Способ рентгеноструктурного контроля деталей газотурбинного двигателя

Использование: для неразрушающего рентгеноструктурного контроля деталей газотурбинного двигателя. Сущность изобретения заключается в том, что осуществляют снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, причем в качестве параметра, зависящего от наработки детали, используют параметр остаточного ресурса Рост, определяемый по заданной зависимости. Технический результат: увеличение производительности технологического процесса контроля деталей неразрушающим способом как в процессе эксплуатации, так и на этапе ресурсных испытаний. 3 з.п. ф-лы, 2 табл.

 

Изобретение относится к неразрушающим способам рентгеноструктурного контроля и эксплуатации авиационных двигателей и может использоваться для оценки остаточного ресурса новых и ремонтных дисков компрессоров из титановых сплавов в лабораторных и заводских условиях.

Известен способ рентгеноструктурного контроля деталей, имеющих концентраторы напряжений, включающий снятие с детали рентгенограммы, по которой определяют остаточные напряжения сжатия, определение контролируемого параметра и сравнение его с предельным значением (патент №2505799, G01N 23/00, опубл. 27.01.2014).

Недостатком данного способа является то, что способ очень трудозатратный, так как для определения остаточных напряжений в любой точке требуется проведение не менее 10 точных единичных измерений, при этом вначале оценки требуется определить предельное значение контролируемого параметра.

Наиболее близким является способ рентгеноструктурного контроля деталей газотурбинного двигателя (патент №2488099, G01N 23/00, опубл. 20.07.2013), включающий снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Κβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ. В данном способе в качестве контролируемого параметра для деталей из титановых сплавов используется интегрированный структурный параметр Δ меньше 1, при этом деталь является годной, если интегрированный структурный параметр Δ будет больше 1.

Недостатком данного способа является то, что способ не позволяет численно прогнозировать остаточный ресурс детали на любых стадиях накопления повреждения материала.

Техническим результатом, на достижение которого направлено предлагаемое решение, является увеличение производительности технологического процесса контроля деталей неразрушающим способом как в процессе эксплуатации, так и на этапе ресурсных испытаний за счет повышения точности измерения рентгеноструктурных параметров в связи с использованием специальной оснастки для позиционирования деталей и регистрации рентгеновского спектра с использованием специального гониометра с двумя детекторами, сокращения времени регистрации экспериментальных данных и отсутствия необходимости предварительно определять предельные значения контролируемых параметров на исследуемых деталях.

Технический результат достигается тем, что в способе рентгеноструктурного контроля деталей газотурбинного двигателя, включающий снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, в отличие от известного в качестве параметра, зависящего от наработки детали используют параметр остаточного ресурса Pост, определяемый по зависимости:

Pост=T⋅S⋅K,

где Τ - длительности эксплуатации детали в одном цикле;

S - коэффициент нерегулярности интегрированного рентгеноструктурного параметра Δ;

K - понижающий коэффициент интегрированного рентгеноструктурного параметра Δ.

Параметр длительности эксплуатации детали в одном цикле Τ может быть равен отношению наработки детали в часах tЧ к наработке детали в циклах tЦ с учетом коэффициента kt, зависящего от типа двигателя: .

Коэффициент нерегулярности S интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δi - интегрированный рентгеноструктурный параметр для i-той точки измерения детали.

Понижающий коэффициент K интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δmin - минимальное значение интегрированного рентгеноструктурного параметра;

nмин - количество точек измерения для вычисления значения минимального интегрированного рентгеноструктурного параметра для i-той точки детали: Δmin≤Δ≤(Δmin+1);

Ν - общее количество i-тых точек измерений на детали.

Способ осуществляется следующим образом.

Контролируемую деталь на предполагаемой поверхности разрушения подвергают рентгеновскому излучению. Излучение происходит от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ. Далее снимают и выполняют запись рентгенограммы во всех i-тых точках измерения. Затем для каждой i-той точки измерения проводят расчет интегрированного рентгеноструктурного параметра Δi, после чего вычисляют коэффициент нерегулярности S интегрированного рентгеноструктурного параметра.

Вычисляют интегрированный структурный параметр Δi как произведение параметра ширины B дифракционной линии без фона и параметра профиля P дифракционной линии без фона:

Δi=B⋅P.

Параметр ширины B дифракционной линии без фона определяют как отношение ширины дифракционной линии от отражающей плоскости (11.0) при использовании титанового излучения Ti-Kα к ширине дифракционной линии от отражающей плоскости (01.3) при использовании титанового излучения Ti-Kβ:

Параметр профиля P дифракционной линии без фона определяют как отношение интегральной интенсивности (площади профиля) дифракционной линии без фона от отражающих плоскостей (11.0) к интегральной интенсивности (площади профиля) дифракционной линии без фона от отражающих плоскостей (01.3) :

или как отношение максимальной интенсивности (высот пика) дифракционной линии без фона от отражающих плоскостей (11.0) к максимальной интенсивности (высот пика) дифракционной линии без фона от отражающих плоскостей (01.3) ·

Вычисляют коэффициент нерегулярности S интегрированного рентгеноструктурного параметра по следующей зависимости:

где Δi - интегрированный рентгеноструктурный параметр для i-той точки измерения детали.

Затем выявляют минимальное значение интегрированного рентгеноструктурного параметра Δmin и рассчитывают понижающий коэффициент K интегрированного рентгеноструктурного параметра.

Понижающий коэффициент K интегрированного рентгеноструктурного параметра может быть определен по зависимости

,

где Δmin - минимальное значение интегрированного рентгеноструктурного параметра;

nмин - количество точек измерения для вычисления значения минимального интегрированного рентгеноструктурного параметра для i-той точки детали: Δmin≤Δ≤(Δmin+1);

N - общее количество i-тых точек измерений на детали.

Далее для оценки технического состояния контролируемой детали используют параметр остаточного ресурса, который определяется по формуле:

Pост=T⋅S⋅K,

где T - параметр длительности эксплуатации детали в одном цикле;

S - коэффициент нерегулярности интегрированного рентгеноструктурного параметра Δ;

K - понижающий коэффициент интегрированного рентгеноструктурного параметра Δ.

Параметр длительности эксплуатации детали в одном цикле Т может быть определен из отношения:

где tЧ - наработки детали в часах;

tЦ - наработка детали в циклах;

kt - коэффициент, зависящий от типа двигателя или установки для испытания.

Параметр остаточного ресурса позволяет с определенной точностью прогнозировать остаточный ресурс детали в дальнейшей эксплуатации.

Пример

С помощью рентгеновского дифракторметра выполняется измерение параметров рентгеновского спектра, например, диска компрессора низкого давления, при этом для точной установки и позиционирования диска в автоматизированном режиме используются специальные держатели диска. В каждой точке измерения на торцах обода диска дуга гониометра устанавливается вдоль радиуса диска. Предлагаемая схема позиционирования дисков позволяет обеспечить высокую производительность измерения и воспроизводимость результатов измерения рентгеноструктурных параметров.

Способ автоматизированного сканирования заключается в записи рентгенограмм на всех точках измерения, проведения расчета рентгеноструктурных параметров Δi, Δmin, S и K и определения величины параметра остаточного ресурса Pост, который позволяет с определенной точностью прогнозировать остаточный ресурс диска в дальнейшей эксплуатации.

Из таблицы 1 видно, что для дисков компрессоров с более высоким значением эксплуатационного параметра Т изменение величин структурных параметров S и K на дисках в процессе эксплуатации происходит медленнее, соответственно величина параметра остаточного ресурса Pост выше, при этом для новых дисков без наработки эксплуатационный параметр Т устанавливается условно (Т=1,0 ч), а при расчете параметра Pост использован коэффициент Kt=1.

Из таблицы 2 видно, что на дисках после ресурсных испытаний по циклу, близкому к эксплуатационному, происходит уменьшение параметра Pост. Для диска 3 с максимальным эксплуатационным параметром Т происходит незначительное уменьшение параметра Pост, при этом диск 1 прошел ресурсные испытания в составе технологического двигателя, а для дисков 2 и 3 после ресурсных испытаний на установке УИР-3 эксплуатационный параметр устанавливается условно, равный эксплуатационному параметру в процессе эксплуатации в составе двигателя, или же задается расчетным способом.

Дальнейшие мероприятия показали, что на диске 2 после испытания по режимам полетного цикла через 18 циклов была выявлена трещина в пазу диска. Последующие испытания до выхода трещины на торец диска не проводились. На диске 3 никаких дефектов не обнаружено. Диск признан ремонтнопригодным и используется в исследовательских целях. Диск 1 выдержал последующие ресурсные испытания.

Соответственно, можно считать, что предлагаемый способ рентгеноструктурного контроля деталей газотурбинного двигателя позволяет спрогнозировать ресурс диска с достаточно высокой степенью сходимости результатов фактического и прогнозируемого ресурса.

Также использование предлагаемого способа позволило получить приблизительную оценку скорости изменения параметра остаточного ресурса Pост в зависимости от эксплуатационного параметра Т. При ресурсных испытаниях дисков с эксплуатационным параметром Т, большим 2,5 часов, величина Pост уменьшается в 6-8 раз, с параметром Т=2,5-1,5 часа величина Pост уменьшается в 3-5 раз и с параметром Т, меньшим 1,5 часов, величина Pост уменьшается в 1,1-2,0 раза. Эти результаты можно будет использовать при расчетном моделировании изменения остаточного ресурса дисков на стадии изготовления или ремонта диска.

Таким образом, для прогнозирования остаточного ресурса дисков компрессоров можно использовать экспериментальный неразрушающий способ оценки рентгеноструктурных параметров на новых и ремонтных дисках компрессоров, а также данный способ можно использовать для управления ресурсом дисков при оптимизации эксплуатационных характеристик.

В результате за счет повышение точности измерения рентгеноструктурных параметров, сокращения времени регистрации экспериментальных данных и отсутствия необходимости предварительно определять предельные значения контролируемых параметров на исследуемых деталях данное техническое решение позволяет обеспечить повышение производительности технологического процесса контроля деталей неразрушающим способом.

1. Способ рентгеноструктурного контроля деталей газотурбинного двигателя, включающий снятие рентгенограммы с контролируемой детали на предполагаемой поверхности разрушения от отражающей плоскости (11.0) без фона при использовании титанового излучения Ti-Kα и от отражающей плоскости (01.3) без фона при использовании титанового излучения Ti-Kβ, определение параметра, зависящего от наработки детали, при этом при снятии рентгенограммы с контролируемой детали вычисляется интегрированный рентгеноструктурный параметр Δ, отличающийся тем, что в качестве параметра, зависящего от наработки детали, используют параметр остаточного ресурса Рост, определяемый по зависимости:

Рост=T⋅S⋅K,

где Т - длительности эксплуатации детали в одном цикле;

S - коэффициент нерегулярности интегрированного рентгеноструктурного параметра Δ;

K - понижающий коэффициент интегрированного рентгеноструктурного параметра Δ.

2. Способ по п. 1, отличающийся тем, что параметр длительности эксплуатации детали в одном цикле Т может быть равен отношению наработки детали в часах tЧ к наработке детали в циклах tЦ с учетом коэффициента kt, зависящего от типа двигателя: .

3. Способ по п. 1, отличающийся тем, что коэффициент нерегулярности S интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δi - интегрированный рентгеноструктурный параметр для i-той точки измерения детали.

4. Способ по п. 1, отличающийся тем, что понижающий коэффициент K интегрированного рентгеноструктурного параметра может быть определен по зависимости

где Δmin - минимальное значение интегрированного рентгеноструктурного параметра;

nмин - количество точек измерения для вычисления значения минимального интегрированного рентгеноструктурного параметра для i-той точки детали: Δmin≤Δ≤(Δmin+1);

N - общее количество i-тых точек измерений на детали.



 

Похожие патенты:

Изобретение относится к медицинской технике, а именно к рентгенографическим средствам формирования изображения методом фазового контраста. Система содержит рентгеновский источник, детектор с множеством детектирующих полосок, расположенных в первом направлении детектора, при этом каждая детектирующая полоска содержит множество пикселей, расположенных во втором направлении детектора, фазовую дифракционную решетку, множество дифракционных решеток анализаторов, содержащих щели.

Изобретение относится к аналитической химии и может быть использовано для определения происхождения пищевого этилового спирта. Cущность способа заключается в том, что используют детекторное устройство типа «электронный нос», матрицу которого формируют из 8 сенсоров на основе пьезокварцевых резонаторов объёмных акустических волн с базовой частотой колебаний 10,0 МГц с разнохарактерными пленочными сорбентами на электродах, для стабилизации покрытий для нехроматографических фаз применяют подложку из углеродных нанотрубок, покрытия массива селективные: к спиртам – полиэтиленгликоль адипинат, ПЭГА; к высшим спиртам, кетонам, эфирам - полиэтиленгликоль себацинат и полиэтиленгликоль ПЭГ-2000; к сложным эфирам – полиэтиленгликоль фталат, ПЭГФ; к серосодержащим соединениям, эфирам – Тритон Х-100, ТХ-100; к кислотам, воде, спиртам – дициклогексан-18-6,краун-эфир ( ДЦГ18К6/УНТ); к фенольным и другим ароматическим соединениям – триоктилфосфиноксид (ТОФО/УНТ); к кетонам – пчелиный клей (ПчК).

Использование: для контроля вещественного состава пульпообразных материалов. Сущность изобретения заключается в том, что экспериментально, с источником меньшей энергии, в окне энергетического спектра меньшей энергии, устанавливают ряд аналитических связей интенсивности рассеянного материалом гамма-излучения от вещественного состава и плотности материала эталонов, для чего используют в качестве эталонов набор материала известного вещественного состава и плотности.

Использование: для неразрушающего способа рентгеноструктурного контроля и может использоваться для оценки технического состояния ремонтных деталей газотурбинного двигателя (ГТД) из титановых сплавов в лабораторных и заводских условиях.

Использование: для юстировки образца в рентгеновском дифрактометре. Сущность изобретения заключается в том, что используют калибровочное приспособление, которое предварительно устанавливают на место держателя образца с возможностью микрометрических перемещений в плоскости, параллельной экваториальной плоскости гониометра.

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле, получение микроэлектронограммы от кристалла, микродифракционное исследование нанотонкого кристалла, анализ ротационного искривления решетки нанотонкого кристалла, при этом на электронно-микроскопическом изображении нанотонкого кристалла выбирают физическую точку M и двумерное направление, для этого выбирают пару - нелинейный изгибной экстинкционный контур и соответствующий ему рефлекс на микроэлектронограмме, испытывающий азимутальное размытие; проводят диагностику римановой геометрии решетки нанотонкого кристалла в данной точке M и данном двумерном направлении, задаваемом бивектором (а, b) - парой неколлинеарных векторов, исходящих из одной точки, совпадающей с центром микроэлектронограммы, полученной от нанотонкого кристалла, расположенных в плоскости микроэлектронограммы, где вектор b соответствует размытому рефлексу, путем совместного анализа пары - нелинейного изгибного экстинкционного контура, присутствующего на электронно-микроскопическом изображении кристалла в темном поле, и соответствующего ему рефлекса на микроэлектронограмме от кристалла, для установления непрерывности азимутального размытия рефлекса и непрерывности соответствующего ему изгибного контура, затем проводят диагностику римановой кривизны решетки нанотонкого кристалла путем определения численного значения римановой кривизны решетки нанотонкого кристалла в данной точке М и данном двумерном направлении, задаваемом бивектором (а, b), по определенной формуле.

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр методом рентгеновской съемки и выполняют обработку результатов для каждого контролируемого полуфабриката, причем в качестве места контроля выбирают деформированный во время последней операции термодеформационной обработки участок поверхности с преимущественным течением материала параллельно поверхности со степенью деформации не менее 10% и не более 50% с удаленным газонасыщенным слоем, в качестве градуировочной кривой используют зависимость соотношения интенсивностей дифракционных линий α-фазы L1=(101) или L1=(110) и L2=(002) от температуры Т (Т - разность температуры полного полиморфного превращения (Тпп) и температуры нагрева под деформацию (Тн)), а о перегреве вышезаданной технологией температуры судят по значению отношения интенсивностей дифракционных линий L1 и L2 выше, чем на градуировочной кривой для верхнего предела диапазона температур нагрева.

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции.

Использование: для изгиба кристалла-монохроматора. Сущность изобретения заключается в том, что устройство для изгиба кристалла-монохроматора включает основание, выполненное с возможностью устанавливать его в гнездо гониометра, кристалл-монохроматор, выполненный в виде пластины, кристаллодержатель с неподвижными опорами, на которые может опираться пластина кристалла-монохроматора, подвижную каретку с отверстиями для размещения подвижных опор, которые могут соприкасаться с пластиной кристалла-монохроматора и обеспечивать изгиб кристалла при своем перемещении, рычаг со стержнем, закрепленный подвижно на основании кристаллодержателя, выполненный с возможностью касания каретки и боковой поверхности копира, который представляет собой тело вращения, ось которого имеет возможность смещения относительно оси вращения основания устройства с помощью юстировочного устройства.

Использование: для регистрации нарушений в изделии. Сущность изобретения заключается в том, что направляют рентгеновские лучи веерного типа на изделие вдоль по меньшей мере одного направления, в котором часть рентгеновских лучей веерного типа отражается от изделия; региструют отраженные рентгеновские лучи веерного типа от изделия вдоль по меньшей мере одного направления и выполняют запись интенсивности регистрируемых отраженных высокоэнергетичных волн, после чего формируют одномерное изображение изделия из регистрируемых отраженных высокоэнергетичных волн.

Использование: для сортировки алмазосодержащего материала. Сущность изобретения заключается в том, что в качестве алмазосодержащего материала сортировке подвергают поликристаллические алмазы типа «карбонадо», при этом образцы поликристаллических алмазов со стороны, противоположной катализатору, сошлифовывают слоем не менее 0.2 мм и определяют количество графита на сошлифованной поверхности количественным рентгенофазовым анализом, например дифрактометром, после этого проводят сортировку образцов на группы с содержанием графита 0,7-2,2; 2,3-4,0 и 4,1-5,5 мас.%, причем каждую группу используют для изготовления определенного инструмента. Технический результат: обеспечение возможности достоверной сортировки алмазосодержащего сырья по содержанию графита. 2 табл.

Группа изобретений относится к медицинской технике, а именно к средствам рентгеновской визуализации для дифференциальной фазово-контрастной визуализации. Система включает дифференциальную фазово-контрастную установку с источником рентгеновского излучения и детектором, компоновку решеток, содержащую решетку источника, фазовую решетку и решетку анализатора, в которой решетка источника расположена между источником рентгеновского излучения и фазовой решеткой, а решетка анализатора расположена между фазовой решеткой и детектором, и компоновку передвижения для относительного передвижения между исследуемым объектом и по меньшей мере одной из решеток, блок обработки и компоновку перемещения решетки источника. Фазовая решетка, решетка анализатора и детектор предоставлены в виде неподвижно закрепленного блока интерферометра, при этом фазовая решетка и решетка анализатора установлены параллельно друг другу. Решетка источника разъюстирована относительно блока интерферометра так, что в плоскости детектора могут обнаруживаться муаровые интерференционные полосы. Блок обработки выполнен с возможностью обнаружения муаровых интерференционных полос в сигналах, выдаваемых детектором при рентгеновском излучении, и дополнительно выполнен с возможностью вычисления сигнала перемещения решетки источника для достижения предварительно заданного муарового узора. Компоновка перемещения выполнена с возможностью регулирования расположения решетки источника по меньшей мере в направлении проекции рентгеновского излучения на основе величины сигнала перемещения таким образом, чтобы поперек ширины D детектора появлялась по меньшей мере одна муаровая полоса. Способ осуществляется посредством работы системы. Машиночитаемый носитель информации содержит инструкции для осуществления системой этапов способа. Использование изобретений позволяет упростить настройку и регулировку системы дифференциальной фазово-контрастной визуализации. 3 н. и 4 з.п. ф-лы, 5 ил.

Использование: для обследования объекта на основе технологии когерентного рассеяния рентгеновских лучей с целью определения, включает ли в себя обследуемый объект взрывчатые вещества, опасные предметы или подобное. Сущность изобретения заключается в том, что устройство содержит распределенный источник излучения, содержащий множество точек источника; коллиматор источника света, расположенный на выводящем пучок лучей конце распределенного источника излучения и выполненный с возможностью сведения лучей, сформированных распределенным источником излучения, вдоль веерообразных радиальных линий для формирования пучка лучей обращенной веерообразной формы; рассеивающий коллиматор, выполненный с возможностью позволять проходить только лучам, рассеянным под одним или более определенными углами рассеяния, которые формируются посредством лучей из коллиматора источника света, взаимодействующих с обследуемыми объектами; по меньшей мере один детектор, расположенный за рассеивающим коллиматором, при этом каждый детектор содержит множество блоков обнаружения, которые имеют энергетическую разрешающую способность и расположены по существу в цилиндрической поверхности, чтобы принимать рассеянные лучи, проходящие через рассеивающий коллиматор; и устройство обработки, выполненное с возможностью вычисления информации энергетического спектра рассеянных лучей от обследуемых объектов на основании сигнала, выводимого детекторами. Устройство, описанное выше, измеряет распределение энергии рассеянных рентгеновских лучей при фиксированном угле посредством использования детекторов, имеющих энергетическую разрешающую способность для получения постоянной кристаллической решетки материалов, чтобы распознавать категории материалов. Технический результат: обеспечение высокой разрешающей способности при возможности трехмерного позиционирования устройства относительно обследуемого объекта. 3 н. и 11 з.п. ф-лы, 11 ил.
Наверх