Способ регулирования авиационного турбореактивного двигателя

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета. Способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора дополнительно формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения. При полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги. Изобретение позволяет повысить надежность переключения регулятором двигателя на программу управления направляющими аппаратами компрессора, обеспечивающую минимальный расход топлива в заданном диапазоне тяги, при переходе на крейсерский режим работы двигателя, и, как следствие, также позволяет снизить расход топлива на указанном режиме. 2 ил., 1 табл.

 

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Известен способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения, при каждой программе измеряют значения тяги и расхода топлива, строят зависимости расхода топлива по тяге и по ним определяют программу регулирования, обеспечивающую минимальный расход топлива в заданном диапазоне тяги и вводят ее дополнительно в регулятор двигателя, затем при полете самолета определяют текущие значения температуры воздуха на входе в двигатель и при достижении заданного значения температуры, соответствующего режиму крейсерского полета, в регуляторе двигателя производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги (RU 2551773 С1).

Данный способ не является оптимальным во всей области эксплуатации двигателя и не обеспечивает оптимальные тяговые и экономические характеристики двигателя во всем диапазоне температур воздуха на входе в двигатель вследствие того, что при полете самолета на режимах крейсерского полета (режимах перегона) при различных климатических условиях температура воздуха на входе в двигатель может изменяться в широком диапазоне. При эксплуатации самолета в жарком климате, при превышении температурой воздуха на входе значения, заданного в регуляторе, может не произойти переключение на программу управления направляющими аппаратами компрессора в зависимости от приведенных оборотов, обеспечивающую минимальный расход топлива.

Задача изобретения заключается в повышении экономичности двигателя на всех крейсерских режимах или режимах перегона самолета.

Ожидаемый технический результат - повышение надежности переключения регулятором двигателя на программу управления направляющими аппаратами компрессора, обеспечивающую минимальный расход топлива в заданном диапазоне тяги, при переходе на крейсерский режим работы двигателя, и, как следствие, снижение расхода топлива на указанном режиме.

Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора дополнительно формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения, при каждой программе измеряют значения тяги и расхода топлива, строят зависимости расхода топлива по тяге и по ним определяют программу регулирования, обеспечивающую минимальный расход топлива в заданном диапазоне тяги и вводят ее дополнительно в регулятор двигателя, а при полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги.

Сущность изобретения заключается в следующем.

При анализе статистики эксплуатации самолетов отмечено, что крейсерским режимам полета самолета (режимам перегона) соответствуют режимы работы двигателя с выключенным охлаждением турбины. При этом температура воздуха на входе в двигатель на режимах крейсерского полета может изменяться. В связи с этим, при известном способе регулирования при эксплуатации самолета в жарком климате на режиме крейсерского полета самолета может не произойти переключение на программу, обеспечивающую минимальный расход топлива из-за превышения заданной температуры воздуха на входе в двигатель. При этом, охлаждение турбины при переходе на этот режим полета будет отключено. В связи с этим, целесообразно производить переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов по сигналу выключения охлаждения турбины.

Способ реализуется следующим образом.

При проведении стендовых испытаний в регулятор двигателя задают предварительно сформированные программы регулирования углов установки направляющих аппаратов компрессора при различных оборотах двигателя (см. Фиг. 1, на которой представлено изменение угла наклона направляющих аппаратов от приведенной частоты вращения ротора, где 1-3 - программы регулирования).

При каждой программе регулирования измеряют тягу R и расход топлива Gт. По результатам испытаний строят зависимости (см. Фиг. 2, на которой представлена зависимость расхода топлива Gт от тяги R при различных программах регулирования углов установки направляющих аппаратов компрессора).

По полученным зависимостям определяют при заданном значении тяги R=4200 кгс, соответствующей режиму перегона самолета, определяют расход топлива Gт и соответствующую данному расходу программу регулирования углов установки направляющих аппаратов компрессора. В таблице приведен расход топлива в зависимости от программы регулирования в режиме перегона самолета.

После определения программы с наиболее низким расходом топлива программу вводят в регулятор двигателя как дополнительную к штатной для обеспечения дальности полета.

При полете самолета при выключении охлаждения турбины (при переходе на режим крейсерского полета) производят переключение программы управления на программу №3, что дает снижение расхода топлива Gт и, следовательно, увеличение продолжительности и дальности полета.

Способ регулирования авиационного турбореактивного двигателя, в котором предварительно для данного типа двигателя в рабочем диапазоне углов установки направляющих аппаратов компрессора формируют две и более программы регулирования углов установки направляющих аппаратов компрессора в зависимости от его приведенной частоты вращения, при каждой программе измеряют значения тяги и расхода топлива, строят зависимости расхода топлива по тяге и по ним определяют программу регулирования, обеспечивающую минимальный расход топлива в заданном диапазоне тяги и вводят ее дополнительно в регулятор двигателя, отличающийся тем, что при полете самолета, при переходе на крейсерский режим работы двигателя, по сигналу выключения охлаждения турбины производят переключение программы управления направляющими аппаратами компрессора в зависимости от приведенных оборотов на программу, обеспечивающую минимальный расход топлива в заданном диапазоне тяги.



 

Похожие патенты:

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения.

Изобретение относится к энергетике. Способ и устройство предназначены для остановки генератора с целью подготовки его к повторному запуску.

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура.

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах.

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе.

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

Группа изобретений относится к способу и системе регулирования мощности в случае отказа двигателя летательного аппарата. Для регулирования мощности при отказе по меньшей мере одного двигателя летательного аппарата увеличивают пределы работы основной силовой установки типа двигателя (GPP) в соответствии с тремя аварийными режимами, расположенными последовательно в порядке уменьшения уровня мощности.

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах 10% в диапазоне выходных уровней мощности; и обработку отработавшего газа двигателя в процессе селективного каталитического восстановления таким образом, что генерация NOx и соответствующий поток восстановителя, используемого в процессе селективного каталитического восстановления, остаются относительно постоянными в терминах массового (молярного) потока в диапазоне выходных уровней мощности, и регулируется проскок аммиака.

Изобретение относится к энергетике. Способ передачи топлива включает подачу воды к по меньшей мере одной форсунке главного топливного контура.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), основанного на программном изменении коэффициента избытка воэдуха в первичной зоне горения.

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета. В способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры. Затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива. Далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха. Изобретение позволяет снизить расход топлива на форсированном режиме работы двигателя. 2 табл.

Изобретение относится к способам управления расходом воздуха, охлаждающего турбину, преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре. Для перекрытия клапана поршень поворачивают или перемещают относительно корпуса клапана механизмом перемещения, дополнительно положение поршней всех клапанов изменяют синхронно до промежуточных положений в интервале от положения "открыто" в положение "закрыто" и, наоборот, при этом расход воздуха изменяют и фиксируют одновременно на всех клапанах с помощью средства передачи управляющего воздействия, связанного с механизмом перемещения каждого клапана и системой управления, причем средство передачи управляющего воздействия на расход воздуха выполнено механическим и/или электрическим. Предусмотрено, что в положении "закрыто" на всех клапанах одновременно обеспечивают с помощью системы управления минимально допустимый "дежурный" расход охлаждающего воздуха, необходимый для уменьшения до минимума концевых потерь за профилями на сопловом аппарате и рабочих лопатках турбины. Технический результат – уменьшение удельного расхода топлива на всех режимах эксплуатации, повышение стабильности охлаждения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в системах автоматического регулирования газовых турбин электростанций для перевода газовых турбин в режим регулирования скорости вращения при снижении частоты в энергосистеме. В способе регулирования газовых турбин, включающем измерение частоты вращения ротора генератора газовой турбины в режиме реального времени, сравнение текущего значения частоты вращения с заданными уставками каждой из ступеней технологической защиты газовой турбины и формирование защитных сигналов, при выявлении снижения частоты вращения до уставки одной из ступеней технологической защиты начинают отсчет времени для этой ступени. В случае превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание отсчет времени прекращают, при этом продолжают вести отсчет времени для ступеней с более высокими уставками по частоте. В случае отсутствия превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание формируют защитный сигнал данной ступени на перевод газовой турбины из режима поддержания мощности с коррекцией по частоте в режим регулирования скорости вращения и на отключение генератора от сети. Изобретение позволяет повысить надежность и живучесть электростанции за счет повышения надежности работы газовых турбин при глубоких снижениях частоты в энергосистеме.

Изобретение относится к электротехнике, тепло- и электроэнергетике, а именно к когенерационным системам получения энергии для энергоснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя и тепла для обеспечения собственных нужд предприятий минерально-сырьевого комплекса, находящихся вдали от действующих систем централизованного электроснабжения без связи с единой энергосистемой. Система генерирования электрической и тепловой энергии снабжена двумя изолированными контурами, системой парогенерирования, первой и второй секцией шин с секционным выключателем, блоком синхронизации, первым и вторым пассивными фильтрами, и также активным фильтром. Изобретение позволяет повысить эффективность функционирования энергетической установки параллельно с сетью за счет фильтрации высших гармонических составляющих вырабатываемого тока посредством активного фильтра и синхронизацией тока по фазе через синхронизирующее устройство, а также использования в блоке утилизации выхлопных газов двух изолированных контуров циркуляции энергоносителя. 1 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности кратковременного обеспечения максимальной скорости полета самолета. Ожидаемый технический результат - возможность увеличения тяги сверх штатных режимов в ходе эксплуатации двигателя. Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя, включающем поддержание заданных частот вращения роторов и температуры газа за турбиной с помощью регулятора в зависимости от температуры воздуха на входе в двигатель, согласно настоящему изобретению предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на полном форсажном режиме (режиме работы двигателя с максимальным расходом топлива через форсажные коллекторы) с замером тяги, затем перенастраивают регулятор на повышение частот вращения роторов и температуры газа за турбиной, не превышая максимально допустимых значений для данного типа двигателей, до достижения заданного прироста тяги и фиксируют значения регулятора, а при не достижении заданного прироста тяги значения регулятора также фиксируют для максимально полученного прироста тяги, затем на основе полученных данных формируют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной и вносят ее в регулятор двигателя, далее в ходе эксплуатации двигателя при необходимости увеличения тяги сверх штатных режимов задействуют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной. 2 табл., 2 пр.

Струйный регулятор ГТД по приведенным оборотам относится к системам автоматического регулирования энергетических установок и может использоваться, в частности, в системах управления газотурбинных двигателей, а также при моделировании в лабораторных условиях работы силовой установки. Содержит струйный блок управления, выходы которого подключены к исполнительному механизму, вал с установленным на нем диском с отверстиями для получения сигнала о частоте вращения компрессора и термоприемник, выполненный в виде непроточного трубопровода, помещенный в среду, температура которой измеряется. Струйный регулятор сравнивает промежуток времени прохождения импульсов по трубопроводу с промежутком времени поворота вала на заданный угол. При равенстве этих временных промежутков заданный угол поворота диска однозначно определяет значение приведенных оборотов. Технический результат - повышение точности определения приведенных оборотов и, как следствие, более оптимальное регулирование параметров ГТД. 4 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем, в частности запуска при выходе двигателя на режим авторотации. Частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения, роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, а после достижения холостой частоты вращения совместно авторотирующих роторов, частоту вращения роторов поддерживают постоянной, с помощью регулирования скоростного напора воздуха, до запуска двигателя. Использование изобретения позволяет поддерживать обороты вала ротора высокого давления на уровне, достаточном для запуска на режиме авторотации в полете, позволяет увеличить ресурс агрегатов вспомогательной силовой установки двигателя, увеличить показатели надежности и безотказности силовой установки. 1 ил.

Изобретение относится к способу мониторинга цикла запуска двигателя, в частности, газотурбинной установки, содержащему следующие этапы: (i) определяют продолжительность воспламенения в двигателе при определенном параметре запуска, (ii) определенную таким образом продолжительность воспламенения в двигателе сравнивают с контрольной продолжительностью воспламенения для контрольного двигателя и при этом параметре запуска, (iii) определяют показатель запуска двигателя, (iv) повторяют этапы (i)-(iii) для этого параметра запуска при каждом запуске двигателя в ходе цикла, и (v) в зависимости от изменения показателя генерируют тревожный сигнал об ухудшении цикла запуска двигателя. Технический результат изобретения – повышение надежности определения неисправности всей или части системы двигателя, участвующей в запуске газотурбинной установки. 4 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления ГТД. Сигналы управления ЭР, ГМР и сигналы селектора затем преобразуют в пневматические сигналы, поступающие в струйный блок управления, в котором при исправном ЭР с помощью сигнала селектора и логической струйной схемы отсекают сигналы управления ГМР, а сигналы управления ЭР подают на исполнительный механизм и осуществляют управление двигателем, при отказе ЭР с помощью сигнала селектора и логической струйной схемы отсекают сигналы управления ЭР, а сигналы управления ГМР подают на тот же исполнительный механизм и осуществляют управление двигателем. Технический результат – обеспечение возможности оптимального управления ГТД на всех режимах работы. 4 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем. При останове двигателя генерируемую вращением вала ротора низкого давления электроэнергию передают на электродвигатель-генератор вала ротора высокого давления, для создания дополнительного ускорения, обеспечивающего отношение продолжительности выбега вала ротора высокого давления к продолжительности выбега вала ротора низкого давления, равное 1,5…6,0. Использование изобретения позволяет исключить эффект «прихватывания» вала ротора высокого давления при останове. 1ил.
Наверх