридного фоточувствительного прибора, работающего при высоких напряжениях, путем изменения потенциала на одном из электродов (фотокатод или сетка) в небольших пределах.

Высоковольтный гибридный фоточувствительный прибор для регистрации излучений малой интенсивности содержит последовательно расположенные в вакуумном корпусе фотокатод, проводящую сетку, выполненную из материала с низким коэффициентом вторичной эмиссии, электронно-чувствительную матрицу формирования изображения, а также расположенный за пределами вакуумного корпуса блок питания для подачи напряжения на фотокатод, сетку и матрицу, обеспечивающий подачу переменного напряжения противоположных полярностей между фотокатодом и сеткой для запирания и отпирания фотокатода.



 

Похожие патенты:

Изобретение относится к полупрозрачному фотокатоду (1) для фотодетектора, имеющего повышенную степень поглощения при сохраняющейся степени переноса. Согласно изобретению фотокатод (1) содержит пропускающую дифракционную решетку (30) для дифракции фотонов, расположенную в слое подложки (10), на которую нанесен фотоэмиссионный слой (20).

Фотокатод // 2542334
Изобретение относится к области электронной техники. В фотокатоде, выполненном из высокочистого полупроводника, область, регистрирующая оптическое излучение, выполнена в виде полупроводниковой мембраны с омическим контактом к несущей ее подложке и расположенной над отверстием в ней, на лицевой поверхности полупроводниковой мембраны расположен диэлектрический слой нанометровой толщины и приемный электрод, отделенный от диэлектрического слоя вакуумным промежутком и выполненный в виде пленок из проводящего полупрозрачного для оптического излучения материала и люминофора, последовательно нанесенных на прозрачную для света подложку.

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона.

Фотокатод // 2454750
Изобретение относится к области электровакуумной электронной техники. .

Фотокатод // 2351035
Изобретение относится к области элементов конструкций фотоэлектронных приборов, а именно к фотокатодам на рельефных подложках, использующихся в качестве входных преобразователей электромагнитного излучения в электронный поток.

Изобретение относится к области электровакуумной электронной техники, а именно к фотоэмиссионным полупроводниковым устройствам, работающим в видимой и ближней ультрафиолетовой области.

Изобретение относится к технике изготовления фотополевых катодов из полупроводниковых материалов и может быть использовано в процессе изготовления приемников излучения для видимого и инфракрасного диапазона оптического излучения.

Изобретение относится к технике изготовления фотополевых катодов из полупроводниковых материалов и может быть использовано в процессе изготовления приемников излучения.

Изобретение относится к электровакуумной технике и может быть использовано для тренировки фотоэлектронных приборов, в частности электронно-оптических преобразователей (ЭСП).

Изобретение относится к электровакуумной технике, к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП).

Изобретение относится к оптическому приборостроению, а именно к системам, предназначенным для обнаружения различных объектов и наблюдения за ними в условиях ограниченной видимости (в темное время суток, при наличии дождя и тумана, во время снегопада, при задымлении окружающей среды, во время пылевой бури), и может быть использовано при проведении поисково-спасательных работ, в охранных системах, в военном деле, в различных транспортных средствах, например в речных и морских судах.

Изобретение относится к области оптического приборостроения и касается электронно-оптического преобразователя. Преобразователь включает в себя корпус с вакуумно-плотными входным и выходным окнами, фотокатод на основе алмазной пленки, ускоряющие электроды, волоконно-оптическую пластину, люминесцентный экран и геттер.

Изобретение относится к области аналитического приборостроения и касается спектрометра для вакуумного ультрафиолетового (ВУФ) и мягкого рентгеновского (MP) диапазона.

Изобретение относится к биноклю для дневного и ночного наблюдения. Бинокль содержит дневной канал, состоящий из двухкомпонентного объектива, оборачивающей системы и окуляра с сеткой.

Изобретение относится к структуре умножения электронов для использования в вакуумной трубке, использующей умножение электронов, и к вакуумной трубке, использующей умножение электронов, обеспеченное такой структурой умножения электронов.

Изобретение относится к преобразователям невидимых электромагнитных излучений (инфракрасного, рентгеновского, ультрафиолетового, гамма-излучения) в видимое. Может быть использовано в устройствах визуализации, работающих на аналоговых и цифровых принципах.

Изобретение относится к области полупроводниковой техники. Входное окно предназначено для использования в вакуумных фотоэлектронных приборах проксимити типа.

Изобретение относится к гибридным фоточувствительным приборам, предназначенным для регистрации изображений низкого уровня освещенности. Технический результат - увеличение коэффициента усиления гибридного фоточувствительного прибора, отношения сигнал/шум, улучшение разрешающей способности, обеспечение электрической прочности и повышение пробивного напряжения корпуса.

Изобретение относится к средствам регистрации изображений в широком диапазоне освещенности для регистрации изображений в выделенных диапазонах спектра излучения, например в инфракрасном (ИК) или ультрафиолетовом (УФ) диапазоне.

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления фотоэлектронного прибора включает изготовление корпуса прибора, катодного узла, коллектора электронов, монтаж внутренних деталей и узлов, сварку узлов прибора, загрузку всех узлов в высоковакуумную установку финишной сборки, откачку всей системы, термическое обезгаживание всех узлов в вакууме, электронное обезгаживание МКП и коллектора электронов в вакууме, изготовление фотокатода на катодном узле, герметизацию прибора, выгрузку ФЭП из установки финишной сборки. После загрузки в высоковакуумную установку финишной сборки катодного узла, корпуса с микроканальными пластинами и коллектора электронов, корпус с МКП и коллектор электронов разносят друг от друга и осуществляют откачку всей системы до давления не более 10-8 Па, термическое обезгаживание всех узлов в вакууме в течение не менее 4 ч при температуре от 300 до 400°С, раздельно выполняют одностороннее электронное обезгаживание в течение не менее 2 ч при температуре от 0 до 400°С коллектора электронов направленным на него потоком электронов и двустороннее электронное обезгаживание МКП при той же температуре, для чего в течение не менее 2 ч попеременно включают и выключают источники возбуждения вторичных электронов в МКП, расположенные перед входом и выходом МКП, и тем самым электронный поток направляют от входа к выходу МКП и, наоборот, от выхода к входу МКП, синхронно меняя полярность напряжения питания между входом и выходом МКП и постепенно увеличивая напряжение на МКП и выходной ток МКП до значений, не ухудшающих параметры МКП, после чего формируют фотокатод на катодном узле и далее корпус с МКП устанавливают на коллектор электронов, а катодный узел - на корпус, и выполняют герметизацию прибора. 2 ил.
Наверх