Автономный солнечный опреснитель-электрогенератор

Изобретение относится к технике опреснения морских и соленых (минерализованных) вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии. Автономный солнечный опреснитель–электрогенератор включает прямоугольный корпус, выполненный из материала с высокой теплопроводностью. Крыша 2 корпуса покрыта фотоэлементами с накопительным блоком 4. Внутри корпуса размещен наклонный испарительный лоток 5, делящий полость корпуса на испарительную 7 и конденсационную 8 камеры, сообщающиеся между собой у бортов корпуса через вертикальные щели. В торцах корпуса и лотка 5 расположены впускной коллектор, соединенный с погружным питательным насосом 12, выпускная горизонтальная щель. Днище корпуса соединено с емкостью для сбора конденсата 15, в которой помещен конденсатный насос 16. Конденсационная камера 8 погружена в водоем 13. Уклон лотка 5 направлен в сторону выпуска питательной воды. Внутренние поверхности торцов, бортов и днища конденсационной камеры 8 выполнены с вертикальными и горизонтальными гофрами. В пазы горизонтальных гофр вставлены термоэлектрические преобразователи, в массиве которых помещены термоэмиссионные элементы, представляющие собой парные проволочные отрезки 21 и 22, выполненные из разных металлов и спаянные на концах между собой под углом 90° с образованием П–образных рядов. Крайние проволочные отрезки каждой пары П–образных рядов соединены между собой перемычками. На противоположном конце каждая пара П-образных рядов соединена между собой последовательно через электрические конденсаторы. Первый и последний из конденсаторов и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами. Изобретение позволяет повысить эффективность автономного солнечного опреснителя-электрогенератора. 10 ил.

 

Изобретение относится к технике опреснения морских и соленых (минерализованных) вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии.

Известен гелиодистиллятор, содержащий корпус с прозрачным покрытием, дефлектор, установленную в корпусе испарительную тарелку с бортиками (испаритель), снабженную питательным патрубком (распределителем) и покрытую снизу слоем гидротеплоизоляции, конденсатор (конденсационная камера), размещенный в нижней части корпуса под тарелкой, погруженный в воду бассейна [АС СССР №1554290, МПК C02F 1/14, 1993].

Недостатками известного гелиодистиллятора являются невозможность использования его конструкции для масштабного получения опресненной воды, необходимость периодической очистки поверхности тарелки от солевых отложений и рассола, для чего процесс дистилляции необходимо часто прерывать, необходимость наличия постороннего энергетического источника для насоса откачки полученного дистиллята, что снижает его эффективность.

Более близким к предлагаемому изобретению является автономный солнечный опреснитель, включающий прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами, соединенными с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на испарительную и конденсационную камеры, сообщающихся между собой у бортов корпуса через вертикальные щели, внутренняя поверхность конденсационной камеры покрыта решеткой из полос пористого материала, в верхнем торце лотка у правого торца корпуса расположен впускной коллектор, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, при этом большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, питательный и конденсатный насосы снабжаются электроэнергией из накопительного блока фотоэлементов, а уклон лотка направлен в сторону выпуска питательной воды с уклоном равным углу естественного откоса воды [Патент РФ №2567895, МПК C02F 1/14, 2015].

Основным недостатком известного автономного солнечного опреснителя является недостаточное использование низкопотенциальной энергии воды для генерации электрической энергии, что снижает его эффективность.

Технической задачей предлагаемого изобретения является повышение эффективности автономного солнечного опреснителя-электрогенератора.

Техническая задача реализуется автономным солнечным опреснителем-электрогенератором, включающим прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на верхнюю испарительную камеру и нижнюю конденсационную камеру, сообщающихся между собой у бортов корпуса через вертикальные щели, в верхнем торце наклонного испарительного лотка у правого торца корпуса расположен впускной коллектор, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец наклонного испарительного лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, уклон наклонного испарительного лотка направлен в сторону выпуска питательной воды с уклоном равным углу естественного откоса воды, причем внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры выполнена с вертикальными и горизонтальными гофрами, внутри каждого гофра размещены вертикальные и горизонтальные пазы, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов M1 и М2, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П-образные ряды, крайние проволочные отрезки каждой пары П-образных рядов термоэлектрических преобразователей, соединены между собой перемычками, на противоположном конце каждая пара П-образных рядов, соединены между собой последовательно через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами.

Предлагаемый автономный солнечный опреснитель-электрогенератор (АСО-ЭГ) изображен на фиг. 1-6 (на фиг. 1 показан общий вид, на фиг. 2-6 основные узлы и их разрезы).

АСО-ЭГ содержит прямоугольный корпус 1, выполненный из материала с высокой теплопроводностью, крыша 2, покрытая сверху фотоэлементами 3 с накопительным блоком 4, внутри корпуса 1 размещен наклонный испарительный лоток с бортиками 5, днище которого снизу покрыто слоем гидротеплоизоляции 6, делящий полость корпуса 1 на верхнюю испарительную камеру 7 и нижнюю конденсационную камеру 8, сообщающихся между собой у бортов корпуса 1 через вертикальные щели 9, в верхнем торце наклонного испарительного лотка 5 у правого торца корпуса 1 расположен впускной коллектор 10, представляющий собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом 11 с погружным питательным насосом 12, помещенным в водоеме с морской (минерализованной, соленой) водой 13, нижний торец наклонного испарительного лотка 5 соединен с выпускной горизонтальной щелью 14, устроенной в левом торце корпуса 1, днище корпуса 1 в центре соединено с емкостью для сбора конденсата 15, в которой помещен конденсатный насос 16, при этом большая часть корпуса 1, в которой расположена конденсационная камера 8, погружена в водоем 13, а уклон наклонного испарительного лотка 5 направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды, внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры 8 корпуса 1 выполнены с вертикальными и горизонтальными гофрами 17, внутри каждого гофра 17 размещены вертикальные и горизонтальные пазы 18, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь (ТЭП) 19, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов (ТЭЭ) 20, представляющих собой парные проволочные отрезки 21 и 22, выполненные из разных металлов, спаянные на концах между собой таким образом, что их спаи 23 согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя (ТЭП) 19 параллельно ей, не касаясь ее, а сами проволочные отрезки 21 и 22 расположены параллельно друг другу, образуя П-образные ряды 24, крайние проволочные отрезки 21 и 22 каждой пары П-образных рядов 24 ТЭП 19, соединены между собой перемычками 25, на противоположном конце каждая пара П-образных рядов 24, соединены между собой последовательно через электрические конденсаторы 26, первый и последний из которых и фотоэлементы 3 соединены с выходными коллекторами 27 и 28, накопительным блоком 4, насосами 12 и 16 и другими потребителями (соединительные электропровода и другие потребители на фиг. 1-10 не показаны).

В основу работы предлагаемого АСО-ЭГ положено свойство фотоэлементов 3 при воздействии на них солнечных лучей преобразовывать воспринятую солнечную энергию в электрическую и тепловую энергии [АС СССР №1603152, МПК F24J 2/32, 1990]. Кроме того, изготовление контурной арматуры ТЭП 19 в виде П-образных рядов 24, состоящих из парных проволочных отрезков 21 и 22, выполненных из разных металлов, спаянных на концах между собой, то при нагреве внутренних спаев 23 проволочных отрезков 21 и 22 ТЭЭ 20 ТЭП 19 конденсирующимся паром и охлаждении противоположных им спаев 23 снаружи, обращенных к холодной воде, на них устанавливаются разные температуры, в результате чего в П-образных рядах 24 появляется термоэлектричество [С.Г. Калашников. Электричество. - М: «Наука», 1970, с. 502-506]. Компоновка АСО-ЭГ (сверху - фотоэлемент 3, снизу - крышка 2) позволяет одновременно производить съем тепла с фотоэлементов 4, увеличивая эффективность их работы, за счет испарения морской воды, текущей по наклонному испарительному лотку 5, пар которой нагревает при своей конденсации спаи 23 ТЭЭ 21, генерируя термоэлектричество. При этом П-образное расположение ТЭЭ 20 в рядах 24 ТЭП 19 позволяет значительно увеличить их удельное количество, приходящееся на единицу поверхности конденсационной камеры 8, и одновременно увеличить площадь теплообмена, увеличивая скорость конденсации пара, а параллельное расположение спаев 23 относительно наружной поверхности ТЭП 19 увеличивает площадь контакта спаев 23 с охлаждаемой (нагреваемой) поверхностями, что интенсифицирует процесс теплообмена между противоположными спаями 23. Кроме того, соединение ТЭП 19 вертикальных и горизонтальных рядов 24 между собой последовательно через электрические конденсаторы 26 и с выходными коллекторами 27, 28 снижает электрическое сопротивление цепи ТЭП при генерировании термоэлектричества.

АСО-ЭГ работает следующим образом. Корпус 1 погружается в водоем с морской (минерализованной, соленой) водой 13 таким образом, чтобы большая часть конденсационной камеры 8 корпуса 1 была погружена в водоем 13, выпускная горизонтальная щель 14 находилась над уровнем воды в водоеме 13, а крышка 2 была горизонтальной (для обеспечения равномерного приема солнечных лучей в течение светового дня). Такое положение корпуса 1 обеспечивается или соотношением между его весом и центром тяжести, или установкой его на якоря. Далее к впускному коллектору 10 через трубопровод 11 присоединяют погружной питательный насос 12, глубину погружения которого Н выбирают из условий отсутствия в воде механических загрязнений и включают его в работу. При падении солнечных лучей на поверхность фотоэлементов 3 в них осуществляется преобразование воспринятой солнечной энергии в электрическую и тепловую энергии. Устойчивая и эффективная работы фотоэлементов 3 обеспечивается непрерывным отводом тепла от них, который осуществляется тем, что полученная в фотоэлементах 3 в результате трансформации солнечной энергии тепловая энергия непрерывно отводится через стенку крыши 2, выполненную из материала с высокой теплопроводностью, в испарительную камеру 7. В испарительной камере 7 поступившее тепло расходуется на нагрев минерализованной питательной воды, движущейся по наклонному испарительному лотку 5 в сторону его нижнего торца самотеком за счет его уклона. Последняя подается в наклонный испарительный лоток 5 питательным насосом 12 через впускной коллектор 10, представляющим собой, заглушенную на торцах, горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной нагреваемой воды, что обеспечивает ее равномерное распределение по ширине полотна наклонного испарительного лотка 5. В процессе нагрева минерализованной воды, которая нагревается до температуры большей, чем температура воды в водоеме 13, часть ее испаряется, а неиспарившаяся часть самотеком перемещается по полотну до нижнего торца наклонного испарительного лотка 5 и через горизонтальную выпускную щель 14 сливается в водоем 13. Полученный в процессе нагрева питательной воды насыщенный водяной пар, через вертикальные щели 9 поступает в нижнюю конденсационную камеру 8 и конденсируется там, в результате чего при выходе на стационарный режим работы опреснителя, давление в конденсационной камере 8 всегда меньше, чем в испарительной камере 7. Конденсация водяного пара, полученного в испарительной камере 7, в конденсационной камере 8 осуществляется в результате процесса теплопередачи от пара через стенки поверхность торцов, бортов и днища нижней конденсационной камеры 8, выполненные с вертикальными и горизонтальными гофрами 17, внутри которых размещены вертикальные и горизонтальные пазы 18, в которые вставлены ТЭП 19, с массивом более холодной воды в водоеме 13, причем полученный насыщенный пар с температурой tП контактирует при этом с внутренней поверхностью ТЭП 19, нагревая внутренние спаи 23 проволочных отрезков 21 и 22 ТЭЭ 20 ТЭП 19 до температуры t1. Одновременно, поверхность ТЭП 19, обращенная к воде, охлаждается в результате контакта гофра 17 с водой. При этом тепло, выделяющееся в результате работы фотоэлементов 4 от солнечных лучей, в конечном итоге, тратится на нагрев внутренних спаев 23 ТЭЭ 20, а холод, поступающий от воды, охлаждает наружные спаи 23 этих же ТЭЭ 20 до температуры t2, в результате чего на противоположных спаях 23 возникает разность температур (t1-t2), а в П-образных рядах 24 появляется термоэлектричество, которое суммируется в конденсаторах 26. Полученное под воздействием солнечных лучей электрическая энергия из фотоэлементов 4 и термоэлектричество из ТЭП 19 через коллекторы 27 и 28, поступает в накопительный блок, где осуществляется трансформация напряжения, силы тока и накопление электрической энергии, часть которой расходуется на привод насосов 12 и 16, а другая часть направляется другим потребителям (другие потребители на фиг. 1-10 не показаны).

Полученный конденсат самотеком за счет сил тяжести движется со всех сторон конденсационной камеры 8 по каналам, образованным рядами ТЭП 19, и стекает в емкость для сбора конденсата 15, расположенную в центре днища камеры 8, стекает туда за счет силы тяжести, накапливается там и насосом 16 подается потребителю.

Высота бортиков Δ1 наклонного испарительного лотка 5, ширина вертикальных щелей 9 Δ2 выбираются из условия недопущения перелива питательной воды и свободного прохода пара при максимальной нагрузке опреснителя. Ширина горизонтальной выпускной щели Δ3 должна обеспечивать свободный слив нагретой питательной воды в водоем 13, но в тоже время ее сопротивление по воздуху должно быть значительно больше, чем сопротивление вертикальных щелей по водяному пару, что проверяется аэродинамическим и гидравлическим расчетами. Длина наклонного испарительного лотка 5 выбирается из условия минимального отложения солей на его поверхности, ширина принимается исходя из условий обеспечения равномерного распределения питательной воды на поверхности по его ширине и длине. Производительность предлагаемого солнечного опреснителя можно увеличить путем размещения параллельно нескольких наклонных испарительных лотков 5 в одном корпусе 1.

Количество фотоэлементов 3, размеры корпуса 1 и крышки 2, глубина погружения конденсационной камеры 8 в воду, размеры и шаг между гофрами 17, их длину определяют в зависимости от наружных условий места установки (температуры наружного воздуха, температуры воды, солнечного освещения) и требуемой мощности. Величина разности электрического потенциала на коллекторах 21 и 22, сила электрического тока зависит от характеристик фотоэлементов 3, продолжительности и интенсивности солнечного облучения, характеристик пар металлов из которых изготовлены проволочные отрезки 21 и 22, числа ТЭЭ 20 и ТЭП 19 в П-образных рядах 24 и их числа в камере 8, а также разности температур на противоположных спаях 23 ТЭЭ 20. Полученный электрический ток, помимо обеспечения работы насосов 12 и 16, можно использовать для обслуживания различных технических устройств, а также обогрева и освещения жилых и производственных помещений на берегу водоема, таким образом, конструкция предлагаемого АСО-ЭГ позволяет одновременно проводить масштабный процесс опреснения морской или минерализованной (соленой) воды непосредственно в самом водоеме, транспортировку ее потребителю и генерировать электричество за счет использования солнечной энергии и низкопотенциальной энергии минерализованной (морской) воды, что повышает его эффективность.

Автономный солнечный опреснитель-электрогенератор, включающий прямоугольный корпус, выполненный из материала с высокой теплопроводностью, крыша которого покрыта сверху фотоэлементами с накопительным блоком, внутри корпуса размещен наклонный испарительный лоток с бортиками, днище которого снизу покрыто слоем гидротеплоизоляции, делящий полость корпуса на верхнюю испарительную камеру и нижнюю конденсационную камеру, сообщающиеся между собой у бортов корпуса через вертикальные щели, в верхнем торце наклонного испарительного лотка у правого торца корпуса расположен впускной коллектор, представляющий собой заглушенную на торцах горизонтальную перфорированную трубу, перфорация которой выполнена в направлении движения питательной воды, соединенную трубопроводом с погружным питательным насосом, помещенным в водоеме с морской (минерализованной, соленой) водой, нижний торец наклонного испарительного лотка соединен с выпускной горизонтальной щелью, устроенной в левом торце корпуса, днище корпуса в центре соединено с емкостью для сбора конденсата, в которой помещен конденсатный насос, большая часть корпуса, в которой расположена конденсационная камера, погружена в водоем, уклон лотка направлен в сторону выпуска питательной воды с уклоном, равным углу естественного откоса воды, отличающийся тем, что внутренняя поверхность торцов, бортов и днища нижней конденсационной камеры выполнена с вертикальными и горизонтальными гофрами, внутри каждого гофра размещены вертикальные и горизонтальные пазы, в каждый из которых вставлен вертикальный или горизонтальный термоэлектрический преобразователь, выполненный из диэлектрического материала с высокой теплопроводностью, в массиве которого помещена контурная арматура, состоящая из термоэмиссионных элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов, спаянные на концах между собой таким образом, что их спаи согнуты под углом 90° и располагаются вблизи наружной поверхности корпуса термоэлектрического преобразователя параллельно ей, не касаясь ее, а сами проволочные отрезки расположены параллельно друг другу, образуя П-образные ряды, крайние проволочные отрезки каждой пары П-образных рядов термоэлектрических преобразователей соединена между собой перемычками, на противоположном конце каждая пара П-образных рядов соединены между собой последовательно через электрические конденсаторы, первый и последний из которых и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами.



 

Похожие патенты:

Изобретение относится к области генерирования химически активных частиц физическими методами воздействия и может быть использовано в биомедицинских исследованиях.

Изобретение относится к cпособу извлечения ионов кадмия и цинка из природных и сточных вод. Способ включает сорбцию с использованием сорбента и элюирование сорбированных ионов.

Изобретение может быть использовано в охране окружающей среды при нейтрализации кислых шахтных вод угольных бассейнов. Для осуществления способа в качестве нейтрализующего кальцийсодержащего материала используют шлак, образующийся при производстве феррованадия силикоалюминотермическим методом и включающий до 97 мас.

Изобретение может быть использовано в водоочистке. Модуль (1) ультрафиолетового облучателя с рамой (5) содержит по меньшей мере два элемента (2) облучателя.

Изобретение относится к очистке животноводческих стоков пруда-накопителя аэрацией. Способ включает использование воздухоподводящей трубы, распределительных перфорированных трубопроводов 11, снабженных тупиковыми концами, и рассредоточенную подачу сжатого воздуха компрессором 3.

Изобретение относится к способам применения полиаминов для противонакипной обработки в различных промышленных технологических потоках. Предложен способ уменьшения или устранения накипи в промышленном процессе, включающий добавление в процесс композиции, включающей полимерный продукт реакции полиамина и двух химически активных в отношении азота соединений, одно из которых содержит группу –Si(OR’’)3, где R’’ означает водород, С1-С20 алкил или фенил, причем полимерный продукт реакции имеет средневесовую молекулярную массу по меньшей мере 500.

Изобретение относится к области очистки сточных вод. Предложен биореактор для очистки сточных вод.

Изобретение относится к области создания наводороженных водных растворов с антиоксидантными свойствами и отрицательным окислительно-восстановительным потенциалом и может быть использовано в медицине.

Техническим результатом является повышение объемов переработки сточных вод без сливания в водоемы или дренирования результата переработки. Установка для сжигания сточных вод содержит узел грубой фильтрации, узел химической подготовки, электрофлотатор, отстойник, дегидрататор, узел тонкой фильтрации и ионного обмена, инсинератор и скруббер.

Изобретения могут быть использованы для разделения жидкой и твердой фаз, при осаждении, флотации или фильтровании, при кондиционировании питьевой воды, при обезвоживании ила, при очистке сточных вод с использованием флокулирующих вспомогательных веществ, при изготовлении бумаги в качестве удерживающих средств.

Изобретение относится к обессоливанию воды. Способ включает стадии, в которых пропускают подаваемый поток солевого раствора 2' в первую стадию обессоливания через обратноосмотическую мембранную опреснительную установку 3', включающую по меньшей мере один обратноосмотический опреснительный блок 4' с образованием потока 5' первого водного продукта, имеющего сниженную концентрацию соли относительно концентрации подаваемого потока солевого раствора 2', и потока 6' первого побочного продукта, имеющего повышенную концентрацию соли относительно концентрации подаваемого потока солевого раствора 2'. Поток 6' первого побочного продукта пропускают во вторую стадию обессоливания через установку 7 суспензионной кристаллизации с образованием потока 8 второго водного продукта, имеющего сниженную концентрацию соли относительно концентрации потока 6' первого побочного продукта, и потока 9 второго побочного продукта, имеющего повышенную концентрацию соли относительно концентрации потока 6' первого побочного продукта. Устройство обессоливания дополнительно включает блок (10) статической кристаллизации или второй блок суспензионной кристаллизации, имеющий впуск (92) в сообщении по текучей среде с выпуском (91) блока (7) суспензионной кристаллизации, и выпуск (121) для потока (12) третьего водного продукта, и выпуск (131) для потока (13) третьего побочного продукта. Технический результат – сокращение объема потоков первого побочного продукта с повышенной концентрацией соли. 3 н. и 9 з.п. ф-лы, 9 ил., 4 табл., 4 пр.

Изобретение относится к очистке сточных вод, загрязненных механическими примесями и минеральными солями, от летучих органических соединений. Исходную сточную воду 1 нагревают балансовым потоком 3 продуктов окисления в теплообменнике 2. Летучие органические соединения отдувают от нагретой сточной воды в насадочном десорбере 4 циркулирующим потоком 5 продуктов окисления с получением очищенной воды 9 и парогазовой смеси 6, которую затем окисляют воздухом 7 в каталитическом реакторе 8. Полученный поток продуктов окисления разделяют на циркулирующий 5 и балансовый 3 потоки. Изобретение позволяет снизить энергозатраты и уменьшить металлоемкость оборудования. 4 з.п. ф-лы, 1 ил.

Изобретение может быть использовано на предприятиях промышленного производства нитроцеллюлозы и предприятиях специальной химии. Способ переработки осадка сточных вод производства нитроцеллюлозы включает непрерывную загрузку влажного нитроцеллюлозного осадка в близкий к насыщению водный раствор гидроксид натрия или гидроксида калия с начальной температурой 10-95°C. Раствор непрерывно перемешивают с достаточной интенсивностью, чтобы частицы осадка находились во взвешенном состоянии и равномерно распределялись в объеме жидкости. Скорость подачи осадка в щелочную суспензию поддерживают такой, чтобы массовая доля частиц осадка в суспензии не превышала 5%. Способ обеспечивает сокращение энергозатрат на обработку нитроцеллюлозного осадка, сокращение времени обработки и упрощение аппаратурного оформления процесса обработки. 1 табл., 1 пр.

Группа изобретений относится к водоподготовке и может быть использована в системах снабжения питьевой водой населенных пунктов, санаториев, домов отдыха, коттеджей, индивидуальных домовладений, располагающих подземными радоновыми водами с выходами их на поверхность. Способ очистки воды от радона и дочерних продуктов распада радона включает фильтрацию очищаемой воды через сорбирующий материал и обратную промывку сорбирующего материала. Фильтр 3 с сорбирующим материалом защищают экраном. Обратную промывку осуществляют водой, нагретой до температуры от 50 до 85°С, которую затем собирают в емкость-сборник 9 и выдерживают до распада радона и дочерних продуктов радона. Устройство для очистки воды от радона и дочерних продуктов распада радона включает фильтр 3 с сорбирующим материалом, линию подачи очищаемой воды 1, линию отвода очищенной воды 5, систему обратной промывки фильтра, источник горячей воды 8 с температурой от 50 до 85°С, емкость-сборник 9 для выдержки промывной воды на время распада радона и дочерних продуктов распада радона, экран. Изобретение позволяет повысить радиационную безопасность очистки воды от радона и дочерних продуктов распада радона, а также увеличить ресурс работы сорбирующего материала и эффективно осуществлять очистку воды и безопасное техническое обслуживание. 2 н. и 11 з.п. ф-лы, 1 ил., 2 пр., 1 табл.

Предлагаемое изобретение относится к области электрокоагуляционной регенерации электролитов на основе водных растворов нитрата и хлорида натрия, содержащих шестивалентные ионы хрома, и может быть использовано в процессе электрохимической обработки лопаток газотурбинных двигателей. Способ регенерации электролита на основе водного раствора нитрата и хлорида натрия, используемого при электрохимической обработке лопаток газотурбинного двигателя, изготовленных из высоколегированных сталей, включает электрокоагуляцию электролита, при которой сначала осуществляют обработку электролита постоянным током прямой полярности при плотности тока 0,4-0,5 А/дм2 в течение 5-10 минут, а затем постоянным током обратной полярности при той же плотности тока и продолжительности воздействия, причем в процессе обработки образующийся шлам удаляют из электролита. Изобретение обеспечивает значительное снижение концентрации высокотоксичных ионов шестивалентного хрома в электролите. 1 ил., 1 табл.

Изобретение относится к способу и устройству для обработки промышленных сточных вод и/или питьевой воды с помощью электрохимических способов и процессов дополнительного окисления. После подготовительной фазы гравитационного осаждения следует основная обработка, состоящая из электрокоагуляции, электроокисления и электрофлотации за счет действия металлических наборов электродов, изготовленных из нержавеющей стали, стали и алюминия соответственно с одновременной дезинфекцией/окислением озоном, УФ-излучением и ультразвуковой обработкой, а также рециркуляцией в электромагнитном поле. По окончании основной обработки смесь флокул и воды подвергают коагуляции/флокуляции под действием электрохимически образованных из стали и алюминия флокул при медленном введении озона. Следующая фаза представляет собой отделение осадка от чистой воды, которую выгружают в сборный резервуар через песочный фильтр и фильтр из активированного угля для удаления легких плавучих флокул. При необходимости воду подвергают окислению при одновременном действии УФ-излучения и озона для окончательного разложения органических веществ и аммиака, а также возможных остатков микробиологического загрязнения. Изобретение обеспечивает установку для обработки промышленных сточных вод, в которой используют электрохимические способы. 2 н. и 45 з.п. ф-лы, 4 ил., 8 табл., 4 пр.

Изобретение относится к комплексам очистки сточных вод, предназначенным для глубокой физико-химической и биологической (комбинированной) очистки производственных сточных вод от взвешенных веществ, соединений азота, фосфора, поверхностно-активных веществ и других загрязнителей с обеспечением качества очистки до требований, допускающих сброс очищенной воды в водоемы рыбохозяйственного назначения. Технический резервуар комплекса очистки сточных вод состоит из корпуса и крышки. Днище корпуса выполнено конической формы и обеспечивает систему автоматического сброса илового осадка за счет гидростатического давления. Крышка имеет отвод для организованного выброса вредных веществ. Комплекс очистки сточных вод блочно-аппаратного типа состоит из напорного коллектора и приемной камеры; механической решетки, песколовки и первичного отстойника; анаэробной зоны биореактора и аэробной зоны биореактора; вторичного отстойника; насоса-дозатора для ввода коагулянта на выходе из анаэробной зоны биореактора перед вторичным отстойником; промежуточной емкости; блока механической и сорбционной доочистки, состоящего, из скорого механического фильтра и скорого сорбционного фильтра; насоса, компрессора для аэрации, переносной пластиковой корзины и/или самосвального бункера-прицепа, соединяющего трубопровода и приямка для ила и осадка; установки обеззараживания; устройства для обезвоживания осадка и установки обеззараживания осадка. Механические решетки, песколовки и первичный отстойник предназначены для механической очистки и выполнены модульно наземного исполнения с заявленными техническими резервуарами. Анаэробная зона биореактора и аэробная зона биореактора предназначены для биологической очистки и выполнены модульно с заявленными техническими резервуарами. Первичный отстойник, анаэробная зона биореактора, аэробная зона биореактора, вторичный отстойник, блок механической и сорбционной доочистки образуют единую технологическую линию. Способ очистки сточных вод комплексом очистки сточных вод блочно-аппаратного типа характеризуется тем, что стоки по напорному коллектору поступают в приемную камеру очистных сооружений; далее стоки поступают на механические решетки; с механических решеток стоки подаются на песколовку, при этом удаление осадка из песколовки осуществляется в мешковой фильтр; далее стоки поступают в первичный отстойник, при этом удаление осадка из первичного отстойника производится по трубопроводу в приямок; далее стоки самотеком поступают в анаэробную зону биореактора, в которой происходит деструкция трудноокисляемой органики на бионосителе иммобилизованными и свободноплавающими микроорганизмами; далее стоки поступают в аэробную зону биореактора, в которой происходит нитрификация под действием аэробных нитрифицирующих бактерий и аэрации; далее очищенные стоки самотеком поступают во вторичный отстойник, при этом перед вторичным отстойником на выходе из анаэробной зоны биореактора вводится коагулянт при помощи насосов-дозаторов; при этом удаление осевшего во вторичном отстойнике ила производится по трубопроводу в приямок; далее очищенные стоки поступают в промежуточную емкость, откуда насосами подаются на блок механической и сорбционной доочистки; далее очищенные стоки направляются на установку обеззараживания; осадок и ил из приямка насосами подаются на устройство для обезвоживания осадка и установку обеззараживания осадка. Техническим результатом заявленного изобретения является повышение санитарной надежности, экологической безопасности и экономичности установки, расширение области применения. 2 н. и 19 з.п. ф-лы, 7 ил.

Изобретение относится к доочистке питьевой воды. Способ доочистки водопроводной воды включает ее очистку в водоочистителе, содержащем зону подачи воды, зону замораживания с морозильной камерой и зону перехода воды из твердого состояния в жидкое с отделением льда, вывода талой питьевой воды. В качестве зоны подачи воды используют часть вертикального металлического кольца, которую погружают в сосуд и вращают. Металлическое кольцо замораживают перед погружением в сосуд с водой в морозильной камере. Отделение льда от поверхности металлического кольца осуществляют прижимными рябухами с приводом вращения. Вращение металлического кольца выполняют прижимным роликом с упругим бандажом. При отделении льда от поверхности металлического кольца дополнительно обеспечивают ее деформацию за счет расположенных на поверхности металлического кольца перфорированных отверстий под действием прижимных рябух. Изобретение позволяет повысить производительность водоочистки. 1 ил.

Изобретение относится к бесконтактной активации жидкости и может быть использовано в медицине, сельском хозяйстве, биологии, ветеринарии, пищевой промышленности. На жидкость воздействуют электромагнитными и акустическими волнами, полученными от магнитострикционного излучателя, запитанного от функционального генератора. Рабочий конец магнитострикционного излучателя помещен в жидкость, находящуюся в емкости, при этом указанная емкость с водой обвита трубой, через которую пропускают бесконтактно активируемую воду, либо указанная емкость с водой размещена в емкости с бесконтактно активируемой водой, находящейся в стационарном состоянии. Технический результат - повышение эффективности активации с одновременным снижением энергозатрат. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к доочистке питьевой воды. Способ очистки водопроводной воды включает ее очистку в водоочистителе, содержащем зону подачи воды, зону замораживания с морозильной камерой и зону перехода воды из твердого состояния в жидкое с отделением льда, вывод талой питьевой воды. В качестве зоны подачи воды используют часть вертикального металлического кольца, которую погружают в сосуд и вращают. Металлическое кольцо замораживают перед погружением в сосуд с водой в морозильной камере. Отделение льда от поверхности металлического кольца осуществляют прижимными рябухами с приводом вращения. Вращение металлического кольца выполняют прижимным роликом с упругим бандажом. При отделении льда от поверхности металлического кольца изгибают поверхность металлического кольца за счет расположенных у его внешнего края радиальных прорезей, образующих изгибающиеся лопасти, под действием усилия, создаваемого прижимными рябухами. Изобретение позволяет повысить производительность водоочистки. 1 ил.

Изобретение относится к технике опреснения морских и соленых вод и может быть использовано для получения опресненной воды и попутной генерации электрической энергии. Автономный солнечный опреснитель–электрогенератор включает прямоугольный корпус, выполненный из материала с высокой теплопроводностью. Крыша 2 корпуса покрыта фотоэлементами с накопительным блоком 4. Внутри корпуса размещен наклонный испарительный лоток 5, делящий полость корпуса на испарительную 7 и конденсационную 8 камеры, сообщающиеся между собой у бортов корпуса через вертикальные щели. В торцах корпуса и лотка 5 расположены впускной коллектор, соединенный с погружным питательным насосом 12, выпускная горизонтальная щель. Днище корпуса соединено с емкостью для сбора конденсата 15, в которой помещен конденсатный насос 16. Конденсационная камера 8 погружена в водоем 13. Уклон лотка 5 направлен в сторону выпуска питательной воды. Внутренние поверхности торцов, бортов и днища конденсационной камеры 8 выполнены с вертикальными и горизонтальными гофрами. В пазы горизонтальных гофр вставлены термоэлектрические преобразователи, в массиве которых помещены термоэмиссионные элементы, представляющие собой парные проволочные отрезки 21 и 22, выполненные из разных металлов и спаянные на концах между собой под углом 90° с образованием П–образных рядов. Крайние проволочные отрезки каждой пары П–образных рядов соединены между собой перемычками. На противоположном конце каждая пара П-образных рядов соединена между собой последовательно через электрические конденсаторы. Первый и последний из конденсаторов и фотоэлементы соединены с выходными коллекторами, накопительным блоком, питательным и конденсатным насосами. Изобретение позволяет повысить эффективность автономного солнечного опреснителя-электрогенератора. 10 ил.

Наверх