Способ регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета. В способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры. Затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива. Далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха. Изобретение позволяет снизить расход топлива на форсированном режиме работы двигателя. 2 табл.

 

Изобретение относится к области авиации, в частности к системам регулирования турбореактивного двигателя, оптимизирующим его работу в зависимости от условий полета, в частности обеспечение оптимальных тягово-экономических характеристик во всей области эксплуатации самолета.

Известен способ регулирования авиационного турбореактивного двигателя, включающий в себя поддержание суммарного расхода топлива через топливные коллекторы форсажной камеры в зависимости от давления за компрессором на максимальном форсированном режиме работы двигателя (Ю.Н. Нечаев. Законы управления и характеристики авиационных силовых установок. М.: Машиностроение, 1995, - 400 с.: ил., с. 286-288).

Данный способ не является оптимальным в связи с тем, что не учитывает влияния давления воздуха на входе и степень расширения на турбине на расход топлива и, как следствие, не обеспечивает оптимального расхода топлива на форсированном режиме для заданных значений высоты и числа Маха.

Задача изобретения заключается в увеличении продолжительности полета самолета на форсированном режиме.

Ожидаемый технический результат - снижение расхода топлива на форсированном режиме работы двигателя.

Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания согласно настоящему изобретению предварительно проводят испытания двигателя на форсированном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры, затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива, далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсированном режиме при заданных значениях высоты и числа Маха.

За счет того, что при испытаниях на форсированном режиме при заданных значениях высоты и числа Маха формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры, изменяют степень расширения на турбине до достижения заданного значения тяги, измеряют суммарный расход топлива и сравнивают полученные результаты при каждой программе, выделяют программу с наименьшим суммарным расходом топлива путем сравнения программ - это позволяет учесть влияние давления воздуха на входе в изделие и степень расширения на турбинах на суммарный расход топлива, и, как следствие, позволяет снизить суммарный расход топлива на форсированном режиме для заданной высоты и числа Маха.

Способ реализуется следующим образом.

При полете самолета в условиях заданных высоты и числа Маха, а именно Н=0 км, М=0,9 на форсированном режиме, необходимо обеспечить минимальный расход топлива при заданной тяге R=12000 кгс.

При испытаниях двигателя на стенде искусственно создают вышеприведенные условия через температуру на входе в двигатель tвх=335°C и давление на входе в двигатель Рвх=1,695 кгс/см2, соответствующие давлению и температуре воздуха на входе в двигатель при полете самолета в условиях N=0, М=0,9.

Затем во время испытаний изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры Gтф в интервале значений от минимального (соответствующего погасанию форсажной камеры сгорания) до максимального (соответствующего потере газодинамической устойчивости двигателя).

Одновременно при различных значениях расхода топлива, поступающего через топливные коллекторы форсажной камеры, формируют, в частности, три программы регулирования, см. Таблицу 1.

Далее при каждой программе изменяют степень расширения на турбине πТ до достижения требуемого значения тяги R=12000 кгс и измеряют суммарный расход топлива Gт при заданном значении тяги, см. Таблицу 2.

Далее путем сравнения определяют программу с наиболее низким суммарным расходом топлива, а именно №1, которую вводят в регулятор двигателя как дополнительную к штатной для обеспечения оптимальных тягово-экономических характеристик двигателя на форсированном режиме работы двигателя при заданных значениях Н и М.

При полете самолета в условиях Н=0 км, М=0,9 производят переключение программы управления на программу №1, что дает снижение расхода топлива Gт и, следовательно, увеличение продолжительности и дальности полета.

Данный способ реализуют n-е количество раз для введения в регулятор двигателя n-го количества программ регулирования для различных значений высоты и числа Маха.

Способ регулирования авиационного турбореактивного двигателя с форсажной камерой сгорания, отличающийся тем, что предварительно проводят испытания двигателя на форсажном режиме при заданных значениях высоты и числа Маха, при которых n-е количество раз изменяют расход топлива, поступающего через топливные коллекторы форсажной камеры, и формируют n-е количество программ поддержания расхода топлива через топливные коллекторы форсажной камеры, затем по каждой программе изменяют степень расширения на турбине до достижения значения тяги, соответствующего заданным значениям высоты и числа Маха, и измеряют суммарный расход топлива, далее сравнивают полученные результаты, выделяют наименьший суммарный расход топлива, затем программу с наименьшим суммарным расходом топлива применяют при полете самолета на форсажном режиме при заданных значениях высоты и числа Маха.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности обеспечения максимальной продолжительности и дальности полета.

Изобретение относится к области оборудования для проведения испытаний и может быть использовано для проведения приемосдаточных и других испытаний газотурбинных двигателей различного назначения.

Изобретение относится к энергетике. Способ и устройство предназначены для остановки генератора с целью подготовки его к повторному запуску.

Изобретение относится к энергетике. Термоуправляемый узел для узла газовой турбины газотурбинной системы содержит элемент теплопередачи, имеющий первую часть и вторую часть, при этом первая часть расположена внутри первой полости, имеющей первую температуру, а вторая часть расположена во второй полости, имеющей вторую температуру, причем элемент теплопередачи проходит через полую стенку, и первая температура больше, чем вторая температура.

Использование - в системах измерения температуры газа газотурбинных двигателей (ГТД). Техническим результатом является повышение точности измерителя температуры газа ГТД на переходных режимах.

Описаны системы и способы обнаружения утечек топлива в газотурбинных двигателях. В соответствии с одним вариантом осуществления изобретения предлагается способ обнаружения утечки топлива в газотурбинном двигателе.

Система управления расходом воздуха для охлаждения турбины двухконтурного турбореактивного двигателя (ДТРД) относится к авиационному двигателестроению. В системе каждый клапан выполнен однопоршневым, его вход размещен со стороны надпоршневой полости, выход - со стороны боковой поверхности поршня, а подпоршневая полость сообщена с наружным контуром и в ней установлена пружина.

Группа изобретений относится к способу и системе регулирования мощности в случае отказа двигателя летательного аппарата. Для регулирования мощности при отказе по меньшей мере одного двигателя летательного аппарата увеличивают пределы работы основной силовой установки типа двигателя (GPP) в соответствии с тремя аварийными режимами, расположенными последовательно в порядке уменьшения уровня мощности.

Изобретение относится к энергетике. Способ работы газотурбинного двигателя для снижения проскока аммиака включает в себя работу двигателя в диапазоне выходных уровней мощности; регулирование массового потока оксидов азота (NOx), производимого в отработавшем газе двигателя, чтобы быть в пределах 10% в диапазоне выходных уровней мощности; и обработку отработавшего газа двигателя в процессе селективного каталитического восстановления таким образом, что генерация NOx и соответствующий поток восстановителя, используемого в процессе селективного каталитического восстановления, остаются относительно постоянными в терминах массового (молярного) потока в диапазоне выходных уровней мощности, и регулируется проскок аммиака.

Изобретение относится к энергетике. Способ передачи топлива включает подачу воды к по меньшей мере одной форсунке главного топливного контура.

Изобретение относится к способам управления расходом воздуха, охлаждающего турбину, преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре. Для перекрытия клапана поршень поворачивают или перемещают относительно корпуса клапана механизмом перемещения, дополнительно положение поршней всех клапанов изменяют синхронно до промежуточных положений в интервале от положения "открыто" в положение "закрыто" и, наоборот, при этом расход воздуха изменяют и фиксируют одновременно на всех клапанах с помощью средства передачи управляющего воздействия, связанного с механизмом перемещения каждого клапана и системой управления, причем средство передачи управляющего воздействия на расход воздуха выполнено механическим и/или электрическим. Предусмотрено, что в положении "закрыто" на всех клапанах одновременно обеспечивают с помощью системы управления минимально допустимый "дежурный" расход охлаждающего воздуха, необходимый для уменьшения до минимума концевых потерь за профилями на сопловом аппарате и рабочих лопатках турбины. Технический результат – уменьшение удельного расхода топлива на всех режимах эксплуатации, повышение стабильности охлаждения. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике и может быть использовано в системах автоматического регулирования газовых турбин электростанций для перевода газовых турбин в режим регулирования скорости вращения при снижении частоты в энергосистеме. В способе регулирования газовых турбин, включающем измерение частоты вращения ротора генератора газовой турбины в режиме реального времени, сравнение текущего значения частоты вращения с заданными уставками каждой из ступеней технологической защиты газовой турбины и формирование защитных сигналов, при выявлении снижения частоты вращения до уставки одной из ступеней технологической защиты начинают отсчет времени для этой ступени. В случае превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание отсчет времени прекращают, при этом продолжают вести отсчет времени для ступеней с более высокими уставками по частоте. В случае отсутствия превышения частотой вращения значения уставки данной ступени в течение заданной выдержки времени на ее срабатывание формируют защитный сигнал данной ступени на перевод газовой турбины из режима поддержания мощности с коррекцией по частоте в режим регулирования скорости вращения и на отключение генератора от сети. Изобретение позволяет повысить надежность и живучесть электростанции за счет повышения надежности работы газовых турбин при глубоких снижениях частоты в энергосистеме.

Изобретение относится к электротехнике, тепло- и электроэнергетике, а именно к когенерационным системам получения энергии для энергоснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя и тепла для обеспечения собственных нужд предприятий минерально-сырьевого комплекса, находящихся вдали от действующих систем централизованного электроснабжения без связи с единой энергосистемой. Система генерирования электрической и тепловой энергии снабжена двумя изолированными контурами, системой парогенерирования, первой и второй секцией шин с секционным выключателем, блоком синхронизации, первым и вторым пассивными фильтрами, и также активным фильтром. Изобретение позволяет повысить эффективность функционирования энергетической установки параллельно с сетью за счет фильтрации высших гармонических составляющих вырабатываемого тока посредством активного фильтра и синхронизацией тока по фазе через синхронизирующее устройство, а также использования в блоке утилизации выхлопных газов двух изолированных контуров циркуляции энергоносителя. 1 ил.

Изобретение относится к области авиации, в частности к системам регулирования, оптимизирующим параметры турбореактивного двигателя в зависимости от целей полета самолета, в частности кратковременного обеспечения максимальной скорости полета самолета. Ожидаемый технический результат - возможность увеличения тяги сверх штатных режимов в ходе эксплуатации двигателя. Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного турбореактивного двигателя, включающем поддержание заданных частот вращения роторов и температуры газа за турбиной с помощью регулятора в зависимости от температуры воздуха на входе в двигатель, согласно настоящему изобретению предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на полном форсажном режиме (режиме работы двигателя с максимальным расходом топлива через форсажные коллекторы) с замером тяги, затем перенастраивают регулятор на повышение частот вращения роторов и температуры газа за турбиной, не превышая максимально допустимых значений для данного типа двигателей, до достижения заданного прироста тяги и фиксируют значения регулятора, а при не достижении заданного прироста тяги значения регулятора также фиксируют для максимально полученного прироста тяги, затем на основе полученных данных формируют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной и вносят ее в регулятор двигателя, далее в ходе эксплуатации двигателя при необходимости увеличения тяги сверх штатных режимов задействуют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной. 2 табл., 2 пр.

Струйный регулятор ГТД по приведенным оборотам относится к системам автоматического регулирования энергетических установок и может использоваться, в частности, в системах управления газотурбинных двигателей, а также при моделировании в лабораторных условиях работы силовой установки. Содержит струйный блок управления, выходы которого подключены к исполнительному механизму, вал с установленным на нем диском с отверстиями для получения сигнала о частоте вращения компрессора и термоприемник, выполненный в виде непроточного трубопровода, помещенный в среду, температура которой измеряется. Струйный регулятор сравнивает промежуток времени прохождения импульсов по трубопроводу с промежутком времени поворота вала на заданный угол. При равенстве этих временных промежутков заданный угол поворота диска однозначно определяет значение приведенных оборотов. Технический результат - повышение точности определения приведенных оборотов и, как следствие, более оптимальное регулирование параметров ГТД. 4 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем, в частности запуска при выходе двигателя на режим авторотации. Частоту вращения вала ротора высокого давления и вала ротора низкого давления уменьшают до достижения роторами одинаковой частоты вращения, роторы зацепляют друг с другом обгонной муфтой, расположенной между валами, а после достижения холостой частоты вращения совместно авторотирующих роторов, частоту вращения роторов поддерживают постоянной, с помощью регулирования скоростного напора воздуха, до запуска двигателя. Использование изобретения позволяет поддерживать обороты вала ротора высокого давления на уровне, достаточном для запуска на режиме авторотации в полете, позволяет увеличить ресурс агрегатов вспомогательной силовой установки двигателя, увеличить показатели надежности и безотказности силовой установки. 1 ил.

Изобретение относится к способу мониторинга цикла запуска двигателя, в частности, газотурбинной установки, содержащему следующие этапы: (i) определяют продолжительность воспламенения в двигателе при определенном параметре запуска, (ii) определенную таким образом продолжительность воспламенения в двигателе сравнивают с контрольной продолжительностью воспламенения для контрольного двигателя и при этом параметре запуска, (iii) определяют показатель запуска двигателя, (iv) повторяют этапы (i)-(iii) для этого параметра запуска при каждом запуске двигателя в ходе цикла, и (v) в зависимости от изменения показателя генерируют тревожный сигнал об ухудшении цикла запуска двигателя. Технический результат изобретения – повышение надежности определения неисправности всей или части системы двигателя, участвующей в запуске газотурбинной установки. 4 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления ГТД. Сигналы управления ЭР, ГМР и сигналы селектора затем преобразуют в пневматические сигналы, поступающие в струйный блок управления, в котором при исправном ЭР с помощью сигнала селектора и логической струйной схемы отсекают сигналы управления ГМР, а сигналы управления ЭР подают на исполнительный механизм и осуществляют управление двигателем, при отказе ЭР с помощью сигнала селектора и логической струйной схемы отсекают сигналы управления ЭР, а сигналы управления ГМР подают на тот же исполнительный механизм и осуществляют управление двигателем. Технический результат – обеспечение возможности оптимального управления ГТД на всех режимах работы. 4 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем. При останове двигателя генерируемую вращением вала ротора низкого давления электроэнергию передают на электродвигатель-генератор вала ротора высокого давления, для создания дополнительного ускорения, обеспечивающего отношение продолжительности выбега вала ротора высокого давления к продолжительности выбега вала ротора низкого давления, равное 1,5…6,0. Использование изобретения позволяет исключить эффект «прихватывания» вала ротора высокого давления при останове. 1ил.

Изобретение относится к области управления электронно-гидромеханической автоматикой авиационных ГТД и может быть использовано для управления авиационным ГТД во всех условиях эксплуатации летательного аппарата, в том числе аварийных. Система оснащена сигнализатором отказа насоса-регулятора, резервным дозатором топлива, двумя обратными клапанами, первым и вторым электромагнитными клапанами, а также гидравлическими переключателями, причем система дополнительно оснащена каналом отбора топлива, соединяющим четвертый выход насоса-регулятора со вторым входом распределителя топлива, и резервным топливным каналом, соединяющим выход плунжерного насоса с входами резервного дозатора топлива и гидравлических переключателей, первый и второй электромагнитные клапаны размещены в резервном топливном канале, управляющие входы электромагнитных клапанов и резервного дозатора топлива связаны с блоком управления, выход первого электромагнитного клапана связан с входами гидравлических переключателей, установленных в топливных каналах, соединяющих выходы насосов и гидроцилиндры, первый обратный клапан размещен в топливном канале на третьем выходе насоса-регулятора, а второй - в канале, соединяющем четвертый выход насоса-регулятора со вторым входом распределителя топлива, выход второго электромагнитного клапана подсоединен к каналу отбора топлива между вторым обратным клапаном и вторым входом распределителя топлива, резервный дозатор топлива входом подключен через резервный топливный канал к выходу плунжерного насоса, а выходом - к основному топливному каналу между первым обратным клапаном и распределителем топлива, при этом выход сигнализатора отказа насоса-регулятора связан с блоком управления. Технический результат изобретения – повышение безопасности эксплуатации летательного аппарата и обеспечение возможности завершения полетного задания и безаварийной посадки при частичном или полном отказе насоса-регулятора и/или блока его управления.1 ил.-
Наверх