Воздухозаборник самолета

Изобретение относится к летательным аппаратам. В воздушном канале (1) воздухозаборника самолета установлена противорадиолокационная решетка (6) под углом γ, составляющим от 30 до 90° относительно продольной оси канала. Воздушный канал (1) ограничен стенками воздухозаборника, а также подвижными панелями (2, 3). С одной стороны воздушный канал (1) открыт для поступления воздушного потока через вход (4) воздухозаборника, а с другой стороны от входа (4) воздушный канал (1) соединен с входным направляющим аппаратом (5). Длина l решетки, в направлении, параллельном продольной оси канала, зависит от диаметра воздушного канала в месте установки решетки (6) и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала (1). Расстояние по продольной оси воздушного канала (1) от решетки до входного направляющего аппарата (5) составляет от 0,7 до 1,2 диаметра d канала (1). Изобретение снижает радиолокационную заметность воздухозаборника самолета путем увеличения радиопоглощающей и радиогасящей способности воздушного канала за счет удлинения его отражающих плоскостей. 5 з.п. ф-лы, 5 ил.

 

Изобретение относится к конструкциям летательных аппаратов (ЛА), а именно к средствам снижения радиолокационной (РЛ) заметности многорежимных самолетов.

Одним из основных требований, предъявляемых к современным самолетам, является малый уровень заметности в РЛ диапазоне длин волн. Суммарная РЛ заметность самолета в передней его полусфере в значительной степени определяется вкладом воздухозаборников и входных устройств двигателя. Таким образом, задача, на решение которой направлено изобретение, заключается в снижении РЛ заметности воздухозаборников и входных устройств двигателя самолета.

Известно техническое решение, в котором для уменьшения заметности силовой установки в радиолокационном, инфракрасном и акустическом диапазонах длин волн предлагается использовать экранирующее приспособление, установленное в потоке газа в сопле ЛА (RU 2215670). Указанное экранирующее приспособление выполнено в виде противорадиолокационной и противоинфракрасной решеток, уменьшающих акустическую заметность, причем противоинфракрасная решетка расположена ближе к выходной части двигателя, чем противорадиолокационная решетка, или решетки могут быть выполнены разъемными с возможностью соединения между собой разъемным соединением или установленными друг в друга. Кроме того, ребра противоинфракрасной решетки могут быть выполнены радиальными и покрыты радиопоглощающим материалом, а также решетки могут быть выполнены поворотными.

Однако данное техническое решение недостаточно снижает РЛ заметность, т.к. не поглощает излучение, отраженное от выходных устройств двигателя.

Наиболее близким по технической сущности и назначению может быть принято техническое решение, в котором для снижения уровня РЛ заметности в канале воздухозаборника летательного аппарата под наклоном установлена решетка (DE 3901010). Для усиления эффекта различные участки воздухозаборного канала покрыты радиопоглощающим материалом. Кроме того, в одном из вариантов решения решетка выполнена в виде соединенных между собой кольцом радиальных ребер, на кромках которых закреплено множество отрезков проволоки. Электромагнитные (ЭМ) волны, попадая в канал, отражаются от поверхности решеток, представляющих собой плоские или параболические ячеистые конструкции (с размером ячейки ~ длины волны) и на поглощающее покрытие, нанесенное на внутреннюю стенку канала. Недостатками подобных решений является дросселирование мелкоячеистыми решетками (с размером ячейки ~ длины волны) сечений канала воздухозаборника, что может привести к потерям тяги двигателя. В случае компенсации дросселированной решеткой площади сечения канала дополнительной площадью канала увеличится масса воздухозаборника и одновременно увеличатся газодинамические потери (трение) внутри него, за счет увеличения площади омываемой поверхности канала. Дополнительным недостатком установки подобной решетки в канале является возможность ее обледенения, для предотвращения которого потребуется применения дополнительной системы противообледенения. Установка подобной системы, в зависимости от варианта ее реализации, либо уменьшает тягу двигателя (за счет отбора воздуха на обогрев решетки), либо увеличивает электропотребление (для обогрева) и, в любом случае, увеличивает массу самолета.

Технический результат, на достижение которого направлено изобретение, заключается в снижении РЛ заметности системы «воздухозаборник - воздушный канал - входное устройство двигателя» путем увеличения противорадиолокационной (радиопоглощающей и радиогасящей) способности канала за счет удлинения отражающих плоскостей канала ввиду его конструктивных особенностей.

Указанный технический результат достигается тем, что в воздухозаборнике летательного аппарата, включающем воздушный канал, в котором установлена противорадиолокационная решетка, согласно изобретения противорадиолокационная решетка (далее - решетка) установлена относительно продольной оси воздушного канала под углом γ, составляющим от 30° до 90°, а длина решетки, в направлении, параллельном продольной оси воздушного канала, зависит от диаметра воздушного канала в месте установки решетки и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала.

Решетка в канале может быть установлена таким образом, что расстояние по продольной оси воздушного канала от решетки до входного направляющего аппарата (ВНА) двигателя составляет от 0,7 до 1,2 диаметра d воздушного канала.

Кроме того, для дополнительного уменьшения величины отраженных электромагнитных волн стенки воздухозаборного канала в области установки решетки или в другом месте могут быть покрыты радиопоглощающим материалом (РПМ), РПМ может быть покрыта также и сама решетка.

Противорадиолокационная решетка может быть выполнена в виде одной или более цилиндрических поверхностей, установленных коаксиально стенкам воздушного канала и закрепленных к нему при помощи радиальных ребер, а в случае установки нескольких цилиндрических поверхностей они скрепляются радиальными ребрами и между собой.

Решетка может быть выполнена в виде рамки внешнего контура с закрепленными внутри нее пересекающимися под углом ребрами, причем ребра могут пересекаться как под прямым углом, так и под любым другим углом. Таким образом, пересекающиеся ребра образуют сетку с прямоугольными или параллелограммными ячейками.

Решетка воздухозаборника может быть выполнена в виде рамки внешнего контура с закрепленными внутри нее радиальными ребрами.

Предложенная противорадиолокационная решетка, установленная в канале воздухозаборника, выполняет роль экрана, частично перекрывающего ВНА в приосевых направлениях от попадания ЭМ волн. Помимо экранирования решетка разделяет геометрическое сечение канала воздухозаборника перед ВНА на ряд отдельных сегментов, каждый из которых имеет меньшую площадь поперечного сечения, чем канал воздухозаборника в этой зоне. Подобное сегментирование воздушного канала с одновременным покрытием стенок сегментов РПМ позволяет уменьшить величину электромагнитных сигналов, отраженных от ВНА и переотраженных на стенки сегментов воздушного канала, тем самым общий уровень РЛ заметности воздухозаборника в передней полусфере снижается.

В дополнение к вышеописанным мероприятиям по воздухозаборнику и воздушному каналу на ВНА может наносится РПМ, что, в свою очередь, уменьшает величину отраженных от него ЭМ волн.

Изобретение поясняется чертежами, где на фиг. 1 изображен воздухозаборник самолета при виде сбоку в разрезе; на фиг. 2 - вид в разрезе области ВНА с установленной решеткой; на фиг. 3, 4 и 5 - варианты выполнения решетки в поперечном разрезе.

Воздухозаборник самолета или другого летательного аппарата, представленный на фиг. 1, содержит воздушный канал 1, ограниченный стенками воздухозаборника, а также подвижными панелями 2 и 3. С одной стороны воздушный канал 1 открыт для поступления воздушного потока через вход 4 воздухозаборника, а с другой стороны от входа 4 воздушный канал 1 соединен с входным направляющим аппаратом (ВНА) 5. В воздушном канале 1 после регулируемых панелей 2 и 3 и перед ВНА 5 по ходу движения воздушного потока установлена противорадиолокационная решетка 6, то есть в зоне «прямого» канала, где он имеет круглое сечение.

Как показано на фиг. 2, противорадиолокационная решетка 6 может быть установлена под углом γ относительно продольной оси 7 воздушного канала 1, что служит для минимизации сопротивления воздушному потоку и минимизации отражения РЛ сигнала от передней кромки противорадиолокационной решетки 6. Угол γ выбирается расчетным путем из промежутка от 30° до 90°, в зависимости от длины РЛ волны. Именно диапазон угла наклона у решетки 6 от 30° до 90° является преимущественным для эффективного переотражения электромагнитных волн от передних кромок элементов противорадиолокационной решетки 6 на внутреннюю поверхность канала воздухозаборника и регулируемые панели 2 и 3, а не в сторону источника излучения.

Противорадиолокационная решетка 6 выполнена такой величины, что ее длина (фиг. 2), проходящая в направлении параллельном продольной оси 7 воздушного канала 1, зависит от диаметра воздушного канала 1 в месте установки решетки 6 и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала 1. Выполнение решетки 6 такой длины способствует эффективному затуханию отраженной волны между элементами решетки 6.

На фиг. 2 изображено, что противорадиолокационная решетка 6 установлена в воздушном канале 1 таким образом, что расстояние а, измеряемое по продольной оси 7 воздушного канала 1, от тыльной плоскости решетки 6 до ВНА 5 составляет от 0,7 до 1,2 диаметра d воздушного канала.

На фиг. 3, 4, 5 представлены в разрезе различные варианты выполнения противорадиолокационной решетки 6. В одном из вариантов - фиг. 3 - представлен вид решетки 6, выполненной из одной или более цилиндрических поверхностей 8, которые закреплены между собой, а также к стенкам канала 1 при помощи радиальных (расположенных по радиусу решетки) ребер 9. Кроме того, одна или более цилиндрических поверхностей 8 могут быть закреплены к рамке 10 внешнего контура решетки 6 (на фигурах не представлено), а решетка 6 закреплена к стенкам канала 1 при помощи элементов крепежа. Причем каждая цилиндрическая поверхность 8 установлена коаксиально воздушному каналу 1 воздухозаборника.

В другом варианте выполнения (фиг. 4) противорадиолокационная решетка 6 выполнена в виде рамки 10 внешнего контура с закрепленными внутри нее пересекающимися под углом ребрами 9. На фиг. 4 представлена решетка 6 с ребрами 9, пересекающимися под прямым углом, образуя сетку с прямоугольными ячейками. В то время как ребра 9 могут пересекаться и под любым другим углом, образуя сетку с параллелограммными ячейками, что на фигурах не представлено.

В третьем варианте выполнения решетки 6 (фиг. 5) она выполнена в виде рамки 10 внешнего контура с закрепленными внутри нее радиальными ребрами 9.

Кроме того, на стенки воздушного канала 1, или на регулируемые панели 2 и 3, или на решетку 6, или на любое сочетание этих элементов может быть нанесен радиопоглощающий материал (на фигурах не показан), который также способствует затуханию попавших на эти элементы электромагнитных и РЛ волн.

Такие характеристики, как толщина цилиндрических поверхностей 8 и ребер 9, а также их количество, определяются из условий прочности, надежности и газодинамических характеристик двигателя.

Устройство работает следующим образом.

Электромагнитные волны попадают через вход 4 воздухозаборника в воздушный канал 1. На входе 4 воздухозаборника снижение РЛ заметности обеспечивается за счет параллелограммной формы входа 4 при виде спереди и сбоку, а также наличия стреловидности всех кромок входа 4. Выбор ориентации упомянутых элементов, образующих вход, позволяет ориентировать их конструкцию, по отношению к направлению РЛ облучения, таким образом, чтобы отклонить от этого направления отраженную от конструкции ЭМ волну, а также исключить наличие уголковых отражателей. В воздушном канале 1 на его внутренних стенках, покрытых РПМ, происходит частичное поглощение ЭМ волн. Попадая затем на противорадиолокационную решетку 6, которая разделяет геометрическое сечение воздушного канала 1 воздухозаборника на ряд отдельных сегментов, каждый из которых имеет меньшую площадь поперечного сечения, чем воздушный канал 1 в этой зоне, волны многократно переотражаются и затухают, а частично поглощаются РПМ решетки 6 и стенок воздушного канала 1. Прошедшая через решетку 6 оставшаяся часть волн попадает на ВНА 5, от которой затем отражается и вновь попадает в сегментированную решеткой 6 часть воздушного канала 1, где уже окончательно затухает. Противорадиолокационная решетка 6 за счет своей длины , составляющей в направлении, параллельном продольной оси воздушного канала, от 0,3 до 0,6 диаметра d воздушного канала, и угла наклона γ, составляющего от 30° до 90°, позволяет за счет использования эффектов поглощения и/или переотражения электромагнитных волн значительно уменьшить или свести к нулю величину электромагнитных сигналов, отраженных от ВНА и переотраженных на стенки сегментов воздушного канала 1, тем самым значительно снизить общий уровень РЛ заметности воздухозаборника в передней полусфере, благодаря затуханию отраженной ЭМ волны между поверхностями решетки 6.

1. Воздухозаборник самолета, включающий воздушный канал, в котором установлена противорадиолокационная решетка, отличающийся тем, что противорадиолокационная решетка установлена относительно продольной оси воздушного канала под углом γ, составляющим от 30 до 90°, а длина l противорадиолокационной решетки, в направлении, параллельном продольной оси воздушного канала, зависит от диаметра воздушного канала в месте установки противорадиолокационной решетки и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала.

2. Воздухозаборник по п. 1, отличающийся тем, что противорадиолокационная решетка установлена на расстоянии а по продольной оси воздушного канала от входного направляющего аппарата двигателя, составляющем от 0,7 до 1,2 диаметра d воздушного канала.

3. Воздухозаборник по п. 1, отличающийся тем, что на стенки воздушного канала и/или на противорадиолокационную решетку нанесен радиопоглощающий материал.

4. Воздухозаборник по п. 1, отличающийся тем, что противорадиолокационная решетка выполнена в виде закрепленных радиальными ребрами одной или более цилиндрических поверхностей, установленных коаксиально воздушному каналу воздухозаборника.

5. Воздухозаборник по п. 1, отличающийся тем, что противорадиолокационная решетка выполнена в виде рамки с закрепленными внутри нее пересекающимися под углом ребрами.

6. Воздухозаборник по п. 1, отличающийся тем, что противорадиолокационная решетка выполнена в виде рамки внешнего контура с закрепленными внутри нее радиальными ребрами.



 

Похожие патенты:

Изобретение относится к технике защиты объектов от обнаружения с помощью радиолокационного излучения. Особенностью заявленного способа снижения радиолокационной заметности объекта является то, что плазменное образование создают с помощью высоковольтного коронного лавинно-стримерного импульсного разряда и осуществляют синхронизацию зондирующих импульсов РЛС и импульсов разряда путем приема зондирующих импульсов РЛС и изменения времени начала генерирования и периода следования импульсов разряда до момента совпадения во времени импульсов РЛС и импульсов разряда.
Изобретение относится к антенной технике. При получении радиопоглощающего покрытия на защищаемую поверхность наносят радиопоглощающий материал в несколько слоев, при этом по крайней мере в одном из слоев создаются разрезные кольца из электропроводного материала толщиной более толщины скин-слоя.

Изобретение относится к антенной технике. Заявлен экран-параболоид для антенных измерений, состоящий из параболоида вращения, изготовленного из материала, хорошо отражающего электромагнитное излучение, и имеющий форму внутренней поверхности, обеспечивающую переотражение падающих электромагнитных волн вертикально вверх, с размещенными во внутренней полости, в фокусе параболоида вращения, места для установки исследуемой излучающей антенны и места для установки вспомогательной антенны, находящейся на необходимом удалении перпендикулярно оси параболоида вращения на уровне фокуса параболоида вращения, вблизи внутренней поверхности размещены два зеркала-ловушки, имеющие эллиптическую форму, обеспечивающую защиту исследуемой излучающей антенны и вспомогательной антенны от воздействия электромагнитного излучения, исходящего от исследуемой излучающей антенны, перенаправляя электромагнитное излучение в заданное направление.

Изобретение относится к радиотехнике, а именно к конструкциям безэховых камер (БЭК), предназначенных для измерения диаграмм эффективной площади рассеяния (ЭПР) радиолокационных целей.

Летательный аппарат (10) с малой радиолокационной сигнатурой включает двигательную установку (18) для приведения в движение летательного аппарата (10), имеющего воздухозаборник (16) и сопловое отверстие (14), нишу (20, 24, 26), через которую предусмотрена возможность ввода других компонентов летательного аппарата (10) вовнутрь.

Изобретение относится к радиотехнике. Особенностью заявленного антенного поста является то, что металлические валы через редукторы и электромагнитную муфту сцепления соединены с возвратными электродвигателями, крепящимися к нижним бимсам, радиопрозрачные тяги, обеспечивающие продвижение радиопоглощающих транспарантов, прикреплены к металлическим катушкам с внутренней электромагнитной муфтой, обеспечивающей сцепление металлической катушки с металлическим валом, закрепленным на стойках верхнего бимса и вращающимся через редуктор посредством электродвигателя, расположенного на стойке верхнего бимса, включение/выключение электродвигателей осуществляется посредством концевых выключателей, при этом радиопоглощающие транспаранты могут быть сплошными или с вырезами для антенн, оставленных не экранированными для работы, а поверх радиопрозрачных панелей, области которых не перекрываются радиопоглощающими транспарантами, наклеиваются радиопоглощающие наклейки.

Использование: для обеспечения электромагнитной совместимости радиоэлектронных средств, защиты от радиоизлучения и снижения радиолокационной заметности различных объектов.

Изобретение относится к области радиотехники, к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов морской, наземной, авиационной и космической техники, а также обеспечения электромагнитной совместимости радиоэлектронных и радиотехнических приборов и устройств.
Предложенное изобретение относится к технологии изготовления радиопоглощающих ферритов, которые находят все более широкое применение в безэховых камерах, для значительного снижения отражения радиоволн от стен.

Изобретение предназначено для авиационной, космической и ракетной техники и может быть использовано при изготовлении объемных термостойких широкодиапазонных радиопоглощающих материалов (РПМ) для защиты от электромагнитного излучения.

Изобретение относится к летательным аппаратам. Летательный аппарат (1) содержит фюзеляж (2) с двигателем (8a).

Изобретение относится к звуковой защите корпуса вентилятора турбинного двигателя летательного аппарата. Устройство звуковой защиты для корпуса летательного аппарата содержит панель (6) звуковой защиты с полосами (10), ослабляющими вибрацию.

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы значений скоростей потока и скоростью звука перед скачками уплотнения.

Изобретение относится к области авиационных двигателей и может быть использовано при мониторинге состояния этих двигателей в течение времени. Способ контроля повреждений на внутренней стороне картера вентилятора включает следующие этапы: отмечают первое повреждение (I1) на внутренней стороне картера вентилятора, ограничивают поверхность осмотра, содержащую упомянутое первое повреждение (I1), отмечают различные повреждения (Ii), присутствующие на ограниченной поверхности осмотра, при этом упомянутые отмеченные различные повреждения представляют собой совокупность рассматриваемых повреждений, для каждого рассматриваемого повреждения (Ii) измеряют глубину и длину упомянутого повреждения (Ii), для каждого рассматриваемого повреждения (Ii) определяют значение степени серьезности при помощи, по меньшей мере, одной номограммы, устанавливающей соотношение глубины и длины каждого рассматриваемого повреждения со степенью серьезности, для каждой поверхности осмотра, содержащей первое повреждение (I1), определяют общее значение степени серьезности посредством суммирования значений степени серьезности, определенных для каждого рассматриваемого повреждения (Ii).

Изобретение относится к области авиации, в частности к средствам защиты двигателей летательных аппаратов от попадания посторонних предметов. Бортовое защитное устройство расположено на нижней части воздухозаборника и содержит способную к выдвижению подвижную нижнюю панель.

Изобретение относится к области авиации, в частности к средствам защиты двигателей летательных аппаратов от попадания посторонних предметов. Бортовое защитное устройство расположено на нижней части воздухозаборника и содержит способную к выдвижению подвижную нижнюю панель.

Изобретение относится к области авиации, в частности к средствам защиты двигателей летательных аппаратов от попадания посторонних предметов. Бортовое защитное устройство расположено на нижней части воздухозаборника и содержит способную к выдвижению подвижную нижнюю панель.

Изобретение относится к области авиации, в частности к средствам защиты двигателей летательных аппаратов от попадания посторонних предметов. Бортовое защитное устройство расположено на нижней части воздухозаборника и содержит способную к выдвижению подвижную нижнюю панель.

Изобретение относится к области авиации, в частности к гондолам авиационных двигателей. Конструкция передней кромки воздухозаборника гондолы содержит переднюю кромку, внутреннюю перегородку, средства удаления льда и/или защиты от обледенения.

Изобретение относится к области авиации, в частности к силовым установкам летательных аппаратов. Способ снижения вибрационного воздействия силовой установки летательного аппарата, при котором расчетным методом выбирают соотношение длин внутреннего и внешнего контуров двигателя в пределах больше 1,41 или меньше 0.9 для всех возможных условий эксплуатации летательного аппарата.

Изобретение относится к средствам защиты двигателей летательных аппаратов. Бортовое устройство защиты содержит подвижную нижнюю панель (1), которая шарнирно соединена со штоком привода, жестко закрепленного на корпусе (7) воздухозаборника. Нижняя панель (1) имеет в задней части два ряда щелей (12) с относительной шириной , расположенных на относительной длине . Относительное расстояние расположения второго ряда щелей, где l - длина нижней панели, м; с - длина от задней кромки нижней панели до оси первого ряда щелей, м; d - ширина щелей, м; k - расстояние между рядами щелей, м. Изобретение повышает эффективность устройства защиты двигателя. 3 ил.

Изобретение относится к летательным аппаратам. В воздушном канале воздухозаборника самолета установлена противорадиолокационная решетка под углом γ, составляющим от 30 до 90° относительно продольной оси канала. Воздушный канал ограничен стенками воздухозаборника, а также подвижными панелями. С одной стороны воздушный канал открыт для поступления воздушного потока через вход воздухозаборника, а с другой стороны от входа воздушный канал соединен с входным направляющим аппаратом. Длина l решетки, в направлении, параллельном продольной оси канала, зависит от диаметра воздушного канала в месте установки решетки и находится в пределах от 0,3 до 0,6 диаметра d воздушного канала. Расстояние по продольной оси воздушного канала от решетки до входного направляющего аппарата составляет от 0,7 до 1,2 диаметра d канала. Изобретение снижает радиолокационную заметность воздухозаборника самолета путем увеличения радиопоглощающей и радиогасящей способности воздушного канала за счет удлинения его отражающих плоскостей. 5 з.п. ф-лы, 5 ил.

Наверх