Устройство для смазки опорного подшипника ротора авиационного газотурбинного двигателя



Устройство для смазки опорного подшипника ротора авиационного газотурбинного двигателя
Устройство для смазки опорного подшипника ротора авиационного газотурбинного двигателя

 


Владельцы патента RU 2623581:

Публичное акционерное общество "Уфимское моторостроительное производственное объединение" (ПАО "УМПО") (RU)

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов газотурбинных двигателей (ГТД). В устройстве всасывающий патрубок откачивающего насоса выполнен в виде полого гибкого элемента, соединенного герметично с входным фланцем насоса и снабженным на конце заборником масла с инерционным грузом, а в канале для суфлирования масляной полости установлен нормально открытый шариковый клапан, что позволяет при перевороте самолета или возникновении отрицательных перегрузок исключить перетекание масла из маслобака в масляную полость опорного подшипника при выполнении самолетом длительных (более 30 с) фигурных полетов и восстановить циркуляционный объем масла в маслобаке и обеспечить стабильность давления масла на входе в двигатель. Технический результат от использования изобретения - повышение маневренности самолета за счет увеличения продолжительности фигурных полетов. 2 ил.

 

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов газотурбинных двигателей (ГТД).

Известно устройство для смазки опорного подшипника ротора авиационного ГТД, содержащее откачивающий насос, установленный в масляной полости подшипниковой опоры, всасывающий патрубок с размещенным на его конце заборником масла, соединенный с входом откачивающего насоса, и канал для суфлирования масляной полости, расположенный в ее верхней части (см. патент RU №2468227, кл. F02C 7/06, опубл. 27.11.2012).

К недостатку известной конструкции следует отнести перетекание масла из маслобака в масляную полость опорного подшипника ротора ГТД при выполнении самолетом длительных (не менее 30 с) фигурных полетов (перевернутый полет или полет с отрицательными перегрузками), что приводит к сокращению циркуляционного объема масла в маслобаке и, как следствие этого, к падению давления масла на входе в двигатель (режим "масляного голодания"), приводящего к разрушению двигателя.

Объясняется это тем, что при выполнении фигурного полета самолетом поступающее в масляную полость опорного подшипника ротора двигателя масло перетекает в верхнюю ее часть и не возвращается в маслобак, так как заборник масла на всасывающем патрубке насоса оголяется, причем суфлирование масляной полости производится через проточную часть насоса и его откачивающую магистраль.

Задача изобретения - обеспечить возврат масла, поступающего в масляную полость опорного подшипника ротора двигателя в маслобак при выполнении самолетом фигурных полетов, что исключает появление режима "масляного голодания" на двигателе.

Технический эффект от использования изобретения - увеличение продолжительности полета маневренного самолета при выполнении им фигур высшего пилотажа.

Указанный технический эффект достигается тем, что в известном устройстве для смазки опорного подшипника ротора авиационного газотурбинного двигателя, содержащем откачивающий насос, установленный в масляной полости подшипниковой опоры, всасывающий патрубок с размещенным на его конце заборником масла, соединенный с входом откачивающего насоса, и канал для суфлирования масляной полости, расположенный в ее верхней части, согласно изобретению всасывающий патрубок насоса выполнен в виде полого гибкого элемента, заборник масла снабжен инерционным грузом, а в канале для суфлирования масляной полости установлен нормально открытый шариковый клапан.

Всасывающий патрубок откачивающего насоса, снабженный гибким элементом с расположенным на его конце заборником масла с инерционным грузом, при перевороте самолета или действии на него отрицательных перегрузок перемещается в верхнюю часть масляной полости вместе с маслом, которое запирается в полости грузовым шариковым клапаном в момент его срабатывания на закрытие. Масло из масляной полости возвращается в маслобак обычным путем (через насос и его откачивающую магистраль), что приводит к восстановлению циркуляционного объема масла в нем и росту давления масла на входе в двигатель до оптимального значения. Суфлирование масляной полости осуществляется самим насосом через магистраль откачки масла.

На фиг. 1 изображена принципиальная гидравлическая схема опоры ротора авиационного двухроторного ГТД;

на фиг. 2 показан всасывающий патрубок с гибким элементом и заборником масла с инерционным грузом.

Устройство для смазки опорного подшипника ротора ГТД содержит установленный внутри масляной полости 1 откачивающий насос 2, к входному фланцу 3 которого герметично пристыкован всасывающий патрубок 4, гибкий элемент 5 которого выполнен из гофрированной резины (см. фиг. 2). На конце гибкого элемента 5 закреплен заборник масла 6, выполненный за одно целое с инерционным грузом 7, в котором выполнены каналы 8, сообщающиеся с проходным сечением заборника масла 6.

Чтобы исключить напряжение растяжения на гибком элементе 5, входной фланец элемента соединен цепочкой 9 с заборником масла 6. В верхней стенке масляной полости 1 выполнен канал 10 для отвода суфлируемых газов, в котором расположен нормально открытый шариковый клапан 11.

Устройство содержит нагнетающий насос 12, подключенный к маслобаку 13, выход из насоса через нагнетающую магистраль 14 сообщен с коллектором форсунок 15 подачи масла к опорным подшипникам ротора ГТД. Поскольку современные авиационные ГТД выполняются двухроторными, то для надежности предусмотрена установка внешнего откачивающего насоса 16 с приводом от второго ротора.

Выходы откачивающих насосов объединены магистралью 17 и сообщены через воздухоотделитель 18 с маслобаком 13.

Выход из клапана 11 через канал 10 сообщен магистралью суфлирования 19 через маслоотделитель 20 с маслобаком 13. Для обеспечения жесткости гибкого элемента 5 он изнутри армирован металлическими кольцами 21.

При горизонтальном полете самолета гибкий элемент 5 всасывающего патрубка 4 под действием сил тяжести инерционного груза 7 опускается в нижнюю часть масляной полости 1, где скапливается отработанная смазка. Через каналы 8 в инерционном грузе 7 масло попадает в горловину заборника 6 и далее через внутреннюю полость гибкого элемента 5 проходит через входной фланец 3 в проточную часть откачивающего насоса 2, который переправляет масло через откачивающую магистраль 17, сообщенную с магистралью откачки откачивающего насоса 16 в маслобак 13 через воздухоотделитель 18, где происходит очистка масла от воздуха.

Восстановленное и охлажденное масло из маслобака 13 поступает на вход нагнетающего насоса 12, который переправляет его по магистрали 14 к коллектору форсунок 15. Суфлирование масляной полости 1 производится через канал 10 и шариковый клапан 11, который при горизонтальном полете самолета находится в открытом положении. Далее воздух по магистрали 19 попадает в маслоотделитель 20, где частицы масла, захваченные воздушным потоком, осаждаются в инерционном поле и опускаются в нижнюю часть масляной полости 1.

При перевернутом полете самолета и полетах с отрицательной силой тяжести попадающая в масляную полость 1 смазка отбрасывается под действием сил тяжести в верхнюю часть полости, где она запирается с помощью шарикового клапана 11, перекрывающего канал 10 для отвода суфлируемого воздуха из полости. Гибкий элемент 5 всасывающего патрубка 4 под действием инерционного груза 7 также переместится вслед за маслом в верхнюю часть масляной полости 1. Масло через каналы 8, выполненные в инерционном грузе 7, опять будет попадать в горловину заборника 6 и далее через гибкий элемент 5 поступать в проточную часть откачивающего насоса 2, который переправит масло по магистрали 17 через воздухоотделитель в маслобак 13.

Суфлирование масляной полости 1 будет производиться также через проточную часть откачивающего насоса 2 по магистрали 17 в маслобак 13, для чего насос 2 выполняется переразмеренным по производительности.

Осуществление изобретения позволяет увеличить продолжительность полета самолета при выполнении им фигур высшего пилотажа.

Устройство для смазки опорного подшипника ротора авиационного газотурбинного двигателя, содержащее откачивающий насос, установленный в масляной полости подшипниковой опоры, всасывающий патрубок с размещенным на его конце заборником масла, соединенный с входом откачивающего насоса, и канал для суфлирования масляной полости, расположенный в ее верхней части, отличающееся тем, что всасывающий патрубок насоса выполнен в виде полого гибкого элемента, заборник масла снабжен инерционным грузом, а в канале для суфлирования масляной полости установлен нормально открытый шариковый клапан.



 

Похожие патенты:

Изобретение относится к системе смазки подшипников опор роторов газотурбинного двигателя и обеспечивает отказоустойчивость насосов с регулируемыми электроприводами системы смазки с числом откачивающих насосов более двух при отказе одного из насосов или их электроприводов как в тракте нагнетания масла, так и в тракте откачки масловоздушной смеси для ГТД.

Изобретение относится к области авиационного двигателестроения, а именно к масляной системе авиационного газотурбинного двигателя (ГТД). Маслосистема ГТД содержит маслобак с центробежным воздухоотделителем, суфлер-сепаратор с магистралью суфлирования и установленный в магистрали подачи масла сифонный затвор с жиклером стравливания в петле затвора.

Изобретение относится к области техники турбовальных двигателей, более конкретно к опоре (14) для, по меньшей мере, одного подшипника для горячей части турбовального двигателя.

Изобретение относится к области авиационного двигателестроения, а именно к системам разгрузки опор роторов компрессоров низкого давления газотурбинного двигателя, в том числе и в составе летательного аппарата.

Изобретение относится к области авиадвигателестроения, в частности к устройствам для смазки опорных подшипников роторов турбомашин. Устройство для смазки опорного подшипника ротора турбомашины содержит откачивающий насос, всасывающая магистраль которого подключена к сливной магистрали масляной полости.

Изобретение относится к области машиностроения, касается элементов систем газотурбинных двигателей и может быть использовано в качестве суфлера-сепаратора в маслосистемах авиационных газотурбинных двигателей (ГТД) для отделения жидкости от газожидкостной смеси.

Группа изобретений относится к роторным газотурбинным машинам и может быть использована для подачи масла в межроторные подшипники для смазывания и охлаждения их, а также для уменьшения контактных напряжений на телах качения подшипников.

Устройство для смазки опорного подшипника ротора двухроторной турбомашины относится к области авиационного двигателестроения. Масляная полость сообщена магистралью слива с компенсационной емкостью, подсоединенной к всасывающей магистрали откачивающего насоса и сообщенной через сливную магистраль с масляной полостью в зоне стыковки качающего узла насоса с приводной рессорой.

Изобретение может быть использовано при изготовлении опор с расположением подшипника между двумя вращающимися роторами, в частности в газотурбинных двигателях авиационного и наземного применения.

Изобретение относится к энергетике. Опора двухвального газотурбинного двигателя, содержащая роликоподшипник, установленный между валами роторов низкого и высокого давлений, масляную подводящую полость под внутренним кольцом, маслоподводящие отверстия, выполненные во внутреннем кольце подшипника, сепаратор, центрированный по наружному кольцу, причём на беговых дорожках внутреннего и наружного колец выполнены одна или несколько радиальных маслоотводящих канавок произвольного профиля.

Изобретение относится к области авиационного двигателестроения и, в частности, к элементам системы суфлирования авиационного газотурбинного двигателя (ГТД) и может быть использовано в качестве суфлера-сепаратора, воздухоотделителя в других устройствах для отделения жидкости от газожидкостной смеси. Дистанционная втулка выполнена из двух частей, в одной из которых со стороны вала образована кольцевая проточка, в которую заведен ответный конец другой части втулки, причем в валу установлен стопор, выполненный в виде штифта, концы которого размещены между торцами частей втулки, а его торцы контактируют с боковой поверхностью кольцевой проточки. Технический результат изобретения – обеспечение работы суфлера при разрушении крепления крыльчатки к валу. 1 ил.

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к конструкции радиально-упорной опоры ротора компрессора. Радиально-упорная опора ротора газотурбинного двигателя содержит радиально-упорный шарикоподшипник и дополнительный радиально-упорный шарикоподшипник, внутренние кольца которых установлены на валу. Оба внутренних кольца радиально-упорных шарикоподшипников выполнены разъемными и зафиксированы на валу в осевом и окружном направлениях. Между близлежащими торцами внутренних колец установлено регулировочное кольцо. Наружное кольцо дополнительного радиально-упорного шарикоподшипника установлено в обойме, на внутренней поверхности которой со стороны компрессора выполнен бурт, контактирующий по торцам с наружным кольцом дополнительного радиально-упорного шарикоподшипника. Оба радиально-упорных шарикоподшипника заключены в общем корпусе, причем наружное кольцо радиально-упорного шарикоподшипника зафиксировано относительно последнего в осевом направлении посредством бурта, выполненного со стороны его внутренней поверхности и гайки соответственно. Между близлежащими торцами бурта и наружного кольца дополнительного радиально-упорного шарикоподшипника установлена осевая пружина. Общий корпус радиально-упорных шарикоподшипников установлен в корпусе опоры, выполненном разборным, и выполнен с возможностью смещения вдоль продольной оси опоры, ограниченного стенками корпуса опоры. Между стенкой корпуса опоры и близлежащими торцами общего корпуса радиально-упорных шарикоподшипников и обоймы образована кольцевая полость. В кольцевой полости по окружности установлены элементы, ограниченные в радиальном направлении общим корпусом радиально-упорных шарикоподшипников и осевым кольцевым выступом соответственно, выполненным на одной из стенок корпуса опоры. Обращенная к стенке корпуса опоры поверхность каждого из указанных элементов выполнена сферической, а на противолежащей поверхности выполнены два выступа, торцы которых контактируют с торцами общего корпуса радиально-упорных шарикоподшипников и обоймы соответственно. Изобретение позволяет повысить надежность работы компрессора за счет снижения суммарной осевой нагрузки на заднюю шарикоподшипниковую опору ротора при работе газотурбинного двигателя. 1 ил.

Изобретение относится к способу смазки авиационных газотурбинных двигателей (ГТД) и может быть использовано в двигателях, где привод маслоагрегатов осуществляется непосредственно от ротора ГТД, а маслоагрегаты и коммуникации маслосистемы установлены внутри ГТД. Способ смазки и охлаждения передней опоры ротора газотурбинного двигателя, снабженного циркуляционной системой смазки, при котором воздух, поступающий в двигатель, охлаждает маслобак и масло, поступающее далее к опорам, причём охлаждение корпуса маслобака, совмещенного с теплообменником и расположенного внутри двигателя между коком и передней опорой ротора, осуществляется воздухом, поступающим через открытые навстречу набегающему потоку воздуха каналы в коке, при этом на следующем этапе движения воздух поступает в корпус передней опоры ротора двигателя для ее дополнительного охлаждения. Изобретение позволяет повысить эффективность охлаждения масла в маслобаке, а также эффективность охлаждения передней опоры ротора ГТД, с уменьшением массы и габаритов двигателя. 2 ил.

Изобретение относится к газотурбинной установке, содержащей турбинный кожух, в котором расположены компрессор, турбина высокого давления и силовая турбина. Газовая турбина содержит систему вентиляции, предназначенную для охлаждения внутреннего пространства турбинного кожуха, а также контур подачи смазочного масла. Контур подачи смазочного масла включает насос для смазочного масла, резервуар для смазочного масла, первичный охладитель смазочного масла. В турбинном кожухе расположен вторичный охладитель смазочного масла, размещенный в положении ниже вращающегося вала газовой турбины. Система вентиляции расположена и выполнена с обеспечением контактированая по меньшей мере части воздушного потока, предназначенного для охлаждения турбинного кожуха, с вторичным охладителем смазочного масла для отвода тепла от смазочного масла, циркулирующего в указанном охладителе. Технический результат - повышение надежности путем предотвращения заливки маслом машины в случае отключения турбины и перебоя в работе маслоотсасывающего насоса. 2 н. и 15 з.п .ф-лы, 5 ил.
Наверх