Устройство для плазменно-электролитического оксидирования металлов и сплавов

Изобретение относится к области гальванотехники и может быть использовано для получения оксидно-керамических покрытий. Устройство содержит источник трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, повышающий высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом к катоду ванны с электролитом, первый датчик тока, компьютер, управляющий микроконтроллером, при этом оно дополнительно содержит понижающий и повышающий стабилизаторы напряжения, второй датчик тока, информационный выход которого подключен к четвертому входу микроконтроллера, первый дроссель, активный делитель напряжения и полумостовой инвертор напряжения, при этом силовые входы понижающего стабилизатора подключены к фильтру, а силовые выходы - один напрямую и другой - через второй датчик тока и первый дроссель подключены к силовым входам повышающего стабилизатора, силовые выходы которого подключены к первому датчику напряжения, силовым входам активного делителя напряжения и полумостового инвертора, а информационные входы обоих стабилизаторов соединены соответственно с первым и вторым выходами блока драйверов, при этом активный делитель напряжения формирует амплитуды анодного и катодного напряжений. Технический результат - простой алгоритм управления устройством и снижение его габаритов и веса. 1 ил.

 

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидно-керамических покрытий.

Известно устройство для микродугового оксидирования металлов и их сплавов, содержащее источник питания, соединенный с вторичным источником питания, ванну для электролита, корпус которой соединен через последовательно соединенные датчик напряжения и датчик тока с оксидируемой деталью, управляющую машину, повышающий трансформатор, блок драйверов, тиристорный преобразователь напряжения, систему импульсно-фазового управления, пульт ручного управления, пульт дистанционного управления, последовательно соединенные первый выпрямитель, первый фильтр, первый импульсный преобразователь напряжения, а также последовательно соединенные второй выпрямитель, второй фильтр, второй импульсный преобразователь напряжения, входы которых соединены с выходами повышающего трансформатора, а выходы подключены к входам переключателя режимов (RU, патент №2422560, МПК C25D 11/02, опубл. 27.06.2011 г.).

Недостатками известного устройства являются сложная система управления, значительные габариты и вес устройства.

Известно устройство для микродугового оксидирования изделий из металлов и металлических сплавов, содержащее источник питания, ванну с электролитом, повышающий трансформатор, управляющую электронно-вычислительную машину, датчик тока и датчик напряжения, входы которых соединены с оксидируемым изделием, вторичный источник питания, импульсные преобразователи напряжения, систему импульсно-фазового управления, пульты дистанционного и ручного управления, два фильтра, переключатель режимов работы, два выпрямителя, тиристорный преобразователь напряжения, выход которого соединен с входом силового повышающего трансформатора, выходы которого подключены к входам первого и второго выпрямителей (патент RU №2395631, МПК C25D 11/00, 21/12, опубл. 27.07.2010 г.).

Недостатками известного устройства являются сложная система управления, значительные габариты и вес устройства.

Известно устройство для плазменно-электролитического оксидирования металлов и сплавов, принятое за прототип, содержащее источник питания, ванну с электролитом для оксидирования изделия, два выпрямителя, два фильтра, два импульсных преобразователя напряжения, блок драйверов, переключатель режима работы, датчик тока и датчик напряжения, микроконтроллер, управляющую электронно-вычислительную машину, подключенную к микроконтроллеру, управляемый электронный разрядник, два измерителя напряжения, два высокочастотных силовых повышающих трансформатора, два регулятора напряжения, два коммутатора, два логических элемента «И», генератор высокочастотных сигналов, выход которого через два логических элемента «И» соответственно подключен к первым входам коммутаторов, вторые входы которых соединены вместе и подключены к источнику питания, выходы первого и второго коммутаторов подключены к входам соответственно первого и второго высокочастотных силовых повышающих трансформаторов, выходы которых соответственно подключены к входам первого и второго выпрямителей, при этом выходы первого и второго фильтров подключены к входам первого и второго измерителей напряжения и к первым входам соответственно первого и второго регуляторов напряжения, выходы которых подключены ко вторым входам импульсных преобразователей (патент RU №2441108, МПК C25D 11/00, 19/00, опубл. 27.01.2012 г.).

Недостатками известного устройства являются сложный алгоритм управления, значительные габариты и вес устройства.

Техническим результатом изобретения является простой алгоритм управления и снижение габаритов и веса устройства.

Указанный технический результат достигается тем, что устройство для плазменно-электролитического оксидирования металлов и сплавов, содержащее источник трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, повышающий высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом к катодному электроду ванны, заполненной электролитом, первый датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, а первый, второй и третий входы к информационным выходам датчиков напряжения и первого датчика тока, дополнительно содержит понижающий и повышающий стабилизаторы напряжения, второй датчик тока, информационный выход которого подключен к четвертому входу микроконтроллера, первый дроссель, активный делитель напряжения и полумостовой инвертор напряжения, при этом силовые входы понижающего стабилизатора напряжения подключены к фильтру, а силовые выходы один напрямую и другой через второй датчик тока и первый дроссель подключены к силовым входам повышающего стабилизатора напряжения, силовые выходы которого подключены к первому датчику напряжения, силовым входам активного делителя напряжения и полумостового инвертора напряжения, а информационные входы обоих стабилизаторов напряжения соединены соответственно с первым и вторым выходами блока драйверов, при этом активный делитель напряжения формирует амплитуды анодного и катодного напряжений и содержит два транзистора, шунтированных обратными диодами и включенных по полумостовой схеме, в точку соединения которых включены последовательно соединенные третий датчик тока, информационный выход которого подключен к пятому входу микроконтроллера, и второй дроссель, выход которого подключен к одному из выходов полумостового инвертора напряжения, образованному двумя последовательно включенными конденсаторами, к первому из которых подключен второй датчик напряжения, а другой выход полумостового инвертора напряжения образован двумя последовательно включенными транзисторами, шунтированными обратными диодами, и между выходами включены последовательно соединенные первый датчик тока и первичная обмотка повышающего высокочастотного трансформатора, при этом информационные входы активного делителя напряжения и полумостового инвертора напряжения соответственно подключены к третьему и четвертому выходам блока драйверов.

На чертеже представлена структурная схема устройства для плазменно-электролитического оксидирования металлов и сплавов.

Устройство для плазменно-электролитического оксидирования металлов и сплавов содержит источник 1 трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю 2, выходы которого соединены с фильтром 3, первый и второй датчики напряжения 4 и 5, повышающий высокочастотный трансформатор 6, вторичная обмотка 7 которого одним выходом подключена к обрабатываемой детали 8, а другим выходом к катодному электроду 9 ванны 10, заполненной электролитом 11, первый датчик тока 12, компьютер 13, управляющий микроконтроллером 14, выходы которого подключены к входам блока драйверов 15, а первый, второй и третий входы соответственно к информационным выходам датчиков напряжения 4, 5 и первого датчика тока 12, понижающий и повышающий стабилизаторы напряжения 16 и 17, второй датчик тока 18, информационный выход которого подключен к четвертому входу микроконтроллера 14, первый дроссель 19, активный делитель напряжения 20 и полумостовой инвертор напряжения 21, при этом силовые входы понижающего стабилизатора напряжения 16 подключены к фильтру 3, а силовые выходы один напрямую и другой через второй датчик тока 18 и первый дроссель 19 подключены к силовым входам повышающего стабилизатора напряжения 17, силовые выходы которого подключены к первому датчику напряжения 4, силовым входам активного делителя напряжения 20 и полумостового инвертора напряжения 21, а информационные входы обоих стабилизаторов напряжения 16 и 17 соединены соответственно с первым и вторым выходами блока драйверов 15, при этом активный делитель напряжения 20 формирует амплитуды анодного и катодного напряжений и содержит два транзистора 22, 23, шунтированных обратными диодами 24, 25 и включенных по полумостовой схеме, в точку соединения которых включены последовательно соединенные третий датчик тока 26, информационный выход которого подключен к пятому входу микроконтроллера 14, и второй дроссель 27, выход которого подключен к одному из выходов полумостового инвертора напряжения 21, образованному двумя последовательно включенными конденсаторами 28, 29, к первому из которых подключен второй датчик напряжения 5 и другой выход полумостового инвертора напряжения 21 образован двумя последовательно включенными транзисторами 30, 31, шунтированными обратными диодами 32, 33, и между выходами включены последовательно соединенные первый датчик тока 12 и первичная обмотка 34 повышающего высокочастотного трансформатора 6, при этом информационные входы активного делителя напряжения 20 и полумостового инвертора напряжения 21 соответственно подключены к третьему и четвертому выходам блока драйверов 15.

Фильтр 3 представляет собой емкость, которая снижает уровень пульсаций после выпрямителя 2. Повышающий высокочастотный трансформатор 6 осуществляет увеличение по амплитуде напряжения, подключенного к обрабатываемой детали 8 и к катодному электроду 9 ванны 10, а также гальваническую развязку этого напряжения от источника 1 трехфазного переменного или постоянного напряжения.

Блок драйверов 15 усиливает по мощности сигналы, формируемые микроконтроллером 14 для управления понижающим и повышающим стабилизаторами 16, 17, активным делителем напряжения 20 и полумостовым инвертором напряжения 21.

В зависимости от величины напряжения источника 1 трехфазного переменного или постоянного напряжения и от заданных значений амплитуд анодного и катодного напряжений, подводимых к обрабатываемой детали 8, работает понижающий стабилизатор напряжения 16 или повышающий стабилизатор напряжения 17.

Транзисторы 22, 23, шунтированные обратными диодами 24, 25, и транзисторы 30, 31, шунтированные обратными диодами 32, 33, представляют собой IGBT-транзисторы, включенные по полумостовой схеме и попарно размещенные в отдельных корпусах.

Устройство для плазменно-электролитического оксидирования металлов и сплавов работает следующим образом.

Компьютером 13 задаются микроконтроллеру 14 необходимые значения амплитуд анодного и катодного напряжений, длительность импульсов анодного напряжения, их частота, коэффициент деления, ограничение по мощности и длительность технологического процесса оксидирования. Длительность импульсов катодного напряжения вычисляют микроконтроллером 14. По заданным значениям амплитуд анодного и катодного напряжений и по сигналу обратной связи с первого датчика напряжения 4 микроконтроллером 14 формируют импульсы управления понижающим стабилизатором 16 или повышающим стабилизатором 17. Деление напряжения, сформированного понижающим стабилизатором напряжения 16 или повышающим стабилизатором напряжения 17, осуществляет активный делитель напряжения 20 на конденсаторах 28 и 29 полумостового инвертора напряжения 21 по сигналам с микроконтроллера 14. В соответствии с заданным значением коэффициента деления микроконтроллером 14 формируют импульсы управления определенной длительности, которые поочередно включают транзисторы 22, 23 активного делителя напряжения 20 и заряжают конденсаторы 28 и 29 соответственно до амплитуд анодного и катодного напряжений. При этом отношение длительностей управляющих сигналов определяет величину коэффициента деления. Вторым дросселем 27 обеспечивают линейность тока заряда конденсаторов 28, 29. По третьему датчику тока 26 микроконтроллером 14 контролируют ток заряда и осуществляют защиту сердечника повышающего высокочастотного трансформатора 6 от насыщения. Высокая частота коммутации транзисторов 22, 23 активного делителя напряжения 20 обеспечивает стабильность напряжений на конденсаторах 28 и 29. В соответствии с заданным значением длительности импульса анодного напряжения и вычисленного значения длительности катодного напряжения микроконтроллером 14 формируют импульсы управления, которые поочередно включают транзисторы 30, 31 полумостового инвертора напряжения 21. Транзистором 30 подключают положительное анодное напряжение конденсатора 28 через первый датчик тока 12 к первичной обмотке 34 повышающего высокочастотного трансформатора 6, а транзистором 31 подключают отрицательное катодное напряжение конденсатора 29 к первичной обмотке 34 повышающего высокочастотного трансформатора 6. При этом на первичной обмотке 34 повышающего высокочастотного трансформатора 6 формируются двухполярные импульсы с заданными параметрами, которые передаются в его вторичную обмотку 7. Частотой следования импульсов управляет микроконтроллер 14 по заданию от компьютера 13 или в соответствии с заданным значением ограничения по мощности.

Значение длительности импульса катодного напряжения вычисляется микроконтроллером 14 из условия ненасыщения сердечника повышающего высокочастотного трансформатора 6:

где Т2 - длительность катодного импульса напряжения;

Ua - измеренная амплитуда анодного импульса напряжения;

Т1 - длительность анодного импульса напряжения;

Uk - измеренная амплитуда катодного импульса напряжения.

Для предотвращения насыщения сердечника повышающего высокочастотного трансформатора 6 по сигналам с первого датчика тока 12 и третьего датчика тока 26 микроконтроллером 14 корректируют значение длительности импульса катодного напряжения, а также защищают устройство от короткого замыкания в нагрузке.

Применение активного делителя напряжения 20 совместно с полумостовым инвертором напряжения 21 в предлагаемом устройстве позволяет формировать импульсы анодного и катодного напряжений от одного регулируемого источника напряжения (соответственно понижающий или повышающий стабилизаторы напряжения 16, 17), при этом используется минимум оборудования, что упрощает алгоритм управления и снижает габариты и вес устройства.

Изготовлен опытный образец устройства для плазменно-электролитического оксидирования металлов и сплавов, который показал свою работоспособность и надежность.

Устройство для плазменно-электролитического оксидирования металлов и сплавов, содержащее источник трехфазного переменного или постоянного напряжения, подключенного к трехфазному мостовому выпрямителю, выходы которого соединены с фильтром, первый и второй датчики напряжения, повышающий высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим выходом к катодному электроду ванны, заполненной электролитом, первый датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, а первый, второй и третий входы - к информационным выходам датчиков напряжения и первого датчика тока, отличающееся тем, что оно дополнительно содержит понижающий и повышающий стабилизаторы напряжения, второй датчик тока, информационный выход которого подключен к четвертому входу микроконтроллера, первый дроссель, активный делитель напряжения и полумостовой инвертор напряжения, при этом силовые входы понижающего стабилизатора напряжения подключены к фильтру, а силовые выходы, один из которых напрямую, а другой - через второй датчик тока и первый дроссель, подключены к силовым входам повышающего стабилизатора напряжения, силовые выходы которого подключены к первому датчику напряжения, силовым входам активного делителя напряжения и полумостового инвертора напряжения, а информационные входы обоих стабилизаторов напряжения соединены соответственно с первым и вторым выходами блока драйверов, при этом активный делитель напряжения формирует амплитуды анодного и катодного напряжений и содержит два транзистора, шунтированных обратными диодами и включенных по полумостовой схеме, в точку соединения которых включены последовательно соединенные третий датчик тока, информационный выход которого подключен к пятому входу микроконтроллера, и второй дроссель, выход которого подключен к одному из выходов полумостового инвертора напряжения, образованному двумя последовательно включенными конденсаторами, к первому из которых подключен второй датчик напряжения, а другой выход полумостового инвертора напряжения образован двумя последовательно включенными транзисторами, шунтированными обратными диодами, и между выходами включены последовательно соединенные первый датчик тока и первичная обмотка повышающего высокочастотного трансформатора, при этом информационные входы активного делителя напряжения и полумостового инвертора напряжения соответственно подключены к третьему и четвертому выходам блока драйверов.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано при изготовлении ванн струйной обработки. Способ включает следующие операции: крепление на бортах ванны участков подводящих труб, подключение коллекторов с элементами формирования струйных потоков обрабатывающей среды к участкам подводящих труб через разъемные муфты и соединение коллекторов между собой с помощью установочно-соединительных элементов, выполненных в виде разъемного или неразъемного соединения, непосредственно или через промежуточные вставки требуемой высоты или элементы с регулируемой высотой опор-клипс с диаметрами, соответствующими диаметрам устанавливаемых в них труб соответствующих коллекторов.

Изобретение относится к оборудованию для электролитической обработки поверхности вентильных металлов и их сплавов для формирования оксидно-керамических покрытий.

Изобретение относится к электрохимической установке для формирования наноразмерного покрытия и может быть использовано в полупроводниковой и электронной промышленности.

Изобретение относится к области гальванотехники, в частности к оборудованию для нанесения химических и гальванических покрытий, и служит для гальванохимической обработки мелких деталей россыпью, в частности для нанесения гальванического покрытия на охватывающие контакты чип-резисторов.

Изобретение относится к химической жидкостной обработке деталей, помещенных в барабаны, и конструкции барабана. Линия включает расположенные в технологической последовательности ванны с барабанами, имеющими форму цилиндра или призмы, установленные соосно с возможностью вращения от общего привода в одну сторону с одинаковой угловой скоростью.

Изобретение относится к области гальванотехники и может быть использовано для хромирования длинномерных валов и штоков, в частности штоков гидроприводов силовых подъемных механизмов.
Изобретение относится к области гальванотехники, в частности к проточному электролитическому хромированию, и может быть использовано в машиностроении и других областях техники.

Изобретение относится к области гальванотехники и может быть использовано для электролитического нанесения покрытий на внутреннюю поверхность цилиндрических деталей гальваномеханическим способом.

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидных покрытий. .

Изобретение относится к области гальванотехники и может быть использовано для изготовления зондирующих игл сканирующего туннельного микроскопа и зондов для биологических исследований.

Изобретение относится к электрохимическому способу нанесения покрытий и может найти применение в машиностроении и других отраслях промышленности. Устройство содержит источник силового питания, связанный с ним силовой блок управления, соединенный с ванной с электролитом с погруженной в нее деталью и измерительным блоком, причем силовой блок содержит регулирующий элемент, обеспечивающий управление напряжением, временем начала и конца и длительности анодного и катодного циклов.

Изобретение относится к области гальванотехники, в частности к твердому анодированию алюминиевых сплавов. Способ определения толщины оксидного покрытия в процессе твердого анодирования алюминиевого сплава включает измерение плотности тока и времени анодирования, а также измеряют напряжение на электролизере, рассчитывают удельное энергопотребление а толщину покрытия рассчитывают по формуле h=k⋅Q, где Q - удельное энергопотребление, кВт⋅ч/дм2, t - время анодирования, ч, J - плотность тока, A/дм2, U - напряжение на электролизере, В, h - толщина покрытия, мкм, k - эмпирический коэффициент, определяемый по тарировочной кривой зависимости h, мкм, и Q, кВт⋅ч/дм2, для анодируемого алюминиевого сплава и состава электролита.

Изобретение относится к области получения керамических покрытий методами электроплазменного напыления на изделиях из титановых сплавов и может быть использовано в приборостроении и машиностроении, в частности в деталях компрессоров и турбин газотурбинных двигателей, в имплантируемых медицинских конструкциях.

Изобретение относится к титановым лопаткам большого размера последних ступеней паротурбинных двигателей. Лопатка содержит сплав на основе титана и имеет переднюю кромку, включающую оксид титана, содержащий поры и верхний герметизирующий слой, заполняющий поры, выбранный из группы, состоящей из хрома, кобальта, никеля, полиимида, политетрафторэтилена и сложного полиэфира.

Изобретение относится к области гальванотехники и может быть использовано для изготовления катушек индуктивности для высоковольтного электрооборудования, силовых низковольтных трансформаторов, трансформаторов распределительных сетей.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования.

Группа изобретений относится области медицины и может быть использовано для получения антибактериального покрытия на медицинских изделиях. Способ обработки поверхности медицинского изделия включает стадии, на которых: получают коллоидно-диспергированную систему, подвергают медицинское изделие обработке коллоидно-диспергированной системой путем погружения, создают разность потенциалов цепи переменного тока между медицинским изделием в качестве первого электрода и/или вторым электродом, помещенным в коллоидно-диспергированную систему, для превращения погруженной поверхности в оксидную пленку посредством плазменного электролитического оксидирования, при этом превращенная поверхность частично покрывается островками, образованными коллоидно-диспергированными частицами коллоидно-диспергированной системы.

Изобретение относится к медицине, а именно к ортопедической стоматологии, и предназначено для использования при изготовлении металлокерамических зубных протезов.

Изобретение относится к электрохимической обработке поверхности металлов и сплавов для получения коррозионно-стойких покрытий и может быть использовано для осуществления локальной обработки поверхности конструкций, например, из титановых сплавов в машиностроении, медицине, авиации.
Изобретение относится к области гальванотехники, а именно к электрохимической обработке поверхностей металлов и сплавов методом микродугового оксидирования (МДО), для создания толстослойных износостойких покрытий и может быть использовано для упрочнения деталей из алюминиевых сплавов объектов машиностроения, например двигателей внутреннего сгорания.

Изобретение относится к оборудованию для электролитической обработки поверхностей металлов и сплавов и может быть использовано для получения оксидно-керамических покрытий. Устройство содержит источник трехфазного переменного или постоянного напряжения, подключенный к трехфазному мостовому выпрямителю, фильтр, первый и второй датчики напряжения, высокочастотный трансформатор, вторичная обмотка которого одним выходом подключена к обрабатываемой детали, а другим - к катодному электроду ванны, датчик тока, компьютер, управляющий микроконтроллером, выходы которого подключены к входам блока драйверов, первый и второй комбинированные стабилизаторы напряжения, мостовой инвертор напряжения, при этом силовые входы комбинированных стабилизаторов напряжения объединены и подключены к выходу фильтра, а силовые выходы - к первому и второму датчикам напряжения и к мостовому инвертору напряжения, состоящему из двух транзисторных полумостов, первый из которых подключен к силовым выходам первого комбинированного стабилизатора напряжения, а второй - к силовым выходам второго комбинированного стабилизатора напряжения, а в диагональ мостового инвертора напряжения включены последовательно соединенные датчик тока и первичная обмотка высокочастотного трансформатора. Технический результат - упрощение конструкции и системы управления и повышение надежности всего устройства. 1 ил.
Наверх