Способ опознавания целей (варианты)

Изобретение относится к радиолокации и может быть использовано для опознавания целей в группе целей. Достигаемый технический результат - опознавание цели в группе целей, состоящей из нескольких боеголовок и ложных целей. Указанный результат достигается за счет того, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизированных по времени измерения, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования не меньше 20°-30°, и рассчитывают в каждой паре целей коэффициенты корреляции пар отраженных от них сигналов. При значении коэффициента корреляции К1,2 отраженных от первой и второй целей сигналов первой пары в пределах 0,85±0,15 считают, что опознаны две ложные цели. После этого измеряют амплитудные диаграммы второй пары целей, состоящей из опознанной ложной цели и неопознанной третьей цели. При значении коэффициента корреляции КЛ,3 меньше 0,5 считают, что третья цель - опознанная боеголовка. Аналогично производят измерение других пар целей, составленных из опознанной ложной цели и еще неопознанной, до тех пор, пока не будут попарно измерены и опознаны все цели в группе целей. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к радиолокации, конкретно к способам опознавания целей в групповой цели, состоящей из боеголовок (БГ) и ложных целей (ЛЦ), с помощью двух традиционных радиолокационных однопозиционных станций (РЛС) по одновременно измеренным амплитудным диаграммам отраженных сигналов или выборкам из них.

Известен способ распознавания воздушных ложных целей при двухпозиционном зондировании (патент РФ №2225624 на изобретение) по измеренным динамическим РЛХ целей, заключающийся в том, что с помощью основной радиолокационной станции - РЛС1 излучают импульсные сигналы в направлении цели, принимают в течение интервала времени Δt отраженные от цели сигналы, по которым определяют радиолокационные координаты цели. За время Δt запоминают амплитуды импульсных сигналов и точное время прихода каждого отраженного импульсного сигнала. Создают двумерный массив данных M1, элементами которого являются значения амплитуд и точного времени прихода каждого отраженного импульса сигнала. Задаются определенным уровнем изменения амплитуды отраженного сигнала, для нахождения интервала времени, в течение которого амплитуда U отраженного сигнала изменится на величину ΔU. Из массива M1 выбирают элемент с номером n, содержащий максимальное значение амплитуды, которое принимают за начало отсчета. Последовательно изменяют номер элемента на единицу и находят номер k такого элемента массива, в котором записана амплитуда, отличающаяся от Un с номером n на величину ΔU. Вычисляют величину изменения ракурса локации ΔY, приводящую к изменению амплитуды на ΔU. Вычисленную величину изменения ракурса ΔY сравнивают с пороговым значением Yпор, и в случае превышения величиной ΔY порогового значения Yпор принимают решение о наличии ЛЦ, в противном случае принимают предварительное решение о наличии реальной цели. Одновременно с излучением основной РЛС1 используют излучение дополнительной РЛС2, синхронизованной по времени с РЛС1. По данным, полученным с РЛС2, принимают предварительное решение о наличии или отсутствии ЛЦ. Для принятия окончательного решения производят сравнение амплитуд отраженных сигналов, полученных с двух разнесенных РЛС. При различии амплитуд отраженных сигналов на двух РЛС принимается окончательное решение о наличии ЛЦ.

Способ распознавание целей не может быть применен для опознавания БГ и ЛЦ в боевом порядке групповой цели, состоящей из нескольких БГ и ЛЦ.

Общие признаки аналога и изобретения - облучение целей сигналами двух РЛС и измерение динамических радиолокационных характеристик (РЛХ) - амплитуд отраженных от целей сигналов.

Известен способ распознавания воздушных ложных целей при двухпозиционном зондировании (патент РФ на изобретение №2348053), принятый за прототип изобретения, по измеренным динамическим РЛХ целей, заключающийся в том, что с помощью основной РЛС1 излучают импульсные сигналы в направлении воздушной цели, синхронизированной по времени с дополнительной РЛС2 когерентно-импульсной радиолокационной станцией, которые имеют одинаковые периоды повторения. С помощью РЛС1 и РЛС2 принимают в течение интервала времени Δt отраженные от цели сигналы. За время Δt запоминают амплитуды импульсных сигналов и точное время прихода каждого отраженного импульсного сигнала. Создают два двумерных массива данных M1 и М2, элементами которых являются значения амплитуд и точного времени прихода каждого отраженного импульса. Задаются определенным уровнем изменения амплитуды отраженного сигнала, для нахождения интервала времени, в течение которого амплитуда отраженного сигнала изменится на величину ΔU. Из массивов M1 и М2 выбирают элементы с номерами n, содержащие максимальные значения амплитуд, которые принимают за начало отсчета. В качестве фактора изменения ракурса локации цели принимают случайные рысканья ее планера в полете в турбулентной атмосфере, выбирают интервал времени больше времени формирования лепестка диаграммы отражения. На первом этапе распознавании цели найденные интервал времени сравнивают с пороговым значением и, в случае превышения его величины, принимают предварительное решение о наличии ЛЦ, на втором этапе распознавания, после заполнения параметрами отраженных сигналов массивов M1 и М2, принимают окончательное решение о наличии цели по средним значениям сигналов в массивах.

Способ распознавания целей не может быть применен для опознавания БГ и ЛЦ в боевом порядке групповой цели, состоящей из нескольких БГ и ЛЦ.

Общие признаки прототипа и изобретения - облучение целей сигналами двух РЛС и измерение динамических РЛХ - амплитуд отраженных от целей сигналов.

Технический результат изобретения - опознание БГ и ЛЦ в групповой цели, состоящей из нескольких БГ и ЛЦ.

Изобретение поясняется фиг. 1.

На фиг. 1 представлены графики амплитудных диаграмм отраженных сигналов от БГ (сплошная кривая) и ЛЦ (пунктирная кривая) при углах визирования с носа ±25°.

Предпосылки изобретения, известные факты

Отношение средних значений амплитуд сигналов, отраженных от боеголовки и ложной цели, представленных на диаграммах фиг.1, равно 0,83 (10,8/13), разница потенциалов двух традиционных РЛС значительно больше, что свидетельствует о малой вероятности опознания БГ и ЛЦ по амплитудам отраженных сигналов.

Коэффициент корреляции амплитуд отраженных сигналов от двух одинаковых ложных целей в статике равен единице. В динамике, на траектории полета ложные цели движутся вокруг центра масс одинаково, поэтому и в этом случае их коэффициент корреляции амплитуд отраженных сигналов будет равен единице.

Коэффициент корреляции амплитуд сигналов, отраженных от боеголовки и ложной цели, мал, т.к. они не могут быть изготовлены идентичными и их движения вокруг центра масс на траектории полета разные, поэтому вероятность их опознания мала. Этот факт подтверждается диаграммами амплитуд отраженных от БГ и ЛЦ сигналов, представленных на фиг. 1, коэффициент корреляции сигналов, отраженных от БГ и ЛЦ, даже в статике равен нулю.

Коэффициент корреляции амплитуд сигналов, отраженных от двух боеголовок, равен единице, боеголовки идентичны и движутся одинаково вокруг центра масс на траектории полета. Однако вероятность их одновременного измерения чрезвычайно мала и рассчитывается по сочетаниям S из М по L:

S=M!/L!(L-М)!,

где L - общее количество боеголовок и ложных целей в группе целей;

М - количество одновременно обнаруживаемых боеголовок в группе целей.

Так, например, в группе целей, состоящей из двух боеголовок (М=2) и 6 ложных целей (L=8), вероятность их одновременного обнаружения равна S=1/14500000, практически равна нулю.

На траектории БГ прецессирует, совершает движение вокруг оси прецессии, при которой она описывает круговую коническую поверхность с углом при вершине в пределах ±(20°÷30°), поэтому амплитудные диаграммы отраженных сигналов от целей в переднем секторе углов должны измеряться в пределах не меньше этого угла.

Первый вариант исполнения изобретения

Способ опознания целей в группе целей, состоящей из боеголовок и ложных целей, состоит в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают на ЭВМ для каждой измеренной пары целей коэффициент корреляции K(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения целей в паре опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

Σ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах.

При этом рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении в пределах 0,85±0,15 первая и вторая цели ложные, т.к. они идентичны и на траектории полета движутся вокруг центра масс одинаково.

После чего измеряют амплитудные диаграммы второй пары целей, состоящей из опознанной ложной цели и неопознанной третьей цели. Рассчитывают коэффициент корреляции КЛ,3 сигналов, отраженных от ложной и третьей целей второй пары. При значении КЛ,3 меньше 0,2 третья цель - первая боеголовка, т.к. боеголовка и ложная цель не могут быть изготовлены идентичными и их движения на траектории полета относительно центра масс разные.

После чего аналогично производят измерение других пар целей, составленных из опознанной ложной цели и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе.

Технический результат изобретения достигнут, опознаны боеголовки и ложные цели в группе целей, состоящей из нескольких боеголовок и ложных целей.

Второй вариант исполнения изобретения

Способ опознания целей в группе целей, состоящей из боеголовок и ложных целей, состоит в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают для каждой измеренной пары целей коэффициент корреляции К(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения пары опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

Σ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах.

При этом рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении меньше 0,2 цели в паре не опознаны, но одна из них боеголовка, а другая ложная цель.

Для опознания боеголовки измеряют амплитудные диаграммы второй пары целей, состоящей из первой измеренной цели и неопознанной N-й цели, при которой значение коэффициента корреляции КN,2 находится в пределах 0,85±0,15 и соответствует ложным целями.

После чего измеряют N+1-ю пару целей, состоящую из опознанной ложной цели и одной из неопознанных целей, и рассчитывают их коэффициент корреляции KЛ,(N+1) отраженных сигналов от N+1-й пары целей, при его значении меньше 0,2 N+1 цель - вторая боеголовка.

Аналогично производят измерение других пар целей, составленных из опознанной ложной и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе целей.

Технический результат изобретения достигнут, опознаны боеголовки и ложные цели в групповой цели, состоящей из нескольких боеголовок и ложных целей.

Отличительные признаки формулы изобретения по первому варианту исполнения изобретения

Опознания целей в группе целей, состоящей из боеголовок и ложных целей, состоит в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают для каждой измеренной пары целей коэффициент корреляции К(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения целей в паре опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

Σ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах.

Рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении в пределах 0,85±0,15 первая и вторая цели ложные. После чего измеряют амплитудные диаграммы второй пары целей, состоящей из опознанной ложной цели и неопознанной третьей цели. Рассчитывают коэффициент корреляции КЛ,3 сигналов, отраженных от ложной и третьей целей второй пары. При значении КЛ,3 меньше 0,2 третья цель - первая боеголовка.

После чего аналогично производят измерение других пар целей, составленных из опознанной ложной цели и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе.

Отличительные признаки формулы изобретения по второму варианту исполнения изобретения

Опознания целей в группе целей, состоящей из боеголовок и ложных целей, состоит в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают для каждой измеренной пары целей коэффициент корреляции К(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения целей в паре опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

Σ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах,

Рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении меньше 0,2 цели в паре не опознаны, в паре находятся боеголовка и ложная цель.

После чего измеряют амплитудные диаграммы второй пары целей, состоящей из первой измеренной цели и неопознанной N-й цели, при измерении которой значение коэффициента корреляции КN,2 находится в пределах 0,85±0,15, эти цели ложные.

После чего измеряют N+1-ю пару целей, состоящую из опознанной ложной цели и одной из неопознанных целей, и рассчитывают их коэффициент корреляции КЛ,(N+1) отраженных сигналов от N+1-й пары целей и при его значении меньше 0,2 N+1-я цель - вторая боеголовка.

Аналогично производят измерение других пар целей, составленных из опознанной ложной и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе целей.

1. Способ опознания целей в группе целей, состоящей из боеголовок и ложных целей, заключающийся в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают для каждой измеренной пары целей коэффициент корреляции К(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения целей в паре опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

∑ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах,

при этом рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении в пределах 0,85±0,15 первая и вторая цели ложные, после чего измеряют амплитудные диаграммы второй пары целей, состоящей из опознанной ложной цели и неопознанной третьей цели, рассчитывают коэффициент корреляции КЛ,3 сигналов, отраженных от ложной и третьей целей второй пары, при его значении меньше 0,2 третья цель - первая боеголовка, после чего аналогично производят измерение других пар целей, составленных из опознанной ложной цели и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе.

2. Способ опознания целей в группе целей, состоящей из боеголовок и ложных целей, состоит в том, что с помощью двух типовых однопозиционных радиолокационных станций, синхронизованных по времени измерения двух целей, последовательно измеряют амплитудные диаграммы сигналов, отраженных от пар разных целей в группе в одинаковом диапазоне углов визирования с носа целей не меньше ±(20°÷30°), после чего рассчитывают для каждой измеренной пары целей коэффициент корреляции К(Xi,Yi) отраженных сигналов от целей в паре по формуле:

где Xi и Yi - значения амплитуд в диаграммах отражения сигналов в функции одинаковых углов измерения целей в паре опознаваемых целей;

и - математические ожидания значений амплитудных диаграмм пары измеренных целей;

∑ - знак суммы от i=1 до i=n, где n - количество отсчетов значений амплитуд в измеренных диаграммах,

при этом рассчитывают коэффициент корреляции К1,2 отраженных сигналов от первой и второй целей первой пары, при его значении меньше 0,2 цели в паре не опознаны, в паре находятся боеголовка и ложная цель, после чего измеряют амплитудные диаграммы второй пары целей, состоящей из первой измеренной цели и неопознанной N-й цели, при измерении которой значение коэффициента корреляции KN,2 находится в пределах 0,85±0,15, эти цели ложные, после чего измеряют N+1-ю пару целей, состоящую из опознанной ложной цели и одной из неопознанных целей, и рассчитывают их коэффициент корреляции КЛ,(N+1) отраженных сигналов от N+1-й пары целей и при его значении меньше 0,2 N+1-я цель - вторая боеголовка, аналогично производят измерение других пар целей, составленных из опознанной ложной и неопознанной цели, до тех пор, пока не будут попарно измерены и опознаны все цели в группе целей.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано в радиолокационной станции (РЛС) для сопровождения групповой воздушной цели из класса «самолеты с турбореактивными двигателями» при воздействии уводящих по скорости помех.

Изобретение относится к устройствам обработки траекторной радиолокационной информации и может быть использовано для распознавания воздушных объектов (ВО) и определения точек пуска и падения в радиолокационных станциях (РЛС) обзорного типа.

Изобретение относится к радиолокации и может быть использовано для идентификации истинной и ложной цели по статическим радиолокационным характеристикам (РЛХ). Достигаемый технический результат - определение идентичности истинной и ложной целей по выборкам из диаграмм статических РЛХ.

Изобретение относится к области резонансной радиолокации, основанной на известном явлении резкого возрастания амплитуды отраженного от летательного аппарата (ЛА) зондирующего радиосигнала сигнала с длиной волны, равной удвоенному значению размера корпуса ЛА и/или резонирующих элементов, например крыльев и подвесных конструкций, и может быть использовано в системе управления воздушным движением.

Изобретение относится к области радиолокации и может быть использовано для распознавания в бортовой радиолокационной станции (БРЛС) направления самонаведения пущенной в переднюю полусферу по группе самолетов ракеты с радиолокационной головкой самонаведения (РГС).

Изобретение относится к области радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в системах радиолокационного опознавания с шумоподобными сигналами.

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для выработки признака государственной принадлежности объектов (целей).

Изобретение относится к технике радиолокации, радиосвязи, радионавигации и радиоуправления и может быть использовано в радиоэлектронных системах для решения задачи обнаружения сигналов, снижения загрузки линий передачи данных и повышения достоверности принятого решения.

Изобретение относится к области радиолокации и может быть использовано при обнаружении воздушной цели. Достигаемый технический результат - обеспечение скрытности работы импульсно-доплеровской бортовой радиолокационной станции (БРЛС) на излучение при обнаружении воздушной цели - носителя станции радиотехнической разведки (РТР).

Изобретение относится к радиолокационным методам и может быть реализовано и применено в системах отождествления аэродинамических летательных аппаратов, использующих наряду с другими признаками векторный отличительный признак, именуемый импульсной характеристикой (ИХ) объекта и формируемый на основе когерентной обработки сигналов с перестройкой несущей частоты, называемых иначе сигналами с синтезом спектра.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях, осуществляющих мониторинг воздушной обстановки. Техническим результатом является возможность обнаружения малозаметных летательных аппаратов, в частности малоразмерных беспилотных летательных аппаратов (МБПЛА), когда величина эффективной площади рассеяния (ЭПР) составляет σц=0,01…0,001 м2. Указанный результат достигается тем, что в предлагаемом радиолокационном способе обнаружения летательных аппаратов зондирующие радиосигналы излучают попеременно с линейной поляризацией и с квадратурной поляризацией, а каждый излученный зондирующий радиосигнал с квадратурной поляризацией синхронен по фазе с предыдущим зондирующим радиосигналом с линейной поляризацией. После сравнения спектров демодулированных отраженных радиосигналов с линейной поляризацией и отраженных радиосигналов с квадратурной поляризацией судят об обнаружении летательного аппарата по наличию кратности значений периодов их амплитудной модуляции. 2 ил.

Изобретение относится к радиолокационной технике и предназначено для автокомпенсации доплеровских сдвигов фазы пассивных помех. Предложен автокомпенсатор доплеровских сдвигов фазы помех, содержащий блок оценивания фазы, первый блок задержки, первый и второй блоки комплексного умножения, блок комплексного сопряжения, второй блок задержки, синхрогенератор, первый и второй умножители, первый, второй, третий и четвертый косинусно-синусные функциональные преобразователи, первый и второй блоки памяти, комплексный сумматор, дополнительный вычислитель фазы, дополнительный блок оценивания фазы, первый и второй дополнительные блоки комплексного умножения, дополнительный блок комплексного сопряжения и третий и четвертый блоки задержки, определенным образом соединенные между собой и осуществляющие когерентную обработку поступающих отсчетов. Технический результат - повышение точности автокомпенсации. 9 ил.

Изобретение относится к области радиолокации, а именно к активным радиолокационным системам, и может быть использовано для селекции движущихся целей и одновременного измерения их дальности, радиальной скорости и направления движения на основании результатов обработки принятого отраженного сигнала. Достигаемый технический результат – возможность одновременного с селекцией движущихся целей измерения дальности, радиальной скорости и направления движения. Способ основан на использовании в качестве зондирующего сигнала периодической последовательности радиоимпульсов с линейной частотной модуляцией (ЛЧМ) и череспериодной сменой знака девиации частоты, при этом принятый сигнал обрабатывается цифровым формирователем квадратурных составляющих, затем линейными фильтрами, согласованными с одиночным ЛЧМ импульсом с положительной и отрицательной девиацией частоты, после чего осуществляется череспериодная компенсация огибающих откликов согласованных фильтров, и на основе измерения временного положения минимума и максимума разностного сигнала производится селекция движущихся целей и оценка указанных параметров. 3 ил.

Изобретение относится к радиолокации, а именно к способам радиолокационного обнаружения и распознавания радиолокационных объектов, и может быть использовано для идентификации групповой воздушной цели (ГВЦ). Достигаемый технический результат - повышение достоверности полученной информации для принятия решения об идентификации групповой воздушной цели на этапе обнаружения целей посредством бортовой радиолокационной станции (БРЛС) в случае, когда элементы такой цели находятся в одном разрешаемом объеме БРЛС. Указанный результат достигается за счет того, что в направлении обнаруженной воздушной цели излучают несколько пачек импульсов немодулированного зондирующего сигнала, принимают сигналы, отраженные от наблюдаемой воздушной цели (ВЦ), устанавливают в компараторе пороговое значение оцениваемого параметра принимаемого сигнала, производят перестройку фазовращателей на некоторый дискрет изменения фазы, вносимый в зондирующий сигнал, излучают в направлении наблюдаемой воздушной цели несколько пачек импульсов зондирующего сигнала с фазовой манипуляцией, принимают отраженные от наблюдаемой воздушной цели сигналы, вычисляют значение оцениваемого параметра принимаемого сигнала, сравнивают вычисленное значение оцениваемого параметра принимаемого сигнала с ранее установленным пороговым значением оцениваемого параметра, принимают решение о наличии в составе наблюдаемой воздушной цели одного или двух объектов, при этом для принятия решения об идентификации групповой воздушной цели вводят пороговое значение оцениваемого параметра, исходя из определенных условий, что позволяет идентифицировать групповые воздушные цели, находящиеся в одном разрешающем объеме БРЛС, то есть распознать количество объектов в ранее обнаруженной ВЦ в случае, когда элементы такой цели находятся в одном разрешаемом объеме БРЛС, а отраженный сигнал имеет существенно большее значение амплитуды, чем при отражении от одиночной ВЦ, более чем при одном из значений фазового сдвига, вносимого в зондирующий сигнал, при этом неправильная оценка тактической обстановки, заключающаяся в принятии неправильного решения об идентификации ГВЦ, исключена.

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей. Вычислитель для компенсации помех содержит первый и второй блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, при этом введены блок комплексного сопряжения, блок переключения, блок точности, блок коммутации, двухканальный коммутатор и синхрогенератор, определенным образом соединенные между собой. 11 ил.

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей. Вычислитель для подавления помех содержит: первый и второй блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации, двухканальный коммутатор и синхрогенератор. 11 ил.

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей. Вычислитель для режекции помех содержит: первый, второй и третий блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, синхрогенератор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации и двухканальный коммутатор. 11 ил.

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей. Указанный результат достигается тем, что фильтр режектирования помех содержит первый, второй и третий блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор, синхрогенератор, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации и двухканальный коммутатор, определенным образом соединенные между собой и осуществляющие когерентную обработку исходных отсчетов. 11 ил.

Изобретение относится к радиолокации и может быть использовано в бортовых радиолокационных станциях (БРЛС) с синтезированием апертуры антенны для распознавания надводных объектов (кораблей). Достигаемый технический результат - распознавание кораблей на морской поверхности вне зависимости от характеристик непосредственных радиолокационных (РЛ) отражений от элементов его конструкции, при этом характерной чертой способа является повышение вероятности правильного распознавания при увеличении волнения морской поверхности. Указанный результат достигается за счет того, что РЛ изображение участка морской поверхности с обнаруженной РЛ отметкой, свидетельствующей о наличие какого-либо объекта на морской поверхности, подвергается обработке с использованием эталонных матриц, содержащих изображения РЛ теней, образуемых кораблями и получаемых на основе информации о форме и положении корабля относительно БРЛС, а по результатам этой обработки выносится решение об идентичности обнаруженного объекта одному из входящих в заданный список кораблей, подлежащих распознаванию. 7 ил.
Изобретение относится к области радиолокации и может быть использованы для обнаружения и завязывания трассы цели. Достигаемый технический результат по первому варианту способа сопровождения цели - сокращение временных затрат на завязывание трасс целей и увеличение надежности сопровождения за счет уменьшения размеров стробов, а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей. Указанные технические результаты достигаются тем, что в способе сопровождения цели, основанном на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, зондируют области стробов сигналами, обеспечивающими измерение допплеровской скорости цели. Достигаемым техническим результатом по второму варианту способа излучения и приема сигнала является использование той же структуры сигнала для измерения (разрешения) допплеровской скорости, что и для измерения дальности. Указанный технический результат достигается тем, что в способе излучения и приема сигнала при измерении (разрешении) допплеровской скорости, основанном на формировании сигнала с внутриимпульсной модуляцией, сигнал излучают отдельными частями, а при приеме их отражений сжимают их в допплеровских каналах. 2 н. и 5 з.п. ф-лы.
Наверх