Скважинный буровой двигатель и способ использования

Группа изобретений относится к области бурения. Скважинный буровой двигатель содержит трубчатый корпус в бурильной колонне, первый эластомерный статор, сформированный на внутренней поверхности корпуса и имеющий первую полость винтообразной формы с образованным в ней первым количеством заходов, двухцелевой полый элемент винтообразной формы, расположенный внутри первого эластомерного статора и имеющий второе количество заходов, образованных на внешней поверхности с образованием первого ротора, причем второе количество заходов первого ротора на единицу меньше первого количества заходов первого статора, второй эластомерный статор, сформированный на внутренней поверхности двухцелевого полого элемента винтообразной формы и имеющий вторую полость винтообразной формы с третьим количеством заходов, второй ротор винтообразной формы, расположенный внутри второй винтовой полости и имеющий четвертое количество заходов, которое на единицу меньше, чем третье количество заходов, переключатель потока в верхнем конце корпуса, выполненный с возможностью направлять буровой раствор через одну из полостей из группы, включающей первую и вторую полость винтообразной формы, а также как через первую полость винтообразной формы, так и через вторую полость винтообразной формы, первый гибкий вал, функционально соединенный с нижним концом полого элемента винтообразной формы, и второй гибкий вал, функционально соединенный с нижним концом второго ротора винтообразной формы. Обеспечивается возможность изменения расхода текучей среды и/или частоты вращения долота, выходящих за пределы расчетного диапазона для буровых двигателей в бурильной колонне. 2 н. и 8 з.п. ф-лы, 5 ил.

 

Уровень техники

Настоящее изобретение в целом относится к области бурения скважин, более конкретно к скважинным буровым двигателям.

В винтовых буровых двигателях скорость вращения двигателя непосредственно связана с расходом текучей среды через двигатель. Каждый размер двигателя рассчитан на определенный диапазон расхода текучей среды. В некоторых ситуациях бурения с использованием скважинного двигателя возникает необходимость изменения расхода текучей среды и/или частоты вращения долота 150, выходящего за пределы расчетного диапазона для буровых двигателей в бурильной колонне. Тогда может потребоваться замена двигателя с сопутствующим извлечением бурильной колонны из ствола скважины. Такие замены являются дорогостоящими в связи с увеличением времени бурения.

Краткое описание чертежей

На фиг. 1 представлен схематический чертеж буровой системы;

на фиг. 2 представлена схема скважинного двигателя согласно одному из вариантов реализации;

на фиг. 3А представлен один из примеров прохождения потока текучей среды через секцию рабочей пары скважинного двигателя;

на фиг. 3В представлен один из примеров прохождения потока текучей среды через секцию рабочей пары скважинного двигателя; и

на фиг. 4 показан пример секции муфты скважинного двигателя.

Подробное описание

На фиг. 1 представлен схематический чертеж буровой системы 110, включающей скважинное оборудование согласно одному из вариантов осуществления настоящего изобретения. Как показано на фигуре, система 110 включает обычную вышку 111 для бурения, установленную на площадке 112 вышки, которая поддерживает ротор 114 буровой установки, который вращается первичным двигателем (не показан) с требуемой частотой вращения. Бурильная колонна 120, которая содержит секцию 122 буровой трубы, проходит вниз от ротора 114 буровой установки в направленную скважину 126. Скважина 126 может перемещаться по пространственной траектории. Буровое долото 150 прикреплено к скважинному концу бурильной колонны 120 и размельчает геологический пласт 123 при вращении бурового долота 150. Бурильная колонна 120 соединена с буровой лебедкой 130 через ведущую буровую трубу 121, винтовую стяжку 128 и трубопровод 129 посредством полиспаста (не показан). Во время проведения операций бурения буровые лебедки 130 приводятся в действие для управления усилием на долото 150 и скоростью проходки бурильной колонны 120 в скважине 126. Принцип функционирования буровой лебедки 130 хорошо известен в данной области техники и поэтому подробно не описан в данном документе.

Во время проведения буровых работ подходящий буровой раствор (также называемый в данной области техники «буровой грязью») 131 из цистерны для разведения бурового раствора 132 прокачивается под давлением через бурильную колонну 120 благодаря работе бурового насоса 134. Буровой раствор 131 проходит от бурового насоса 134 в бурильную колонну 120 по трубопроводу 138 для текучей среды и ведущей буровой трубе 121. Буровой раствор 131 выпускается в забой 151 буровой скважины через отверстие в буровом долоте 150. Буровой раствор 131 прокачивается вверх по стволу скважины через межтрубное пространство 127 между бурильной колонной 120 и скважиной 126 и выпускается в цистерну для разведения бурового раствора 132 по возвратному трубопроводу 135. Предпочтительно, множество датчиков (не показаны) соответственно установлено на поверхности в соответствии с известными в данной области способами для предоставления информации о различных параметрах бурения, таких как расход текучей среды, нагрузка на долото, нагрузка на крюк и т.д.

В одном примерном варианте осуществления настоящего изобретения скважинное оборудование (ВНА) 159 может включать систему 158 измерения во время бурения (MWD), содержащую различные датчики для предоставления информации об образованиях 123 и параметрах бурения с скважинным двигателем. ВНА 159 может присоединяться между буровым долотом 150 и буровой трубой 122.

Датчики MWD в ВНА 159 могут включать без ограничения датчики для измерения удельного сопротивления пласта вблизи бурового долота, аппаратуру гамма-каротажа для измерения интенсивности гамма-излучения в пласте, датчики углового пространственного положения для определения наклона и азимута бурильной колонны и датчики давления для измерения давления бурового раствора в скважине. Вышеупомянутые датчики могут передавать данные на скважинный телеметрический передатчик 133, который в свою очередь передает данные вверх по стволу скважины на устройство 140 управления работой скважинного оборудования. В одном из вариантов осуществления для передачи данных со скважинных датчиков и устройств в процессе бурения может быть использован способ гидроимпульсной скважинной телеметрии. Измерительный преобразователь 143, устанавливаемый в трубопроводе 138 подачи бурового раствора, обнаруживает гидроимпульсы, соответствующие данным, передаваемым скважинным передатчиком 133. Измерительный преобразователь 143 генерирует электрические сигналы в ответ на изменения давления бурового раствора и передает такие сигналы на устройство 140 управления работой скважинного оборудования. Устройство 140 управления работой скважинного оборудования может принимать сигналы от скважинных датчиков и устройств с помощью датчика 143, устанавливаемого в трубопровод 138 для текучей среды, и обрабатывает такие сигналы в соответствии с запрограммированными инструкциями, хранящимися в памяти или на другом устройстве хранения данных, при обмене данными с устройством 140 управления работой скважинного оборудования. Устройство 140 управления работой скважинного оборудования может отображать требуемые параметры бурения и другую информацию на дисплее/мониторе 142, который может использоваться оператором для управления операциями бурения. Устройство 140 управления работой скважинного оборудования может включать компьютер, память для хранения данных, устройство регистрации данных и другие периферийные устройства. Устройство 140 управления работой скважинного оборудования может также содержать хранящиеся в нем модели бурения, интерпретации каротажных данных и модели, зависящие от направления, и может обрабатывать данные в соответствии с запрограммированными инструкциями, и реагирует на команды оператора, вводимые через подходящее устройство ввода, такое как клавиатура (не показана).

В других вариантах осуществления для целей настоящего изобретения могут быть использованы другие способы телеметрии, такие как электромагнитные и/или акустические способы, или любые другие подходящие способы, известные в данной области техники. В одном из вариантов осуществления для обмена данными между устьем скважины и скважинными устройствами может быть использована бурильная труба с проводами. В одном из примеров может использоваться комбинация описанных способов. В одном из вариантов осуществления наземное приемопередающее устройство 180 осуществляет связь со скважинными приборами с использованием любого из описанных способов передачи, например способом гидроимпульсной скважинной телеметрии. Это позволяет устанавливать двустороннюю связь между устройством 140 управления работой скважинного оборудования и скважинными приборами, описанными ниже.

В одном из вариантов осуществления скважинный буровой двигатель 190 включается в бурильную колонну 120. Скважинный буровой двигатель 190 может иметь приводимый в движение текучей средой винтовой буровой двигатель типа Муано, который использует буровой раствор для вращения выходного вала, который функционально соединен с буровым долотом 150. Эти устройства хорошо известны в данной области техники и имеют винтовой ротор внутри полости статора, который соединен с корпусом двигателя. Поскольку буровой раствор закачивают через двигатель, текучая среда вращает ротор. В некоторых вариантах осуществления вращение долота 150 может представлять собой комбинацию вращения бурильной колонны 120 и вращения вала двигателя. В винтовых буровых двигателях скорость вращения двигателя непосредственно связана с расходом текучей среды через двигатель. Каждый размер двигателя рассчитан на определенный диапазон расхода текучей среды. В некоторых ситуациях бурения с скважинным двигателем возникает необходимость изменения расхода текучей среды и/или частоты вращения долота 150, выходящего за пределы расчетного диапазона для буровых двигателей в бурильной колонне. Может потребоваться замена двигателя с сопутствующим извлечением бурильной колонны из ствола скважины. Такие замены являются дорогостоящими в связи с увеличением времени бурения.

В одном из вариантов осуществления настоящего изобретения, см. фиг. 2, буровой двигатель 190 содержит рабочую пару 191, которая предполагает две различных комбинации ротор/статор. Корпус 200 соединен с бурильной колонной 122. Эластомерный статор 201 приклеивают к внутренней поверхности корпуса 200. Статор 201 имеет внутреннюю полость 221 винтообразной формы с первым количеством N1 заходов 222, образованных вдоль полости 221. Двухцелевой полый вал 202 винтообразной формы расположен в полости 221. Двухцелевой полый вал 202 выполнен со вторым количеством N2 заходов 225 на наружной поверхности с образованием первого ротора 260, причем N2=N1-1. Между заходами статора 222 первого статора 201 и заходами 225 первого ротора 260 имеется интерференционное уплотнение. При бурении текучая среда 131А протекает через проходы между первым статором 201 и первым ротором 260, что приводит к вращению ротора 260 относительно первого статора 201. Двухцелевой полый вал 202 может быть выполнен из металлического материала, например стали, нержавеющей стали, сплавов на основе никеля, алюминия и титана.

Двухцелевой полый вал 202 также имеет второй эластомерный статор 203, приклеенный к внутренней поверхности, образующий вторую полость 240, в которой второй эластомерный статор имеет третье количество N3 заходов 224, причем N3 равно количеству заходов N2 первого ротора 260. Аналогично, существует второй ротор 204 винтообразной формы, расположенный внутри полости 240 второго статора 203. Второй ротор 204 имеет четвертое количество N4 заходов 241, причем N4=N3-1. Между заходами статора 224 второго статора 203 и заходами 241 второго ротора 204 имеется интерференционное уплотнение. При бурении текучая среда 131В протекает через проходы между вторым статором 203 и вторым ротором 204, что приводит к вращению второго ротора 260 относительно второго статора 203. Второй ротор 204 может быть выполнен из металлического материала, например стали, нержавеющей стали, сплавов на основе никеля, алюминия и титана.

Буровой раствор 131 может быть направлен в одну из полостей группы, включающей первую полость 221 потока, вторую полость 240 потока и в как в первую полость 221 потока, так и вторую полость 240 потока, одновременно, с помощью управляемого переключателя 210 потока в верхней части прохождения потока. Двухцелевой полый вал 202 имеет гибкий трубопровод 205, который формирует конец вала 202 до управляемого переключателя потока 210. Гибкий трубопровод 205 может быть соединен с управляемым переключателем 210 потока посредством вращающейся гидромуфты (не показана). Это позволяет трубопроводу 205 вращаться с валом 202 при сохранении разделения потока между полостями 221 и 240, когда это требуется. Первый контроллер 230 может быть функционально соединен с переключателем 210 потока для управления выбором потока. В одном из вариантов осуществления контроллер 230 может получать инструкции с поверхности через телеметрию с поверхности, как описано выше. В другом примере первый контроллер 230 может получать инструкции через перемещаемое устройство, например устройство радиочастотной идентификации (RFID) 291, которое вводится в потоке. RFID 291 может содержать инструкции, которые передаются на приемник RFID 290, функционально соединенный с первым контроллером 230. Устройства RFID известны в данной области техники и не описываются здесь подробно. Управляемый переключатель потока 210 может быть выполнен с возможностью образования каналов внутреннего потока за счет использования скользящих муфт и/или клапанов с приводом для соответствующего перенаправления потока текучей среды, по необходимости. Эта возможность обеспечивает более широкий диапазон приемлемых значений частоты вращения в минуту и крутящего момента долота в более широком диапазоне значений расхода текучей среды, чем это было бы возможно в конфигурации с одним буровым двигателем.

На фиг. 3А и 3В представлен аксиальный вид рабочей пары 190 с протеканием текучей среды через две различные полости потока. На фиг. 3А показан поток через первую полость потока 221. Здесь первый статор 201 имеет три захода 222, а первый ротор 260 имеет два захода 225. Текучая среда протекает только через первую полость потока 221, а первый ротор 260 вращается по отношению к первому статору 201 с частотой вращения RPM1. На фиг. 3В второй ротор 204 имеет один заход, а второй статор 203 имеет 2 захода. Текучая среда протекает только через вторую полость потока 240, а второй ротор 204 вращается только по отношению к второму статору 203 с частотой вращения RPM2. Второй статор 203 не вращается относительно корпуса 200. При протекании текучей среды через обе полости потока 221, 240 каждый из роторов 260, 204 вращается по отношению к соответствующему ему статору 201, 203. Это приводит к вращению ротора 204 с суммарной скоростью RPM3=RPM1+RPM2.

Гибкие валы 206 и 207 соединяют первый ротор 260 и второй ротор 204, соответственно, через управляемую муфту 220 с выходным валом 270, который функционально соединен с долотом 150. В одном из примеров, см. фиг. 4, управляемая муфта 220 содержит кулачковую муфту, иногда называемую раздвижной зубчатой муфтой. Как видно из фиг. 4, гибкие валы 206 и 207 избирательно взаимодействуют с буртиком зубчатой муфты 403. Буртик зубчатой муфты 403 имеет внутренние шлицы 409, которые зацепляются со шлицем 415 на конце выходного вала 270. Кроме того, буртик зубчатой муфты 403 имеет внешнюю шлицу, образованную на конце возле рабочей пары 191. Гибкий вал 207 имеет внешнюю шлицу 408, образованную на нем. Гибкий вал 206 имеет внешнюю шлицу 401, образованную на нем. За счет аксиально управляемого перемещения буртика зубчатой муфты 403 либо вал 206, либо вал 207 может избирательно взаимодействовать с выходным валом 270 для приведения в движение бурового долота 150.

Буртик зубчатой муфты 403 аксиально перемещается за счет выдвижения и втягивания хомута 405. Хомут 405 соединен с линейным приводом 406, который функционально соединен со вторым контроллером 407. Контроллер 407 может обмениваться данными с первым контроллером 290 для координации функционирования переключателя потока 210 и муфты 220 для обеспечения надлежащей рабочей мощности бурового долота 150. Обмен данными может осуществляться посредством любой из систем связи малой дальности, известных в данной области техники, например, гидроакустической связи, радиочастотной связи и аппаратной связи.

В одном из вариантов осуществления по внутренней окружности корпуса 200 электропроводная катушка может быть установлена таким образом, что вращение первого ротора 260 и/или второго ротора 204 будет наводить напряжение, которое может быть использовано для питания скважинных контроллеров 407 и/или 290 и других скважинных приборов и датчиков.

Многочисленные другие модификации, эквиваленты и альтернативы станут очевидными для специалистов в данной области после полного ознакомления с вышеприведенным раскрытием. Предполагается, что нижеследующую формулу изобретения следует интерпретировать как охватывающую все такие модификации, эквиваленты и альтернативы, где это применимо.

1. Скважинный буровой двигатель, содержащий:

трубчатый корпус в бурильной колонне;

первый эластомерный статор, сформированный на внутренней поверхности корпуса, причем указанный первый эластомерный статор имеет первую полость винтообразной формы с образованным в ней первым количеством заходов;

двухцелевой полый элемент винтообразной формы, расположенный внутри первого эластомерного статора, причем указанный двухцелевой полый элемент имеет второе количество заходов, образованных на внешней поверхности с образованием первого ротора, причем второе количество заходов первого ротора на единицу меньше первого количества заходов первого статора;

второй эластомерный статор, сформированный на внутренней поверхности двухцелевого полого элемента винтообразной формы, причем указанный второй эластомерный статор имеет вторую полость винтообразной формы с третьим количеством заходов;

второй ротор винтообразной формы, расположенный внутри второй винтовой полости, причем указанный второй ротор винтообразной формы имеет четвертое количество заходов, которое на единицу меньше, чем третье количество заходов;

переключатель потока в верхнем конце корпуса, указанный переключатель потока выполнен с возможностью направлять буровой раствор через по меньшей мере одну из полостей из группы, включающей первую полость винтообразной формы и вторую полость винтообразной формы, а также как через первую полость винтообразной формы, так и через вторую полость винтообразной формы; и

первый гибкий вал, функционально соединенный с нижним концом полого элемента винтообразной формы, и второй гибкий вал, функционально соединенный с нижним концом второго ротора винтообразной формы.

2. Скважинный буровой двигатель по п. 1, дополнительно содержащий управляемую муфту, функционально соединенную с первым гибким валом и вторым гибким валом, причем указанная муфта выполнена с возможностью приведения в действие для функционального соединения по меньшей мере одного вала, из группы, включающей первый гибкий вал и второй гибкий вал, с выходным валом.

3. Скважинный буровой двигатель по п. 2, дополнительно содержащий по меньшей мере один контроллер, функционально соединенный по меньшей мере с одним переключателем потока и муфтой.

4. Скважинный буровой двигатель по п. 3, дополнительно содержащий по меньшей мере один приемник устройства радиочастотной идентификации, функционально соединенный по меньшей мере с одним контроллером.

5. Скважинный буровой двигатель по п. 1, дополнительно содержащий проводящую катушку, установленную вдоль внутренней окружности корпуса для выработки электроэнергии при вращении по меньшей мере одного ротора из группы, включающей первый ротор и второй ротор.

6. Способ бурения скважины с помощью скважинного бурового двигателя, согласно которому:

устанавливают трубчатый корпус в бурильной колонне;

формируют первый эластомерный статор на внутренней поверхности корпуса, причем указанный первый эластомерный статор имеет первую полость винтообразной формы с образованным в ней первым количеством заходов;

устанавливают двухцелевой полый элемент винтообразной формы внутри первого эластомерного статора, причем двухцелевой полый элемент имеет второе количество заходов, образованных на внешней поверхности с образованием первого ротора, причем второе количество заходов первого ротора на единицу меньше первого количества заходов первого статора;

формируют второй эластомерный статор на внутренней поверхности двухцелевого полого элемента винтообразной формы, причем второй эластомерный статор имеет вторую полость винтообразной формы с третьим количеством заходов;

устанавливают второй ротор винтообразной формы внутри второй винтовой полости, причем второй ротор винтообразной формы имеет четвертое количество заходов, которое на единицу меньше третьего количества заходов;

управляют направлением бурового раствора через по меньшей мере одну полость из группы, включающей первую полость винтообразной формы и вторую полость винтообразной формы, а также как через первую полость винтообразной формы, так и через вторую полость винтообразной формы, для вращения по меньшей мере одного ротора из группы, включающей первый ротор и второй ротор; и

функционально соединяют первый гибкий вал с нижним концом полого элемента винтообразной формы и второй гибкий вал с нижним концом второго ротора винтообразной формы.

7. Способ по п. 6, согласно которому дополнительно функционально соединяют управляемую муфту с первым гибким валом и вторым гибким валом, причем муфта выполнена с возможностью приведения в действие для функционального соединения по меньшей мере одного вала из группы, включающей первый гибкий вал и второй гибкий вал, с выходным валом.

8. Способ по п. 7, согласно которому дополнительно функционально управляют по меньшей мере одним из группы, включающей переключатель потока и муфту.

9. Способ по п. 8, согласно которому дополнительно управляют по меньшей мере одним из группы, включающей переключатель потока и муфту, в соответствии с инструкциями, полученными по меньшей мере от одного устройства радиочастотного идентификации, перемещаемого по стволу скважины.

10. Способ по п. 6, согласно которому дополнительно вырабатывают электроэнергию проводящей катушкой, установленной вдоль внутренней окружности корпуса, при вращении по меньшей мере одного ротора из группы, включающей первый ротор и второй ротор.



 

Похожие патенты:

Группа изобретений относится к области бурения. Скважинный инструмент для использования при бурении подземной скважины содержит механизм передачи крутящего момента, включающий в себя наружный корпус и внутренний шпиндель с по меньшей мере одним продольно расположенным углублением, в каждом из которых размещена собачка и линейный подшипник, контактирующий с по существу параллельными противолежащими сторонами собачки и обеспечивающий возможность радиального перемещения собачки и за счет этого избирательное обеспечение возможности и предотвращения относительного вращения между внутренним шпинделем и наружным корпусом.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к системам управления в скважине с использованием винтовых забойных двигателей. Система содержит утяжеленную бурильную трубу, гильзу статора, установленную с возможностью вращения в утяжеленной бурильной трубе, ротор, установленный с возможностью вращения в гильзе статора, причем вращение ротора относительно гильзы статора имеет корреляцию с объемным расходом текучей среды, проходящей между ротором и гильзой статора, причем ротор закреплен для предотвращения планетарных перемещений так, что его ось является фиксированной относительно утяжеленной бурильной трубы во время его вращения относительно утяжеленной бурильной трубы.

Группа изобретений относится к области направленного бурения. Скважинный буровой снаряд содержит бурильную колонну, снабженную внутренним проходом для текучей среды, гидравлический двигатель, расположенный внутри бурильной колонны и имеющий статор и ротор, выполненный с возможностью вращения относительно статора в качестве реакции на поступление бурового раствора через внутренний проход для текучей среды, приводной вал, функционально связанный с ротором и выполненный с возможностью вращения в качестве реакции на вращение ротора, буровое долото, функционально связанное с приводным валом и выполненное с возможностью вращения в качестве реакции на вращение приводного вала, и гидромуфту, расположенную в бурильной колонне и имеющую первый блок сцепления, выполненный с возможностью вращения с бурильной колонной, и второй блок сцепления, выполненный с возможностью вращения с приводным валом.

Изобретение относится к внутрискважинному генератору вращающегося магнитного поля. Внутрискважинный генератор вращающегося магнитного поля содержит статорный узел, включающий неподвижный цилиндрический корпус (1) и обмотку (20), размещенную в первой области (L1) корпуса (1), и роторный узел, включающий постоянный магнит (10), размещенный в радиальном направлении снаружи обмотки, и турбинный ротор (8), размещенный во второй области (L2) корпуса (1), которая в осевом направлении примыкает к первой области (L1).

Группа изобретений относится к области бурения. Способ изготовления статора для забойного двигателя, содержащего трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев, проходящих внутрь от внутренней поверхности; вставку статора, выполненную из отвержденного армирующего материала, имеющего высокую степень кристаллизации, которая расположена во внутренней поверхности и расположена вдоль совокупности шлицев, причем вставка статора имеет внутреннюю поверхность, образующую внутреннюю винтообразную полость, включающую в себя совокупность внутренних винтовых зубьев; и ротор, размещенный в статоре, при этом способ включает в себя: обеспечение трубы статора; нанесение разделительного состава на наружную поверхность шпинделя; размещение шпинделя в трубе статора, причем шпиндель имеет наружную геометрию, комплементарную с необходимой внутренней геометрией статора; ввод армирующего материала в трубу статора для заполнения пространства между шпинделем и внутренней поверхностью трубы статора; отверждение армирующего материала; и удаление по меньшей мере части шпинделя из трубы статора и отвержденного армирующего материала; таким образом, получая статор.

Группа изобретений относится к гидравлическим приводам. Устройство для использования в скважине содержит статор, имеющий внутреннюю поверхность с винтовыми зубьями; ротор, имеющий наружную поверхность с винтовыми зубьями и размещенный в статоре.

Турбобур // 2610490
Изобретение относится к области бурения скважин, а именно к забойным гидравлическим двигателям. Турбобур содержит корпус, в полости которого размещен уступообразный ротор в поперечном сечении.

Группа изобретений относится к области бурения. Устройство для использования в скважине, содержащее статор, включающий винтовой зуб, имеющий профиль, сформированный вдоль внутренней поверхности статора; и ротор, размещенный в статоре и включающий винтовой зуб, имеющий профиль, сформированный на наружной поверхности ротора, причем профиль винтового зуба ротора выполнен асимметричным и винтовой зуб ротора включает первую сторону и вторую сторону так, что геометрия первой стороны образует поверхность нагружения, а геометрия второй стороны образует поверхность уплотнения.

Группа изобретений относится к области бурения, а именно к гидравлическим приводам для вращательного бурения, размещаемым в скважине. Компоновка гидравлического забойного двигателя содержит винтовой двигатель, имеющий ближний конец и дальний конец и содержащий статор и ротор.

Группа изобретений относится к области бурения скважин. Сборка бурового снаряда, который содержит сборку забойного двигателя, содержащую верхний переводник, содержащий бурт, имеющий первый внутренний диаметр вблизи дистального конца верхнего переводника, и рабочую пару, содержащую винтовой двигатель, имеющий статор и ротор, выполненные с возможностью эксцентрического вращения при прохождении бурового раствора через двигатель и имеющие ближний конец и дистальный конец, ближний конец статора прикреплен к дистальному концу верхнего переводника; зацепление ротора, содержащее вал, имеющий ближний конец и дистальный конец и эксцентрически вращающийся посредством трансмиссии эксцентриковой передачи ротора; дистальный конец вала напрямую или опосредованно прикреплен к ближнему концу ротора; а вал проходит от дистального конца зацепления ротора в верхний переводник на расстоянии мимо бурта, при том что по меньшей мере часть вала, проходящая мимо бурта, имеет внешний диаметр меньше, чем первый внутренний диаметр бурта; ближний конец вала имеет эффективный внешний диаметр, больший, чем первый внутренний диаметр, и/или прикреплен к сборному зацеплению ротора, содержащему одну или более деталей, которые имеют эффективный внешний диаметр, больший, чем первый внутренний диаметр; по меньшей мере, одно устройство, расположенное между ближним концом и дистальным концом вала зацепления ротора, которое выполнено с возможностью ограничения радиального и/или тангенциального перемещения вала зацепления ротора и с помощью трансмиссии через вал для ограничения радиального и/или тангенциального перемещения ротора; внешний вал двигателя, напрямую или опосредованно прикрепленный к ближнему концу ротора; буровое долото, напрямую или опосредованно прикрепленное к дистальному концу внешнего вала двигателя.

Изобретение относится к области геологии, а именно к технике бурения скважин. Объемный забойный двигатель содержит корпус с подводящими каналами, установленный в полости корпуса с возможностью вращения вал, имеющий внешние полуцилиндрические лопасти, скользяще контактирующие с корпусом, и центральный канал, посредством боковых радиальных отверстии сообщающийся с полостью корпуса. Подводящие каналы выполнены направленными закругленным поворотом на середину высоты внутренней стенки полуцилиндрических лопастей, в центральном канале вала закреплена продольная синусоидальная перегородка, образующая сектора, боковые радиальные отверстия с входом перед внешней стенкой полуцилиндрических лопастей проведены в верхней и нижней половинках вала, выходящими в центральный канал, числом не менее двух в поперечном сечении каждого сектора, причем передние по вращению вала боковые радиальные отверстия обращены в вогнутые поверхности синусоидальной перегородки, задние боковые радиальные отверстия ориентированы к выходу передних. Обеспечивается достижение устойчиво высоких значений крутящего момента на валу и снижение гидродинамических помех его вращательному движению. 2 ил.

Группа изобретений относится к области бурения. Роторный привод для текучей среды имеет первый и второй корпусы, причем второй корпус выполнен с возможностью вращения относительно и внутри первого корпуса с образованием между ними промежутка для рабочей текучей среды. Затворы поддерживаются первым корпусом, и на втором корпусе имеются лопасти. В первом корпусе образованы карманы для затворов, в которые смещаются поворотом на осевом шарнире затворы при контакте с лопастями. Затворы и карманы для затворов взаимно сконфигурированы с образованием между ними полости для инородных частиц, способной временно вмещать твердые инородные частицы, содержащиеся в рабочей текучей среде. Каждый затвор имеет поверхность, обращенную к связанному с ним карману для затвора и имеющую ряд выступов, причем зазоры между соседними выступами образуют путь потока в кармане для затвора. Рабочая текучая среда может проходить через каждый путь потока в кармане для затвора из связанного с ним кармана для затвора в промежуток для рабочей текучей среды, когда соответствующий затвор в максимальной степени смещается в связанный с ним карман для затвора. Обеспечивается полное смещение затворов и получение широких диапазонов крутящего момента и скорости вращения. 2 н. и 26 з.п. ф-лы, 20 ил.

Группа изобретений относится к бурению скважин, в частности к управлению скоростью скважинной турбины. Система содержит корпус, изменяемый канал протекания текучей среды, расположенный внутри корпуса, электромагнит, соединенный с корпусом, приводной механизм, управляемый текучей средой, соединенный по текучей среде с изменяемым каналом протекания текучей среды, узел создания нагрузки, соединенный с приводным механизмом, управляемым текучей средой. Узел создания нагрузки содержит смешивающую лопасть и вал, соединенный со смешивающей лопастью. Вал расположен в одной из электрореологической текучей среды и магнитореологической текучей среды. Вязкость упомянутых сред может быть изменена с помощью электромагнита. Повышается надежность системы управления, повышается точность и скорость управления частотой вращения турбины. 3 н. и 15 з.п.ф-лы, 7 ил.

Группа изобретений относится к области бурения скважин, а именно вариантам забойного двигателя с перемещающейся полостью и вариантам способа его эксплуатации. Забойный двигатель содержит трубчатый корпус, имеющий первый торец и второй торец; статор, размещенный в указанном трубчатом корпусе, причем указанный статор имеет центральную продольную ось и множество винтовых зубьев статора; ротор, имеющий центральную продольную ось и первый цилиндрический торец, причем указанный ротор содержит множество винтовых зубьев ротора, причем указанные зубья статора и зубья ротора образуют множество полостей между ротором и статором, и указанный ротор размещен внутри статора, при этом центральная продольная ось ротора совершает орбитальное движение вокруг центральной продольной оси статора, и первый подшипниковый узел, соединенный с первым торцом трубчатого корпуса и размещенный на первом цилиндрическом торце ротора. Подшипниковый узел содержит первый корпус подшипника, размещенный концентрически внутри трубчатого корпуса; первый наружный подшипник, размещенный концентрически внутри корпуса подшипника, и первый внутренний подшипник, размещенный на первом цилиндрическом торце ротора. Первый внутренний подшипник имеет центральную продольную ось, совмещенную с центральной продольной осью ротора. Первый внутренний подшипник расположен в первом наружном подшипнике таким образом, что при вращении ротора внутри статора первый внутренний подшипник совершает орбитальное движение вокруг центральной продольной оси статора. Обеспечивается точное регулирование или ограничение относительного перемещения ротора и статора, улучшая общие характеристики привода. 6 н. и 20 з.п. ф-лы, 10 ил.

Группа изобретений относится к области бурения гидравлическими приводами. Скважинный буровой двигатель содержит корпус, расположенный в бурильной колонне, силовую муфту, расположенную внутри корпуса и функционально связанную с буровым долотом, причем силовая муфта имеет спирально-лопастную, покрытую эластомером внутреннюю поверхность, и выполнена с возможностью вращения по отношению к наружному корпусу, лопастной вал, расположенный внутри силовой муфты, причем вал имеет спирально-лопастную наружную поверхность, и анкерный узел, выполненный с возможностью введения в зацепление между лопастным валом и корпусом для ограничения вращения лопастного вала по отношению к корпусу таким образом, чтобы поток текучей среды через скважинный буровой двигатель приводил к вращению силовой муфты по отношению к корпусу и лопастному валу. Обеспечивается уменьшение износа скважинного оборудования. 2 н. и 14 з.п. ф-лы, 9 ил.

Группа изобретений относится к оборудованию, применяемому в области бурения. Узел бурового двигателя содержит корпус, шпиндель, содержащий выемку, собачку, выполненную с возможностью выборочного вхождения в зацепление с выемкой, причем собачка имеет ось вращения и, в целом, плоскую контактную поверхность, которая выполнена с возможностью входить в зацепление с, в целом, плоской контактной поверхностью выемки, и при этом входящие в зацепление контактные поверхности собачки и выемки расположены под углом к радиусу, проходящему от оси вращения до входящих в зацепление контактных поверхностей собачки и выемки. Собачка выполнена с возможностью поворота вокруг шарнирного пальца, вставленного в удлиненное отверстие, такое что шарнирный палец расположен на расстоянии от корпуса в направлении удлиненной части поперечного сечения удлиненного отверстия, при этом шарнирный палец не передает крутящий момент между корпусом и шпинделем при предотвращении относительного вращения между корпусом и шпинделем. Обеспечивается отсутствие восприятия сжимающей силы шарнирными пальцами собачки при передаче крутящего момента от корпуса шпинделю. 3 н. и 28 з.п. ф-лы, 5 ил.

Изобретение относится к области ремонта скважин, в частности к способу для разбуривания скважинного оборудования. Способ включает сборку колонны труб с винтовым забойным двигателем - ВЗД и фрезой-долотом, спуск в скважину колонны труб с ВЗД и фрезой-долотом до достижения разбуриваемого скважинного оборудования, создание циркуляции закачкой промывочной жидкости по колонне труб через забойный двигатель, фрезу-долото и межколонное пространство в желобную емкость скважины, разбуривание скважинного оборудования, извлечение колонны труб с забойным двигателем и фрезой-долотом из скважины. В качестве колонны труб применяют гибкую трубу - ГТ, на устье скважины на нижний конец колонны ГТ сверху вниз монтируют ВЗД, осциллятор, фрезу-долото. Спускают колонну ГТ в скважину со скоростью 15 м/мин с разгрузкой не более 10000 Н и расхаживанием через каждые 50 м без закачки промывочной жидкости до достижения скважинного оборудования, подлежащего разбуриванию. Приподнимают колонну ГТ на 15 м. Запускают ВЗД закачкой промывочной жидкости в колонну ГТ при давлении на насосном агрегате 15,0-20,0 МПа с расходом для работы ВЗД и созданием циркуляции. Спускают в скважину колонны ГТ со скоростью 2 м/мин до достижения верхнего интервала скважинного оборудования в скважине. Разбуривают скважинное оборудование фрезой-долотом, не превышая максимально допустимую нагрузку на фрезу-долото и не превышая максимально допустимый дифференциальный перепад давлений. Прорабатывают внутренние стенки скважины в интервале разбуренного скважинного оборудования трехкратным спуском и подъемом колонны ГТ со скоростью 2 м/мин, не прекращая циркуляцию промывочной жидкости. Поднимают колонну ГТ со скоростью 5 м/мин на 400 м выше верхнего интервала разбуриваемого скважинного оборудования. Останавливают закачку промывочной жидкости и производят технологическую паузу в течение 2 ч для отстоя шлама. Во время технологической паузы расхаживают ГТ через каждые 20 мин. Шаблонируют эксплуатационную колонну скважины спуском колонны ГТ с ВЗД, осциллятором и фрезой-долотом без закачки технологической жидкости до глубины на 20 м ниже нижнего интервала разбуренного скважинного оборудования в скважине. Извлекают колонну ГТ с ВЗД, осциллятором и фрезой-долотом. Обеспечивается повышение эффективности и надежности реализации способа, расширение функциональных возможностей, увеличение механической скорости проходки разбуриваемого скважинного оборудования. 1 ил.

Регулируемый скважинный изогнутый инструмент для присоединения к бурильной колонне содержит цилиндрический первый корпус, определяющий первую продольную ось, цилиндрический второй корпус, определяющий вторую продольную ось, подшипниковый узел, содержащий внутреннее кольцо и наружное кольцо, присоединенное к указанному первому корпусу, причем внутреннее кольцо присоединено к указанному второму корпусу, подшипниковый узел содержит поворотное соединение между внутренним и наружным кольцами, обеспечивающее возможность поворота указанного второго корпуса относительно указанного первого корпуса вокруг оси, перпендикулярной первой продольной оси, и первый линейный привод, закрепленный в пределах указанного первого корпуса на первом радиальном расстоянии от первой продольной оси и направленный для перемещения, параллельного первой продольной оси. Первый линейный привод функционально присоединен к внутреннему кольцу для приложения осевого усилия к нему таким образом, чтобы приведением в действие первого линейного привода обеспечивать поворот указанного второго корпуса относительно указанного первого корпуса. Обеспечивает возможность управления углом изгиба во время нахождения инструмента в скважине. 2 н. и 18 з.п. ф-лы, 9 ил.

Группа изобретений относится к системам бурения в земной коре. Технический результат – стабильная скорость вращения каждого из участков бурильной колонны. Способ эксплуатации бурильной колонны включает автономную модификацию частоты вращения размещенного в скважине участка бурильной колонны относительно других размещенных в скважине участков бурильной колонны, причем каждый из указанных участков содержит множество секций бурильных труб. Участок бурильной колонны, имеющий измененную частоту вращения, может представлять собой нижний участок бурильной колонны, расположенный между концом бурильной колонны, находящимся на забое, и изогнутым участком скважины, в которой находится бурильная колонна. Указанный нижний участок бурильной колонны может иметь повышенную частоту вращения относительно частоты вращения участка бурильной колонны, расположенного в пределах изогнутого участка скважины. Автономная модификация частоты вращения может быть реализована посредством присоединения к бурильной колонне одного или более устройств переключения передач, причем указанное устройство переключения передач выполнено с возможностью переключения между режимом расцепления, в котором указанное устройство обеспечивает передачу крутящего момента и вращения бурильной колонны без изменения, и режимом сцепления, в котором указанное устройство обеспечивает передачу крутящего момента и вращения по всей длине бурильной колонны с измененной частотой вращения и крутящим моментом. Селективное переключение устройств переключения передач, находящихся в скважине, может осуществляться с поверхности земли. 2 н. и 20 з.п. ф-лы, 9 ил.

Группа изобретений относится к области бурения. Забойное бурильное устройство содержит корпус блока подшипников, образующий продольную ось и верхнюю и нижнюю части, причем верхняя часть корпуса блока подшипников выполнена с возможностью соединения с бурильной колонной, по меньшей мере один блок кольцевых подшипников, установленный в корпусе блока подшипников, и центральную часть бурового долота, по существу расположенную у нижнего конца корпуса блока подшипников и соединенную с ним, при этом центральная часть выполнена с возможностью вращения относительно продольной оси и имеет лопасти, присоединенные к ней, причем лопасти несут на себе множество резцов, при этом резцы выполнены с возможностью входа в контакт с подземным пластом породы, хвостовик, выступающий из центральной части, причем хвостовик выполнен интегральным или как одно целое с центральной частью или неразъемно соединен с центральной частью, и шпиндель, сцепляющийся с хвостовиком и образующий неразъемное соединение с ним. Неразъемное соединение не включает в себя повторно раскрепляемое соединение. Шпиндель проходит продольно в корпус блока подшипников и через по меньшей мере один блок кольцевых подшипников. Обеспечивается уменьшение длины устройства, а также увеличение срока эффективной службы долота. 3 н. и 13 з.п. ф-лы, 8 ил.
Наверх