Квазимоноимпульсный вторичный радиолокатор

Изобретение относится к области радиолокации, а именно к области вторичных моноимпульсных радиолокаторов, и может быть использовано для воздушного базирования вторичных радиолокаторов, предназначенных для управления воздушным движением летательных аппаратов. Достигаемый технический результат - увеличение точности измерения угловой координаты летательного аппарата за счет устранения ее зависимости от доплеровской добавки частоты в ответных сигналах. Технический результат достигается тем, что устройство содержит антенну, блок управляемых фазовращателей, сумматор, переключатель прием-передача, приемник, делитель мощности, управляемый элемент задержки, шесть ключей, три дешифратора, три обнаружителя, амплитудный детектор и угловой дискриминатор, определенным образом соединенные между собой. 2 з.п. ф-лы, 6 ил.

.

 

Изобретение относится к области радиолокации, а именно к области вторичных моноимпульсных радиолокаторов (MPЛ) и может быть использовано в МРЛ наземного и воздушного базирования, обладающих простой технической реализацией и предназначенных для наблюдения за воздушной обстановкой.

Известен «Моноимпульсный радиолокатор» (патент РФ №2122218, МПК G01S 13/44, опубл. 20.11.1991 г.), который содержит синтезатор доплеровских частот, последовательно соединенные с выходом приемника опорного канала многоканальный фильтр доплеровских частот, обнаружитель и периодомер, выход которого соединен с первым входом сигнального процессора, последовательно соединенные с выходом многоканального фильтра доплеровских частот мультиплексор, преобразователь гетеродинной частоты, второй вход которого соединен с выходом гетеродина, делитель мощности, второй смеситель, сигнальный вход которого соединен с первым выходом преобразователя частот, полосовой фильтр, усилитель, фазометр, выход которого соединен со вторым входом сигнального процессора, при этом второй выход делителя мощности соединен с гетеродинным входом первого смесителя, выход приемника измерительного канала соединен со вторым входом фазометра, выход синтезатора доплеровских частот соединен со вторым входом переключателя, выход которого соединен с управляющим входом цепи управляемого затухания, выход пассивного делителя соединен через цепь управляемого затухания и тракт калибровочного сигнала с устройством связи приемного антенно-фидерного устройства и тракта калибровочного сигнала, управляющий вход синтезатора доплеровских частот соединен со вторым выходом сигнального процессора, третий выход которого соединен с управляющим входом мультиплексора.

Недостатком данного аналога является невозможность проверки идентичности фазовых сдвигов в каналах измерения угловой координаты, что может привести к смещению ее оценки, а также сложность технической реализации, обусловленная применением фазового метода измерения угла. Известно также устройство «Многоканальная радиолокационная станция» (патент РФ №94032128, МПК G01S 7/40, опубл. 20.07.1996 г.), содержащее антенну, выполненную в виде двух идентичных каналов - левого и правого относительно направления излучения, каждый из которых расположен симметрично относительно оси антенны, с возможностью формирования двух одинаковых независимых диаграмм направленности с разнесенными фазовыми центрами, выходы левого и правого каналов антенны через соответственно первый и второй управляемые фазовращатели соединены с общими выводами первого и второго переключателей прием-передача, передающие выводы которых подключены к соответствующим выходам равноплечного делителя мощности, вход которого является входом сигнала передатчика, приемные выходы упомянутых переключателей прием-передача подключены соответственно к входам первого и второго усилителей, выходы которых подключены к входам фазового детектора, выход которого подключен к информационному входу узла автоматической подстройки фазы, первый и второй выходы которого подключены к входам первого и второго управляемых фазовращателей, контрольный ответчик (КО), используемый в качестве генератора внешнего контрольного сигнала, формирователь строба КО, выход которого подключен к стробирующему входу узла автоматической подстройки фазы, а вход соединен с выходом датчика углового положения (ДУП) антенны.

Недостатком устройства является то, что оно для своей работы требует наличия вынесенного в заданном направлении относительно МРЛ контрольного ответчика, а также системы оценки доплеровской добавки частоты принимаемых сигналов.

При этом пеленгационная характеристика данного устройства за счет учета фазовой нестабильности сквозных каналов может стабилизироваться только по ее положению относительно равносигнального направления антенны. Однако, такие изменения пеленгационной характеристики как наклон и нарушение ее симметрии данным устройством не могут быть устранены.

Наиболее близким к заявляемому устройству является «Моноимпульсный радиолокатор со сквозными фазовыми каналами» (Патент РФ №2232403, МПК G01S 13/44, 7/40, H01Q 3/00, опубл. 10.07.2004 г.). Устройство содержит антенну, выполненную в виде двух идентичных каналов - левого и правого относительно направления излучения, каждый из которых расположен симметрично относительно оси антенны, с возможностью формирования двух одинаковых независимых диаграмм направленности с разнесенными фазовыми центрами, выходы левого и правого каналов антенны через соответственно первый и второй управляемые фазовращатели соединены с общими выводами первого и второго переключателей прием-передача, передающие выводы которых подключены к соответствующим выходам равноплечного делителя мощности, вход которого является входом сигнала передатчика, приемные выходы упомянутых переключателей прием-передача подключены соответственно к входам первого и второго усилителей, выходы которых подключены к входам фазового детектора, узел автоматической подстройки фазы, первый и второй выходы которого подключены к входам первого и второго управляемых фазовращателей, контрольный ответчик, используемый в качестве генератора внешнего контрольного сигнала, и первый формирователь строба КО, вход которого соединен с выходом датчика углового положения антенны, введены второй формирователь строба КО, аналого-цифровой преобразователь, узел коррекции наклона пеленгационной характеристики, а узел автоматической подстройки фазы выполнен с первым и вторым стробирующими входами и дополнительным выходом, при этом выход фазового детектора через аналого-цифровой преобразователь соединен с информационным входом узла коррекции наклона пеленгационной характеристики, корректирующий вход которого соединен с дополнительным выходом узла автоматической подстройки фазы, а выход узла коррекции наклона пеленгационной характеристики соединен с информационным входом узла автоматической подстройки фазы, первый и второй стробирующие входы которого соединены соответственно с выходами первого и второго формирователей стробов контрольного ответчика, входы которых соединены между собой.

Моноимпульсный радиолокатор, в котором узел автоматической подстройки фазы выполнен двухканальным и содержит в первом канале соединенные последовательно клеммами «выход-вход» первый вычислитель ошибки, первый усреднитель ошибки, узел полусуммы, первый сумматор, первый преобразователь кода, схему управления формирователями, при этом выход первого сумматора через первый регистр накопленной ошибки соединен с его дополнительным входом, выходы схемы управления фазовращателями образуют первый и второй выходы узла автоматической подстройки фазы, а во втором канале - соединены последовательно клеммами «выход-вход» второй вычислитель ошибки, второй усреднитель ошибки, узел полуразности, второй сумматор, второй преобразователь кода, при этом выход второго сумматора через второй регистр накопленной ошибки соединен с его дополнительным входом, выход второго преобразователя кода образует дополнительный выход узла автоматической подстройки фазы, при этом введены перекрестные связи между первым и вторым каналами, соединяющие выход первого усреднителя ошибки одновременно с дополнительным входом узла полуразности, а выход второго усреднителя ошибки одновременно с дополнительным входом узла полусуммы, информационные входы первого и второго вычислителей ошибки соединены с информационным входом автоматической подстройки фазы, а их стробирующие входы образуют соответственно первый и второй стробирующие входы узла автоматической подстройки фазы.

Недостатком известного устройства-прототипа является зависимость точности оценки угловой координаты от доплеровской добавки частоты появляющейся в ответном сигнале при взаимном перемещении вторичного радиолокатора и ЛА с ответчиком, невозможность работы без использования контрольного ответчика, что исключает его установку на летательных аппаратах (ЛА), а также сложность технической реализации.

Указанные недостатки обусловлены используемым в устройстве-прототипе моноимпульсным способом измерения угловой координаты со сквозными фазовыми каналами. Этот способ требует постоянного тестирования двух приемных каналов на предмет идентичности их фазовых характеристик, так как неодинаковое изменение которых во времени приводит к смещению оценки угла ответчика. Для устранения этого недостатка устройство-прототип требует применения вынесенного контрольного ответчика с точно известной угловой азимутальной координатой. Указанное обстоятельство ограничивает применение устройства-прототипа наземным базированием. Кроме этого недостатка устройство-прототип снижает точность измерения угла при наличии доплеровской добавки в частоте ответного сигнала, значение которой заранее никогда точно не известно. Данный недостаток также обусловлен используемым фазовым способом измерения, в котором значение оценки угла зависит от частоты принимаемых сигналов. Так, для измерения угловой координаты ЛА в устройстве - прототипе определяется разность фаз сигналов, принятых антенной и снимаемых с левого и правого относительно направления излучения идентичных каналов

где: α - угловая координата ЛА, измеряемая относительно равносигнального направления (РСН) антенны;

d - расстояние между фазовыми центрами антенны, формирующих два канала приема;

λ - длина волны принимаемых ответных сигналов (ОС).

При наличии взаимного перемещения ЛА и МРЛ длина волны принимаемого ОС

где: fпр - частота принимаемых ОС

где: f0 - частота излучаемых ответчиком ЛА ОС;

- доплеровская добавка частоты принимаемых сигналов;

V - скорость взаимного перемещения ЛА и МРЛ.

Подставляя в (1) выражение (2) с учетом (3) получаем, что разность фаз принимаемых сигналов двумя каналами антенны будет определяться не только значением угла α, но и значением Fд

Второе слагаемое в (4), при будет вызывать смещение оценки угла α. Для ликвидации смещения необходимо получать оценку Fд, которая всегда будет отличаться от истинного ее значения. Поэтому устройство - прототип будет всегда давать смещенную оценку угла α, даже при наличии канала оценки Fд, усложняющего реализацию измерителя и увеличивающего его стоимость. Этот недостаток будет еще более выражен при установке устройства-прототипа на борту ЛА за счет увеличения взаимной скорости перемещения запросчика и ответчика по сравнению с наземным базированием вторичной РЛС.

Кроме перечисленных недостатков устройства-прототипа, используемый в нем фазовый способ пеленгации со сквозными фазовыми каналами требует наличия одновременно работающих на прием двух каналов и обеспечение постоянного анализа их идентичности, применяя для этого вынесенный контрольный ответчик. Ошибки в работе такой системы также приводят к смещению оценки угла ЛА. В результате устройство-прототип является сложным в технической реализации, а его применение ограничивается наземным базированием.

Основной задачей, на которую направлено заявленное изобретение, является устранение зависимости точности оценки угловой координаты от доплеровской добавки частоты в ответных сигналах, обеспечение работы МРЛ (вторичной моноимпульсной РЛС), размещенной на борту ЛА, а также снижение сложности и стоимости его реализации.

Техническим результатом, достигаемым при осуществлении заявляемого изобретения, является увеличение точности измерения угловой координаты ЛА за счет устранения ее зависимости от доплеровской добавки частоты в ответных сигналах.

Указанный технический результат достигается тем, что в устройство, содержащее антенну, выходы которой подключены ко входам блока управляемых фазовращателей, последовательно соединенные первый сумматор, переключатель прием-передача и приемник, второй выход переключателя прием-передача соединен со входом делителя мощности, выходы которого соединены с соответствующими им по номеру входами блока управляемых фазовращателей, сигнальные выходы которого подключены ко входам первого сумматора, дополнительно введены управляемый элемент задержки, последовательно соединенные первый ключ, первый дешифратор, первый обнаружитель, последовательно соединенные амплитудный детектор, второй ключ, второй дешифратор, второй обнаружитель, последовательно соединенные третий дешифратор и третий обнаружитель, а также третий, четвертый, пятый, шестой ключи и угловой дискриминатор, первый и второй входы которого соединены соответственно с выходами третьего и четвертого ключей, а выход - со вторым входом шестого ключа, выход которого является выходом устройства, первый вход управляемого элемента задержки соединен со вторыми входами первого, второго и третьего дешифраторов и третьим входом углового дискриминатора и служит входом кода адреса, второй вход управляемого элемента задержки соединен с первым входом блока управляемых фазовращателей, первым входом первого ключа и выходом первого обнаружителя, выход которого соединен с первым входом третьего ключа, второй вход которого соединен с выходом первого дешифратора, выходы второго и третьего дешифраторов соединены соответственно со вторыми входами четвертого и пятого ключей, выход последнего является вторым выходом радиолокатора, выход второго обнаружителя соединен с первым входом четвертого ключа и со вторым входом блока управляемых фазовращателей, выход третьего обнаружителя соединен с первыми входами пятого и шестого ключей, выход амплитудного детектора соединен соответственно с первым входом третьего дешифратора и вторым входом первого ключа, а его вход - с выходом приемника, выход управляемого элемента задержки подключен к первому входу второго ключа, причем угловой дискриминатор содержит управляемую линию задержки, сигнальный вход которой является первым входом углового дискриминатора, а вход ее управления подключен к третьему входу углового дискриминатора, выход управляемой линии задержки подключен к первым входам схемы разности и второго сумматора, второй вход углового дискриминатора подключен к вторым входам схемы разности и второго сумматора, выход которого подключен к входу делителя вычислителя отношения, вход делимого которого соединен с выходом схемы разности, выход вычислителя отношения является выходом углового дискриминатора, а антенна выполнена, например, в виде фазированной антенной решетки.

Введение в известное устройство новых блоков и связей позволило измерять угловую координату квазимоноимпульсным способом, использующего специфику интервального кодирования ответных сигналов принимаемых вторичной РЛС и увеличить точность измерения за счет устранения зависимости оценки угловой координаты от доплеровского сдвига частоты в ответных сигналах.

Сущность изобретения поясняется чертежами, где:

на фиг. 1 изображена структурная схема заявляемого изобретения;

на фиг. 2 - структурная схема блока углового дискриминатора;

на фиг. 3, фиг. 4а, б, в, г, д, фиг. 5а, б, в, г, д и фиг. 6 - графики, поясняющие работу заявляемого устройства, и введены следующие обозначения:

1. Антенна

2. Блок управляемых фазовращателей

3. Первый сумматор

4. Переключатель прием-передача

5. Приемник

6. Делитель мощности

7. Первый ключ

8. Первый дешифратор

9. Первый обнаружитель

10. Амплитудный детектор

11. Второй ключ

12. Второй дешифратор

13. Второй обнаружитель

14. Третий ключ

15. Четвертый ключ

16. Пятый ключ

17. Третий дешифратор

18. Третий обнаружитель

19. Шестой ключ

20. Угловой дискриминатор

20.1 Управляемая линия задержки

20.2 Схема разности

20.3 Второй сумматор

20.4 Вычислитель отношения

21. Управляемый элемент задержки

Квазимоноимпульсный вторичный радиолокатор содержит антенну 1, выходы которой подключены к входам блока управляемых фазовращателей 2, последовательно соединенные первый сумматор 3, переключатель прием-передача 4 и приемник 5, второй выход переключателя прием-передача 4 подключен ко входу делителя мощности 6, выходы которого соединены с соответствующими им по номеру сигнальными входами блока управляемых фазовращателей 2, сигнальные выходы которого подключены к соответствующим входам первого сумматора 3, последовательно соединенные первый ключ 7, первый дешифратор 8, первый обнаружитель 9, последовательно соединенные амплитудный детектор 10, второй ключ 11, второй дешифратор 12, второй обнаружитель 13, вход амплитудного детектора 10 соединен с выходом приемника 5, третий ключ 14, четвертый ключ 15, пятый ключ 16, последовательно соединенные третий дешифратор 17, третий обнаружитель 18, шестой ключ 19, второй вход которого соединен с угловым дискриминатором 20, а выход - является выходом устройства и управляемый элемент задержки 21, выход которого соединен с первым входом второго ключа 11, а первый вход соединен со вторыми входами первого 8, второго 12 и третьего 17 дешифраторов, а также третьим входом углового дискриминатора 20 и служит входом кода адреса, первый вход третьего дешифратора 17 соединен с выходом амплитудного детектора 10, который соединен со вторым входом первого ключа 7, второй вход управляемого элемента задержки 21 соединен с первым входом блока управляемых фазовращателей 2, первым входом первого ключа 7 и выходом первого обнаружителя 9, выходы первого 9, второго 13 и третьего 18 обнаружителей соединены соответственно с первыми входами третьего 14, четвертого 15 и пятого 16 ключей, причем выход второго обнаружителя 13 соединен со вторым входом блока управляемых фазовращателей 2, выходы третьего 14 и четвертого 15 ключей соединены, соответственно, с первым и вторым входами углового дискриминатора 20, а выход пятого ключа 16 является вторым выходом радиолокатора, вторые входы третьего 14, четвертого 15 и пятого 16 ключей соединены соответственно с выходами первого 8, второго 12 и третьего 17 дешифраторов.

Угловой дискриминатор 20 содержит управляемую линию задержки 20.1, сигнальный вход которой является первым входом углового дискриминатора 20, а вход ее управления подключен к третьему входу углового дискриминатора 20, выход управляемой линии задержки 20.1 подключен к первым входам схемы разности 20.2 и второго сумматора 20.3, второй вход углового дискриминатора 12 подключен к вторым входам схемы разности 20.2 и второго сумматора 20.3, выход которого подключен к входу делителя вычислителя отношения 20.4, вход делимого которого соединен с выходом схемы разности 20.2, выход вычислителя отношения 20.4 является выходом углового дискриминатора 20.

Антенна 1 выполнена, например, в виде фазированной антенной решетки.

Антенна 1, блок управляемых фазовращателей 2, первый сумматор 3, переключатель прием-передача 4 и делитель мощности 6 могут быть выполнены, например, как отдельные устройства, в случае применения пассивной фазированной антенной решетки (ФАР), или могут быть объединены в одном устройстве - активной ФАР (АФАР), каждый элемент которой содержит как передающий канал, так и приемный. Реализация каждого из перечисленных блоков описана по отдельности, например, [1], а при их объединении в АФАР [2].

Каждый из дешифраторов: первый 8, второй 12 и третий 17 может быть выполнен как линии задержки с отводами, положение которых соответствует временным интервалам интервальных кодов ОС для данного запрашиваемого ЛА [3].

Все три обнаружителя 9, 13 и 18 представляют собой пороговые устройства, исполнение которых, как и всех ключей, сумматоров и схемы разности имеют стандартные реализации, варианты которых можно найти в [4].

Для решения данной задачи в заявляемом устройстве используется три перестраиваемых под необходимый для данного запрашиваемого ЛА интервальный код дешифратора 8, 12 и 17.

Работа заявляемого устройства происходит следующим образом: BPЛ посылает импульсы кода запроса запрашиваемого ЛА, после чего ВРЛ переходит в режим приема импульсов ответного кода, образующих ответный сигнал (ОС). В это время ДН приемной антенны 1 устанавливается в левое относительно РНС положение f1(β) с максимумом на направление -0β (фиг. 3). В первый дешифратор 8 заводят код адреса ЛА, который определяется временным расположением первой половины общего числа импульсов интервального кода ОС при четном их числе N или заводят код адреса запрашиваемого ЛА, который соответствует временному положению первых (N-1)/2 импульсов при нечетном числе импульсов интервального кода ОС.

Во второй дешифратор 12 заводят код, соответствующий расположению второй половины импульсов интервального кода ОС при четном числе импульсов ОС - N. При нечетном числе импульсов интервального кода ОС - N, во второй дешифратор 12 вводят код второй части интервального кода ОС, исключая средний импульс с номером ((N-1)/2)+1 кода ОС. В третий дешифратор 17 вводят полный код ОС, соответствующий временному положению всех импульсов ОС. Все коды в дешифраторы 8, 12 и 17 заводят через их вторые - управляющие входы с адресного входа заявляемого устройства, обозначенного на фиг. 1 как код адреса. Снимаемые с этих отводов сигналы поступают в сумматор дешифратора.

В исходном положении - ожидание приема ОС - открыты первый ключ 7, а ключи 11, 14, 15, 16 и 19 закрыты, управляемый элемент задержки 21 при четном числе импульсов ОС N дает нулевую задержку импульсу управления вторым ключом 11, который будет поступать на его вход с выхода первого обнаружителя 9 при обнаружении первой половины импульсов ОС. При нечетном значении N управляемый элемент задержки 21 задерживает импульс управления вторым ключом 11 для его открывания на заранее известное время, такое, чтобы импульс ОС с номером ((N-1)/2)+l не поступил на второй дешифратор 12.

При наличии запрашиваемого ЛА в данном направлении, установленный на нем ответчик начинает излучать импульсы ОС в момент времени t0 (фиг. 4, 5). В момент времени t1 первый импульс ОС принимается ФАР 1 ВРЛ. Значение разности t1-t0 определяется расстоянием между запросчиком ВРЛ и ответчиком ЛА.

Принятые антенной 1 сигналы ОС при положении ДН f1(P) (фиг. 3), имеющие амплитуды A f1(βц) - (фиг. 4а) импульсы, принимаемые в интервале времени от t1 - начала прихода первого импульса ОС - до момента времени t2 - момент прихода N/2 - импульса ОС при четном числе импульсов ОС - N. При нечетном числе импульсов ОС момент времени t2 - это момент прихода импульса с номером (N-1)/2 - (фиг. 5а) через открытый первый ключ 7 поступают на вход первого дешифратора 8. Амплитуды этих импульсов одинаковые и определяются мощностью излучаемых передатчиком ответчика сигналов, значением коэффициента направленного действия (КНД) передающей антенны ответчика и расстоянием между запросчиком и ответчиком, что в совокупности учитывается коэффициентом А, а также значением КНД приемной антенны в первом ее положении f1(βц) - зависящем от направления на ответчик - βц - (фиг. 3).

Суммарный сигнал с выхода первого дешифратора 8 с амплитудой (N/2)Af1(βц)-(фиг. 4г) поступает на вход первого обнаружителя 9 и второй вход третьего ключа 14. При срабатывании первого обнаружителя 9 - обнаружены первые N/2 импульсов ОС при четном N или обнаружены первые (N-1)/2 импульсов ОС при нечетном N - с выхода первого обнаружителя 9 снимают импульс, который поступает на первый вход третьего ключа 14 и открывает его, поступает на первый вход первого ключа 7 и закрывает его, - (фиг. 4б) поступает на первый управляющий вход блока управляемых фазовращателей 2 и переводит ДН антенны 1 из положения f1(β) в положение f2(β) - (фиг. 3). Этот же импульс, проходя через управляемый элемент задержки 21, поступает на первый вход второго ключа 11 и открывает второй ключ 11 непосредственно сразу после выдачи сигнала обнаружения первым обнаружителем 9 при четном числе импульсов ОС - N - (фиг. 4в). Через второй вход открытого третьего ключа 14 выходной суммарный сигнал, снимаемый с выхода первого дешифратора 8, поступает на первый вход углового дискриминатора 20.

При нечетном числе импульсов ОС N управляемый элемент задержки 21 задерживает импульс подаваемый на его вход, и второй ключ 11 открывается не в момент времени t2, как это было при четном N, а в момент времени t2''- (фиг. 5в). При этом импульс с номером ((N-1)/2)+1, приходящий с выхода амплитудного детектора 10 в момент t2' - (фиг. 5а) на вход второго дешифратора 12 не проходит. В результате вход первого дешифратора 8 отключается от выхода амплитудного детектора 7 - (фиг. 4б) и (фиг. 5б), а вход второго дешифратора 12 подключается через открытый второй ключ 11 к выходу амплитудного детектора 10, либо в момент t2 при четном N - (фиг. 4в), либо в момент t2'' при нечетном N - (фиг. 5в). Через отрытый второй ключ 11 на вход второго дешифратора 12 поступает вторая половина импульсов ОС при четном N - (фиг. 4в), а при нечетном N все импульсы, начиная с номера ((N-1)/2)+2, до последнего с номером N - (фиг. 5в). С выхода второго дешифратора 12 на второй обнаружитель 13 поступает суммарный сигнал амплитудой A(N/2)f2(βц) при четном N, а при нечетном с амплитудой A((N-1)/2)f2(βц). При срабатывании второго обнаружителя 13, формируемый на его выходе импульс поступает на первый вход четвертого ключа 15 и открывает четвертый ключ 15 и, поступая на второй управляющий вход блока управляемых фазовращателей 2, переводит ДН антенны 1 из положения f2(β) в исходное положение f1(β). Через открытый четвертый ключ 15, через его второй вход, напряжение амплитудой (N/2)Af2(βц) при четном N или ((N-1)/2)Af2(βц) при нечетном N поступает на второй вход углового дискриминатора 20.

На третий дешифратор 18 поступают все принятые импульсы ОС. Их сумма равная ((N/2)Af1(βц))+((N/2)Af2(βц)) при четном N или ((N-1)/2)Af1(βц))+((N-1)/2)+1)Af2(βц)) при нечетном N поступает на третий обнаружитель 18 и на второй вход пятого ключа 16. При принятии решения об обнаружении на выходе третьего обнаружителя 18 снимается сигнал, который поступает на первые входы пятого 16 и шестого 19 ключей и открывает пятый 16 и шестой 19 ключи. Через открытый пятый ключ 16 суммарный сигнал, полученный на выходе третьего дешифратора 17, поступает на второй выход радиолокатора, а через открытый шестой ключ 19 снимается оценка угловой координаты β, формируемой на выходе углового дискриминатора 20.

Угловой дискриминатор 20 реализует суммарно-разностную обработку сигналов, снимаемых с выходов первого 8 и второго 12 дешифраторов. Особенностью является то, что суммарный сигнал с выхода первого дешифратора 8 приходит на первый вход углового дискриминатора 20 раньше, чем суммарный сигнал, снимаемый с выхода второго дешифратора 12 - (фиг. 4г и фиг. 5г). Поэтому сигнал, поступающий на первый вход углового дискриминатора 20, должен быть совмещен по времени с моментом прихода суммарного сигнала, поступающего на второй вход углового дискриминатора 20. Эта задача выполняется управляемой линией задержки 20.1. Величина задержки зависит от параметров интервального кода ОС и определяется значением разности времен t3-t2 - (фиг. 4д или фиг. 5д). Эту величину задают через третий управляющий вход углового дискриминатора 20 в соответствии с заданным кодом адреса ЛА. С помощью схемы разности 20.2 определяют разность амплитуд сигналов поступающих на первый и второй вход углового дискриминатора 20, а на выходе сумматора 20.3 снимают сумму этих сигналов. Вычислитель отношения 20.4 находит отношение разности сигналов к их сумме, которое и определяет оценку угловой координаты ответчика βц.

При срабатывании третьего обнаружителя 18 через открытый шестой ключ 19 значение этой оценки поступает потребителю.

Дискриминационная характеристика, формируемая угловым дискриминатором 20, приведена на фиг. 6.

Как следует из вышеизложенного, достижение технического результата, а именно увеличение точности измерения угловой координаты ЛА достигается за счет устранения ее зависимости от доплеровского сдвига частоты в ответных сигналах. Кроме того, в устройстве прототипе требуется формирование одновременно двух приемных диаграмм направленности. При реализации антенны в виде ФАР формирование двух диаграмм направленности одновременно требует использования двух комплектов фазовращателей и аттенюаторов, количество которых в комплекте равно количеству излучателей в антенне. Как правило, это количество определяется десятками единиц. Заявляемое устройство требует только один комплект фазовращателей и аттенюаторов, что упрощает его реализацию и существенно снижает стоимость, а также дает возможность использования вторичного радиолокатора не только при наземном базировании, но и на борту ЛА.

Предлагаемое устройство позволяет так же снизить сложность и стоимость технической реализации вторичной РЛС и обеспечить работу МРЛ (вторичной моноимпульсной РЛС) на борту ЛА в составе комплекса управления движением ЛА.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Справочник по радиолокации. Под ред. М. Сколника. Нью-Иорк, 1970. Пер. с англ. (в четырех томах) под общей ред. К.Н. Трофимова. Том. 2. Радиолокационные антенные устройства. Под ред. П.И. Дудника. М.,"Сов. радио", 1977, 408 с.

2. Активные фазированные антенные решетки. / Под. ред. Д.И. Воскресенского и А.И. Канашенкова. - М.: Радиотехника, 2004.

3. Глобус И.А. Двоичное кодирование в асинхронных системах. - М.: Связь 1972 г.

4. Румянцев К.Е. Прием и обработка сигналов. - М.: Издательский центр «Академия», 2004. - 240 с.

1. Квазимоноимпульсный вторичный радиолокатор, содержащий антенну, выходы которой подключены к входам блока управляемых фазовращателей, последовательно соединенные первый сумматор, переключатель прием-передача и приемник, второй выход переключателя прием-передача соединен с входом делителя мощности, выходы которого соединены с соответствующими им по номеру входами блока управляемых фазовращателей, сигнальные выходы которого подключены к входам первого сумматора, отличающийся тем, что в устройство дополнительно введены управляемый элемент задержки, последовательно соединенные первый ключ, первый дешифратор, первый обнаружитель, последовательно соединенные амплитудный детектор, второй ключ, второй дешифратор, второй обнаружитель, последовательно соединенные третий дешифратор и третий обнаружитель, а также третий, четвертый, пятый, шестой ключи и угловой дискриминатор, первый и второй входы которого соединены соответственно с выходами третьего и четвертого ключей, а выход - со вторым входом шестого ключа, выход которого является выходом устройства, первый вход управляемого элемента задержки соединен со вторыми входами первого, второго и третьего дешифраторов и третьим входом углового дискриминатора и служит входом кода адреса, второй вход управляемого элемента задержки соединен с первым входом блока управляемых фазовращателей, первым входом первого ключа и выходом первого обнаружителя, выход которого соединен с первым входом третьего ключа, второй вход которого соединен с выходом первого дешифратора, выходы второго и третьего дешифраторов соединены соответственно со вторыми входами четвертого и пятого ключей, выход последнего является вторым выходом радиолокатора, выход второго обнаружителя соединен с первым входом четвертого ключа и со вторым входом блока управляемых фазовращателей, выход третьего обнаружителя соединен с первыми входами пятого и шестого ключей, выход амплитудного детектора соединен соответственно с первым входом третьего дешифратора и вторым входом первого ключа, а его вход - с выходом приемника, выход управляемого элемента задержки подключен к первому входу второго ключа.

2. Квазимоноимпульсный вторичный радиолокатор по п. 1, отличающийся тем, что угловой дискриминатор содержит управляемую линию задержки, сигнальный вход которой является первым входом углового дискриминатора, а вход ее управления подключен к третьему входу углового дискриминатора, выход управляемой линии задержки подключен к первым входам схемы разности и второго сумматора, второй вход углового дискриминатора подключен ко вторым входам схемы разности и второму входу второго сумматора, выход которого подключен к входу делителя вычислителя отношения, вход делимого которого соединен с выходом схемы разности, выход вычислителя отношения является выходом углового дискриминатора.

3. Квазимоноимпульсный вторичный радиолокатор по п. 1, отличающийся тем, что антенна выполнена, например, в виде фазированной антенной решетки.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть применено при одновременном измерении двух угловых координат (УК) цели в системах моноимпульсной радиолокации и радиопеленгации.

Изобретение относится к области радиолокационных измерений. Особенностью заявленного способа адаптивного измерения угловых координат объекта наблюдения является то, что от системы встроенного контроля на вычислительное устройство поступают также данные о коэффициентах передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и о вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигах, о допустимых значениях изменений коэффициентов передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и данные о допустимых значениях изменений, вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигов, а также о допустимых значениях угловых смещений полотна активной фазированной антенной решетки, которые хранятся в блоке памяти системы встроенного контроля, а поступающие от блока навигации данные об угловых смещениях полотна активной фазированной антенной решетки во входящем в состав системы встроенного контроля преобразователе оцифровываются и поступают в вычислительное устройство.

Изобретение относится к радиолокационным системам, предназначенным для обнаружения целей, измерения их координат, приема дополнительной информации от воздушных судов, оборудованных ответчиками режима S четвертого уровня, сопровождения целей моноимпульсным способом.

Изобретение относится к радиолокационной измерительной технике и может быть использовано в импульсных радиолокационных станциях (РЛС) миллиметрового диапазона.

Изобретение относится к радиолокации и может быть использовано в многофункциональных аэродромных радиолокаторах, в системах управления воздушным движением, защиты государственных границ, орнитологических исследований для обнаружения воздушных и наземных объектов интереса, в том числе и малоразмерных.

Изобретение относится к радиолокации. Технический результат заключается в обеспечении уклонения воздушного движущегося объекта от атакующего летящего летательного аппарата, угрожающего уничтожить его.

Изобретение относится к устройствам, предназначенным для имитации частотно-временной структуры радиолокационного сигнала, отраженного от подстилающей поверхности, от одной или нескольких целей, находящихся на фиксированном направлении, и может быть использовано, например, для имитации ложных целей, в том числе расположенных ближе носителя, для имитации боевой работы радиолокационной системы (РЛС), а также для имитации эхо-сигналов радиовысотомеров при зондировании сигналами с различными видами линейной частотной модуляции.

Изобретение относится к области радиолокационной техники и может быть использовано при построении или модернизации вращающихся многофункциональных радиолокационных систем (РЛС) с электронным сканированием лучом.

Изобретение относится к радиолокации и может быть использовано в многофункциональных береговых, аэродромных и корабельных радиолокационных станциях (РЛС) для обнаружения наземных и надводных объектов, в том числе и малоразмерных, и может быть использовано в системах управления воздушным движением.

Изобретение относится к радиолокационным устройствам с импульсным зондирующим сигналом, преимущественно к моноимпульсным устройствам с активной фазированной антенной решеткой и цифровым суммарно-разностным преобразованием сигналов. Достигаемый технический результат - повышение быстродействия и точности определения пеленга. Указанный результат достигается за счет того, что моноимпульсный пеленгатор с комбинированным антенным устройством, содержит двухзеркальную антенну с возбуждением от активной фазированной антенной решетки, элементарные облучатели которой соединены с антенными входами-выходами многоканального приемопередающего устройства, сигнальные выходы которого подключены к соответствующим входам многоканального устройства цифрового преобразования и формирования суммарно-разностных сигналов, содержит также возбудитель-синтезатор опорных колебаний и управляющую электронно-вычислительную машину (ЭВМ), при этом многоканальное приемопередающее устройство состоит из четырех приемопередающих модулей, каждый из которых содержит три коммутатора прием-передача, смеситель, усилитель мощности, вход которого через предварительный усилитель соединен с первым выходом первого коммутатора прием-передача, а выход подключен к первому входу второго коммутатора прием-передача, второй вход-выход которого образует антенный вход-выход приемопередающего модуля, а выход через последовательно включенные устройство защиты, малошумящий усилитель и усилитель высокой частоты соединен со вторым входом третьего коммутатора прием-передача, первый вход которого образует вход сигнала возбуждения на промежуточной частоте приемопередающего модуля, а выход соединен со вторым входом смесителя, выход которого соединен с входом первого коммутатора прием-передача, второй выход которого образует сигнальный выход приемопередающего модуля, кроме этого возбудитель-синтезатор опорных колебаний содержит опорный генератор, к выходу которого подключены формирователь частоты дискретизации, выход которого соединен с соответствующим входом многоканального устройства цифрового преобразования и формирования суммарно-разностных сигналов, формирователь частоты гетеродина, к выходу которого подключены первые входы смесителей всех приемопередающих модулей, и формирователь промежуточной частоты, к выходу которого подключены первые входы четырех квадратурных амплитудных модуляторов, информационные входы которых и информационный вход формирователя частоты гетеродина соединены с первым выходом управляющей ЭВМ, выходы квадратурных амплитудных модуляторов соединены с первыми входами третьих коммутаторов прием-передача соответствующих приемопередающих модулей, при этом ко второму выходу управляющей ЭВМ подключен вход опорного сигнала многоканального устройства цифрового преобразования и формирования суммарно-разностных сигналов, к третьему выходу управляющей ЭВМ подключены управляющие входы коммутаторов прием-передача приемопередающих модулей, а к четвертому - управляющий вход антенного устройства. 3 ил.

Изобретение относится к радиопеленгации в двух координатных плоскостях. Достигаемый технический результат - обеспечение беспоискового по направлению определения пространственных угловых координат сигнала в условиях противоречия между угловыми размерами зоны обзора и шириной лучей диаграмм направленности (ДН) антенной системы (АС), необходимой для обеспечения заданной точности пеленгования. Сущность способа состоит в приеме сигнала N лучевой ДН АС, ориентация и число N лучей которой позволяет одновременное накрытие их ДН всей области зоны обзора, обнаружении сигналов и измерении их амплитуд для всех N каналов приема, среди которых находят максимальную и запоминают соответствующий ей номер луча, относительно которого определяют отношения амплитуд сигналов других лучей. Для формирования оценок угловых координат сигнала зону обзора предварительно разбивают на дискретные элементы, каждый из которых характеризуется парой угловых координат и соответствующих им значений отношений амплитуд сигналов для всех N лучей ДН по отношению к максимальной для данной пары. Для полученного множества отношений для каждого из дискретных элементов зоны обзора определяют наилучшее совпадение отношений с измеренными их значениями при одинаковых номерах лучей с максимальными амплитудами с помощью метода наименьших квадратов, при котором оценками координат являются соответствующие этому случаю координаты дискретного элемента. 8 ил.

Изобретение относится к радиотехнике и может быть использовано в радиолокации при определении азимута цели с помощью интерполированной пеленгационной характеристики. Достигаемый технический результат заключается в адаптации использования моноимпульсной антенной системы с целью повышения точности пеленгации цели при воздействии факторов, искажающих пеленгационную характеристику. Результат достигается тем, что способ определения азимута цели с помощью интерполированной пеленгационной характеристики включает обработку запомненной полной азимутальной последовательности сигналов с выхода моноимпульсной антенной системы, при этом из обработки исключают сигналы, лежащие ниже уровня достоверности результатов, определяемого величиной шума приемного тракта. После чего через точки, лежащие справа и слева от приблизительного направления на цель, образованные совокупностью угловых положений моноимпульсной антенной системы и соответствующими им величинами сигналов с выхода суммарно-разностного дискриминатора, проводятся интерполированные кривые третьего порядка, включающие эти точки, азимут, соответствующий точке пересечения этих кривых, является вычисленным азимутом цели. 3 ил.

Изобретение относится к области радиолокационной техники и может быть использовано в моноимпульсных радиолокационных станциях (РЛС). Техническим результатом заявляемого моноимпульсной РЛС с автоматической калибровкой является исключение ошибок калибровки, вызванных переотражениями от предметов, расположенных вблизи излучателя и моноимпульсного облучателя, и расширение номенклатуры моноимпульсных РЛС, в которых применимо заявляемое решение. Указанный результат достигается за счет того, что в состав моноимпульсной РЛС с автоматической калибровкой входят: фазированная антенная решетка с суммарно-разностной схемой и системой распределения мощности между каналами, трехканальное приемное устройство, аналого-цифровые преобразователи, усилитель мощности, генератор сигналов, вычислитель, элемент связи, определенным образом выполненные и соединенные между собой. 2 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокационной технике и может быть использовано в моноимпульсных радиолокационных станциях (РЛС). Достигаемый технический результат - повышение точности и расширение функциональных возможностей моноимпульсного пеленгования при использовании одноканального приемного устройства моноимпульсной РЛС. Указанный результат достигается с использованием череспериодной фазовой манипуляции сигнала, поступающего с разностного выхода антенны моноимпульсной РЛС, векторного сложения этого фазоманипулированного сигнала с сигналом, поступающим с суммарного выхода антенны моноимпульсной РЛС, переноса результирующего сигнала на промежуточную частоту, его одноканального усиления, синхронного детектирования, аналого-цифрового преобразования, когерентного подпачечного накопления оцифрованных значений результирующего сигнала, компенсации доплеровских набегов фаз этого сигнала за время накопления подпачки, время-частотного преобразования накопленных значений результирующего сигнала, выделения суммарных и разностных сигналов в частотной области, определения их абсолютных значений и последующего вычисления соответствующих моноимпульсных отношений с учетом фазовых соотношений выделенных сигналов. 8 ил.

Изобретение относится к радиотехнике и может быть использовано в радиолокации при определении угловых координат цели с помощью линейной антенной решетки. Достигаемый технический результат - расширение возможности определения координат цели при использовании линейной антенной решетки. Указанный результат достигается тем, что осуществляют излучение зондирующих сигналов, прием отраженных сигналов не менее, чем при двух положениях луча антенной решетки, разнесенных по угловой координате, измерении амплитуд принятых сигналов, соответствующих этим положениям луча, определении ширины луча, на основе измерения отклонения луча от нормали антенной решетки, при каждом его угловом положении, вычислении угловой координаты объекта, при этом измерение азимута цели относительно объекта-носителя производят в течение ряда моментов времени, характеризующихся изменением ориентации объекта-носителя в пространстве, затем для каждого измерения выстраивают линию возможных положений цели по другой угловой координате с учетом известного характера искривления диаграммы направленности линейной антенной решетки при электронном сканировании, производят сдвиг линий цели в соответствии с произошедшим за интервал времени между ними изменением ориентации объекта-носителя в пространстве и находят точку пересечения сдвинутых линий цели, соответствующую угловым координатам цели. 3 ил.
Наверх