Способ определения характеристик изделия, изготовленного из композитного материала

Использование: для определения характеристик изделия, изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение. Сущность изобретения заключается в том, что осуществляют этап определения с использованием рентгеновской томографии для определения уровней серого по меньшей мере части изделия, за которым следует этап использования упомянутых уровней серого для получения информации, касающейся тканья, посредством различения между по меньшей мере свободной матрицей и прядями волокон, смешанных с матрицей, упомянутые пряди рассматривают как материал, который является однородным. Технический результат: повышение достоверности и полноты определения характеристик изделия, изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение, на основе неразрушающей методики. 12 з.п. ф-лы, 6 ил.

 

ОБЛАСТЬ ТЕХНИКИ И ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Изобретение лежит в области способов определения характеристик материалов и конструкций для использования в машиностроении в целом и в авиационной промышленности в частности.

Изобретение применимо к композитным материалам с тканым, плетеным или также прошитым волоконным упрочнением, которые находят множество применений в области производства деталей самолетов, в частности, но не только, деталей авиационных двигателей, например лопастей вентилятора. Эти материалы обладают свойствами, которые являются выгодными в том, что касается веса, механической прочности и простоты производства деталей.

Для заданной детали полезно иметь знания о характеристиках волоконного упрочнения в детали, чтобы улучшить знания о ее механических свойствах. Волоконное упрочнение обычно описывается, используя параметры тканья, такие как доля волокна (Vf), расстояние между столбцами тканья (dc и dt для нитей основы и утка соответственно), соотношение между количеством нитей утка и количеством нитей основы (соотношение основа/уток) и усадки (θ).

Эти характеристики могут меняться в пределах одной заданной детали в зависимости от формы детали. Таким образом, полезно иметь возможность определить, как эти характеристики меняются по всему объему детали.

Известны различные методики определения характеристик, и они обсуждаются в материалах настоящей заявки, где они касаются композитных материалов с органической матрицей. Эти методики определения характеристик используют либо химическое растворение и измерения веса, либо осуществление разрезов и проведение измерений в плоскостях.

Таким образом, можно получить некоторые типы информации, например доля волокон, которая может быть определена посредством взвешивания после растворения матрицы посредством химического травления с помощью кислоты, а также информацию о расстояниях между столбцами, которые измеряются посредством осуществления наблюдений в сечении.

Однако другие параметры остаются сложными для получения: таким образом, сложно гарантировать, что плоскость сечения следует всем нитям в заданном столбце тканья, поэтому особо сложно измерить усадку и волнистость, в особенности в объеме, представляющем ячейку тканья, имеющую большое количество нитей (которое может превосходить 100 в некоторых типах переплетений). Подобным образом, соотношение между количеством нитей утка и количеством нитей основы может быть получено только косвенно.

Вдобавок к обеспечению лишь неполного определения характеристик главные недостатки этих методик состоят в том, что они являются разрушающими, могут применяться лишь к небольшим объемам материала (обычно 4 грамма (г)) и являются очень затратными по времени, требуемого для их выполнения. Растворение также вызывает проблемы потенциальных ошибок в измерениях из-за возможных загрязнений (вероятность которых растет с увеличением исследуемого объема), и оно производит отходы, которые сложно переработать.

Изобретение предназначено для решения вышеупомянутых проблем.

ОПРЕДЕЛЕНИЕ ИЗОБРЕТЕНИЯ - ПРЕИМУЩЕСТВА, КОТОРЫЕ ОНО ОБЕСПЕЧИВАЕТ

Изобретение состоит в способе определения характеристик для получения характеристик изделия, изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение, способ, содержащий этап определения, посредством рентгеновской томографии, уровней серого по меньшей мере части изделия, затем этап использования упомянутых уровней серого для получения информации, касающейся тканья, посредством различения между по меньшей мере свободной матрицей и прядями волокон, смешанных с матрицей, упомянутые пряди рассматривают как материал, который является однородным.

Благодаря этим признакам определение характеристик изделия осуществляется неразрушающим образом, и доступ к информации, которую ранее было очень сложно получить, осуществляется быстро и с высокой точностью. Это составляет существенное улучшение, так как работа выполняется на промежуточной шкале, рассматривая пряди волокон, смешанные с матрицей, как однородный материал, уровни серого которого могут быть различены от уровней серого матрицы.

Эта методика также позволяет работать с образцами большого размера.

Преимущественно этап определения выполняют с изделием, вращающимся вокруг оси, параллельной направлению волокон образца материала, а этап использования выполняют посредством различения свободной матрицы, прядей утка и прядей основы.

Это составляет способ, основанный на очень инновационном явлении, которое было охарактеризовано лишь недавно и которое позволяет точно определять параметры, к которым ранее было сложно или невозможно получить доступ. Лишь выполнение исследований оптимизированных параметров позволило обнаружить существование этого явления, в силу которого пряди основы и пряди утка, каждые, рассматриваемые как однородный материал, имеют различные распределения уровней серого.

В одном из вариантов осуществления этап использования содержит определение распределения уровней серого, а затем разложение спектра в упомянутом распределении по меньшей мере на две гауссовы кривые, чтобы определить по меньшей мере объемную долю прядей. Это позволяет получить информацию о сечении или объеме изделия. Этап использования также может выполняться с помощью предопределенной связи между долей волокна в материале и объемной долей прядей. Этап использования может, в частности, содержать разложение спектра по меньшей мере на три гауссовы кривые, чтобы определить объемные доли прядей утка и прядей основы и соотношение между количествами волокон в прядях утка и волокон прядей основы, что является очень полезным, так как эту информацию сложно получить иным образом.

В конкретной версии изобретения этап использования содержит определение распределений уровней серого для последовательности сечений изделия и получение расстояния между столбцами тканья посредством применения Фурье-образа или посредством измерения расстояний между пиками на последовательности сечений.

В другом варианте осуществления этап использования содержит отображение прядей в изображении изделия в зависимости от уровней серого. Предпочтительно в изображении различают пряди основы и пряди утка в зависимости от уровней серого и, если необходимо, определяют угол усадки или параметр волнистости пряди, что является очень полезным, так как эту информацию очень сложно получить иным образом.

Изобретение, в частности, применимо к композитному материалу с тканым волоконным упрочнением, состоящим из углеродных волокон или другого материала с подобными свойствами. Материал может содержать органическую, металлическую или керамическую матрицу. Исследуемое изделие может являться деталью турбореактивного двигателя, и преимущественно он может являться завершенной конструкцией. Оно также может являться образцом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фигуры 1 и 2 показывают первый вариант осуществления способа согласно изобретению.

Фигуры 3 и 4 показывают второй вариант осуществления способа согласно изобретению.

Фигура 5 показывает результаты, полученные в контексте варианта осуществления по фигурам 3 и 4.

Фигура 6 показывает третий вариант осуществления изобретения.

ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Фигура 1 показывает первый вариант осуществления изобретения. Более точно, показано устройство рентгеновской томографии. В частности, устройство является устройством компьютерной микротомографии (μ-CT). Оно применяется для определения характеристик изделия 100, изготовленного из композитного материала, содержащего эпоксидную органическую матрицу и углеродные волокна. Углеродные волокна имеют диаметр около 5 микрометров (мкм) и не визуализируются в описываемом способе.

Устройство для исследования содержит рентгеновский источник 200, фильтр 210 для фильтрации исходного пучка, например, посредством использования меди толщиной 1 мм, и двумерный (2D) детектор 220. Изделие 100 располагается между фильтром 210 и детектором 220 в пучке рентгеновских лучей. Оно вращается вокруг оси X относительно детектора 220 и фильтра 210. Устройство томографии записывает уровни серого вокселей изделия 100.

Фигура 2 является графиком распределения уровней серого по объему изделия 100. Ось абсцисс обозначает уровень серого (от 1 до 2^16-1=65535), а шкала на оси ординат показывает количество вокселей, имеющих заданный уровень серого.

График 110 распределения представляет два видимых максимума. В некоторых обстоятельствах график представляет три максимума, как описано ниже со ссылкой на фигуры 3 и 4.

Впоследствии, при анализе этого графика 110, считается, что композитный материал состоит из свободной матрицы и прядей волокон, смешанных с матрицей, рассматриваемых как образующие однородный материал.

График подвергается разложению спектра на две гауссовы кривые, опираясь на тот факт, что каждый из этих двух однородных материалов имеет соответствующее гауссово распределение уровней серого. Таким образом, на графике 110 появляются соответствующие вклады от эпоксидной матрицы и от прядей. Эти два вклада являются гауссовыми кривыми, обозначенными номерами ссылок 112 и 114. В данном примере пряди имеют более весомый вклад и более высокие уровни серого.

Посредством суммирования количеств вокселей в каждой из двух гауссовых кривых 112 и 114 возможно получить объем, занимаемый матрицей, и объем, занимаемый прядями, и, взяв отношение, возможно получить объемную долю прядей, обозначенную Vthread, в изучаемом объеме изделия 100.

Фигура 3 показывает второй вариант осуществления. Он отличается от первого варианта осуществления в двух аспектах.

Во-первых, изделие 100 располагается одним из своих направлений тканья, параллельным оси вращения X. Это направление тканья обозначено номером ссылки 1 на фигуре. Направление 2 перпендикулярно оси X.

Во-вторых, рентгеновский источник 200 оптимизирован посредством прикладывания большой силы тока и низкого напряжения для формирования рентгеновских лучей.

Устройство томографии записывает уровни серого вокселей изделия 100, как на фигуре 1.

Фигура 4 является графиком 120 распределения уровней серого всего объема изделия 100 во втором варианте осуществления. Опять же, ось абсцисс указывает уровень серого, а ось ординат указывает количество вокселей, представляющих заданный уровень серого.

График 110 распределения показывает три видимых максимума.

Возможной причиной этого явления является ортотропная природа углеродного волокна и/или тот факт, что щели между волокнами внутри прядей обладают предопределенной ориентацией. Более того, эти два явления могут объединяться.

В любом случае, видно, что пряди имеют разное поглощение в их поперечном направлении и в их продольном направлении. В расположении по фигуре 3 все пряди направления 1 всегда пропускают рентгеновские лучи поперечно, тогда как пряди направления 2 иногда пропускают рентгеновские лучи продольно во время поворотов изделия 100 вокруг оси вращения X. Уровни серого прядей направления 1 (параллельных оси вращения) ниже, чем уровни серого прядей направления 2.

График подвергается разложению спектра на три гауссовы кривые, опираясь на тот факт, что матрица, с одной стороны, и пряди направления 1 и пряди направления 2, с другой стороны, имеют, каждая, гауссово распределение уровней серого.

Пряди направления 1 и пряди направления 2 рассматриваются, и одни и другие, как однородные материалы.

Таким образом, график 120 может показать соответствующие вклады эпоксидной матрицы, прядей направления 1 и прядей направления 2 (или прядей утка и прядей основы). Эти три вклада являются гауссовыми кривыми, обозначенными номерами ссылок 122, 124 и 126. В данном примере пряди направления 2 имеют наиболее весомый вклад. Оба типа прядей имеют более высокие уровни серого, чем матрица.

Посредством суммирования количеств вокселей каждой из трех гауссовых кривых 122, 124 и 126 получают объем, занимаемый матрицей, и объем, занимаемый прядями утка и прядями основы, и, взяв соотношения, получают объемную долю прядей Vthread в изучаемом объеме изделия 100 с более высокой точностью, чем при использовании способа по фигурам 1 и 2, и также возможно получить соотношение между прядями основы и прядями утка (RCT - соотношение основа/уток).

Было проведено предварительное исследование исходных однородных образцов из композитного материала c эпоксидной матрицей и углеродными волокнами с различными долями волокон в материале. Это исследование включало в себя использование томографии и разложение спектра, как описано со ссылкой на фигуры 1 и 2 (или фигуры 3 и 4), а также растворение образцов, чтобы определить их доли волокон. Таким образом, для этих исходных образцов известны общая доля волокна Vf (в материале), а также доля волокна в прядях.

Изобретатели обнаружили, в частности, что доля волокон в прядях пропорциональна доле волокон Vf в материале в диапазоне доли волокон Vf в материале, составляющем от 54% до 64%.

Внутри этого диапазона, где связь линейна, а также вне этого диапазона предварительное исследование позволяет, для исследуемого объема заданного изделия 100, получить общую долю волокон Vf из доли волокон, полученной посредством исследования, используя томографию и разложение спектра.

Фигура 5 показывает вид примера варианта осуществления по фигурам 3 и 4. Вместо исследования распределения уровней серого всего объема изделия 100 такое распределение изучается для каждого сечения (или подобъема малой толщины) объема изделия, что можно визуализировать, используя систему томографии. Сечения обозначаются значениями их смещений вдоль оси, которые наносятся вдоль оси абсцисс на фигуре 5, проградуированной в миллиметрах, для изделия, имеющего размер 3 сантиметра (см).

Для каждого сечения график подвергается разложению спектра на три гауссовы кривые. Таким образом, на графике 110 появляются соответствующие вклады эпоксидной матрицы, прядей утка и прядей основы. Получают объемную долю прядей Vthread в исследуемом сечении, которая представлена в форме кривой 500, вместе с объемными долями прядей основы и прядей утка, которые представлены кривыми 510 и 520.

Из кривых 500, 510 и 520 можно извлечь расстояния между столбцами dc основы и между столбцами dt утка. Когда эти параметры постоянны, это может быть выполнено посредством Фурье-образа, чтобы определить частоту волн в кривых 500, 510 и/или 520. Если расстояния между столбцами не постоянны, информацию можно получить посредством измерения расстояний между пиками в кривых 500, 510 и 520.

Фигура 6 показывает третий вариант осуществления изобретения. Он включает в себя создание трехмерного (3D) изображения объема изделия 300 посредством отображения, например, используя выбранный цвет, вокселей, имеющих уровни серого внутри диапазона, определенного одним или двумя порогами, в зависимости от ожидаемых значений для матрицы, прядей или, возможно, при использовании установки по фигуре 3, для прядей утка и прядей основы. Таким образом, возможно точно отслеживать заданную прядь на изображении и, таким образом, определять ее параметры усадки (θ) и волнистости.

В одном из вариантов можно выполнить получение данных с изделием 300, расположенным таким образом, что пряди основы и пряди утка ориентированы под углом 45° относительно оси вращения. Пряди основы и утка, таким образом, пропускают рентгеновские лучи в среднем одинаковым образом в течение полного поворота. Появляются только две гауссовы кривые, как на фигуре 2.

В другом варианте ось вращения выравнена с направлением, перпендикулярным плоскости тканья (перпендикулярно прядям основы и утка), и опять же, эти пряди основы и утка пропускают рентгеновские лучи в среднем одинаковым образом в течение полного поворота. Появляются только две гауссовы кривые, как на фигуре 2.

Изобретение преимущественно применяется к завершенным конструкциям, изготовленным из композитного материала, для применений в авиации и, в частности, к деталям авиационных двигателей, например к лопатке или корпусу, которые могут исследоваться как целое, без предварительного отрезания образца.

Изобретение не ограничено описанными вариантами осуществления, но распространяется на любой вариант, попадающий в пределы объема формулы изобретения.

1. Способ определения характеристик для определения характеристик изделия (100), изготовленного из композитного материала, имеющего тканое, плетеное или прошитое волоконное упрочнение, способ, содержащий этап определения посредством рентгеновской томографии (фигура 1; фигура 3) для определения уровней серого (110; 120) по меньшей мере части изделия, затем этап использования упомянутых уровней серого для получения информации, касающейся тканья (Vf; соотношение основа/уток; dc; dt; θ), посредством различения между по меньшей мере свободной матрицей (112; 122) и прядями (114; 124; 126) волокон, смешанных с матрицей, упомянутые пряди рассматривают как материал, который является однородным.

2. Способ определения характеристик по п. 1, в котором этап определения выполняют с изделием (100), вращающимся вокруг оси (X), параллельной направлению (1) волокон изделия, а этап использования выполняют посредством различения прядей (124) утка и прядей (126) основы от свободной матрицы (122).

3. Способ определения характеристик по п. 1, в котором этап использования содержит определение распределения уровней серого (110), а затем разложение спектра в упомянутом распределении по меньшей мере на две гауссовы кривые (112, 114; 122, 124, 126), чтобы определить объемную долю прядей (Vthread).

4. Способ определения характеристик по п. 3, в котором этап использования также выполняют с помощью предопределенного соотношения между долей волокон (Vf) в материале и объемной долей прядей (Vthread).

5. Способ определения характеристик по п. 4, в котором этап использования содержит разложение спектра по меньшей мере на три гауссовы кривые (122, 124, 126), чтобы определить объемные доли прядей утка и прядей основы и соотношение уток/основа между количеством волокон в нитях утка и волокон в нитях основы.

6. Способ определения характеристик по п. 5, в котором этап использования содержит определение распределений уровней серого для последовательности сечений изделия (фигура 5) и получение расстояния между столбцами тканья (dc, dt) посредством применения Фурье-образа или посредством измерения расстояний между пиками на последовательности сечений.

7. Способ определения характеристик по п. 6, в котором этап использования содержит отображение прядей (фигура 6) в изображении изделия в зависимости от уровней серого.

8. Способ определения характеристик по п. 7, в котором в изображении различают пряди основы и пряди утка в зависимости от уровней серого.

9. Способ определения характеристик по п. 8, в котором определяют угол усадки (θ) или параметр волнистости пряди.

10. Способ определения характеристик по п. 1, в котором волоконное упрочнение является тканым и состоит из углеродных волокон или другого материала.

11. Способ определения характеристик по п. 1, в котором материал содержит матрицу, которая является органической, металлической или даже керамической.

12. Способ определения характеристик по п. 1, в котором изделие является деталью турбореактивного двигателя.

13. Способ определения характеристик по п. 1, в котором изделие является завершенной конструкцией или образцом.



 

Похожие патенты:

Использование: для бесконтактного рентгеновского досмотра крупногабаритных объектов. Сущность изобретения заключается в том, что в комплексе применяется один источник рентгеновского излучения, который перемещается с изменяющимся шагом по направляющей в форме дуги длиной, равной четверти окружности.

Использование: для досмотра крупногабаритных объектов на таможенных и полицейских пунктах пропуска и контроля с целью обнаружения незаконных скрытых вложений. Сущность изобретения заключается в том, что в классическую конструкцию между поворотным механизмом и автомобильным шасси мобильного инспекционно-досмотрового комплекса (МИДК) дополнительно введен стабилизирующий механизм, состоящий из двух платформ, неподвижной и подвижной (качающейся), связанных между собой посредством стержня.

Использование: для неразрушающего контроля различных материалов, изделий и объектов с помощью импульсных рентгеновских лучей, а также для медицинской рентгенодиагностики.

Использование: для исследования объекта исследования с помощью компьютерной томографии. Сущность изобретения заключается в том, что осуществляют круговое сканирование исследуемого объекта посредством рентгеновских лучей в соответствии с предварительно заданным значением угловой дискретизации, которое представляет собой число точек дискретизации на одном круге, для получения группы дискретизационных данных проекций при различных углах проекции, предварительно заданное значение угловой дискретизации больше 1000; обрабатывают дискретизационные данные проекций для получения данных проекций множества виртуальных подфокусов, эквивалентных большому фокусу источника излучения в системе компьютерной томографии (КТ); и осуществляют реконструкцию изображения в соответствии с данными проекций множества виртуальных подфокусов.

Группа изобретений относится к сканирующей системе получения изображения. Технический результат - обеспечение выравнивания изображения DR-данных и изображения СТ-данных.

Использование: для непроникающего досмотра транспортных средств. Сущность изобретения заключается в том, что система для осуществления указанного способа включает мобильную сканирующую установку на автошасси, где размещена конструкция, несущая оснастку, в которую входят панели детекторов, соответствующих выбранному типу проникающего излучения.

Использование: для формирования изображений разных областей объекта. Сущность изобретения заключается в том, что многоэнергетический многодозовый ускоритель содержит электронную пушку, выполненную с возможностью обеспечивать первое напряжение электронной пушки и второе напряжение электронной пушки, и ускорительную трубку, выполненную с возможностью генерировать первое рентгеновское излучение, имеющее первую дозу и первую энергию, соответствующие первому напряжению электронной пушки, и генерировать второе рентгеновское излучение, имеющее вторую дозу и вторую энергию, соответствующие второму напряжению электронной пушки, причем первая доза представляет собой дозу, которая может быть допустимой для человеческих тел и намного меньше, чем вторая доза, причем первое рентгеновское излучение используется для обследования первой области, где находится человек, а второе рентгеновское излучение используется для обследования второй области, где находятся товары.

Изобретение относится к устройству радиационной визуализации и к системе радиационной визуализации. Устройство радиационной визуализации для обнаружения радиационного изображения включает в себя панель радиационной визуализации, включающую в себя множество подложек для визуализации и сцинтиллятор, имеющий первую поверхность и вторую поверхность, которые расположены противоположно друг другу, корпус, выполненный с возможностью вмещения панели радиационной визуализации и включающий в себя первую часть в форме пластины и вторую часть в форме пластины, первый опорный элемент, расположенный между первой поверхностью сцинтиллятора и первой частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора посредством множества подложек для визуализации, и второй опорный элемент, расположенный между второй поверхностью сцинтиллятора и второй частью в форме пластины упомянутого корпуса, для поддержки сцинтиллятора.

Использование: для проверки груза. Сущность изобретения заключается в том, что рентгенографическая установка для проверки груза, находящегося в относительном движении, содержит источник излучения импульсов расходящегося рентгеновского излучения; коллиматор источника для ограничения падающего пучка рентгеновского излучения; и датчики приема рентгеновского излучения, расположенные в области прохождения падающего пучка для приема рентгеновского излучения после его прохождения через груз и для генерирования необработанных сигналов изображения.

Изобретение относится к области протонной радиографии, в частности к способу регистрации оптических изображений, сформированных с помощью протонного излучения, и может быть использовано в системах цифровой съемки для определения внутренней структуры объектов или исследования быстропротекающих процессов.

Изобретение относится к области проверки безопасности с использованием рентгеновских/гамма-лучей и, более конкретно, к расположению детекторов в системе досмотра рентгеновскими/гамма-лучами. Модуль детектора, расположенный на кронштейне детектора, содержит один или множество блоков детектора, расположенных в рассредоточенной конфигурации, причем каждый из блоков детектора в модуле детектора установлен нацеленным на центр пучка источника лучей, причем угол, под которым установлен каждый из блоков детектора, отличается от других и связан с высотой соответствующего блока детектора на кронштейне детектора таким образом, чтобы гарантировать нацеливание каждого из блоков детектора на центр пучка. Технический результат – повышение качества получаемого изображения. 3 н. и 17 з.п. ф-лы, 5 ил.

Использование: для досмотра транспортного средства. Сущность изобретения заключается в том, что осуществляют следующие шаги: реализацию досмотра с использованием сканирования излучением досматриваемого транспортного средства для получения изображения досматриваемого транспортного средства путем сканирования излучением; извлечение информации о характеристиках транспортного средства; сравнение информации о характеристиках досматриваемого транспортного средства с эталонными характеристиками транспортного средства, запомненными в блоке памяти, выбор эталонной характеристики транспортного средства, наиболее подходящей к информации о характеристиках данного транспортного средства, и обнаружение наиболее подходящего эталонного изображения, полученного путем просвечивания излучением, на основе соответствующего соотношения между эталонными характеристиками транспортного средства и эталонными изображениями, полученными путем просвечивания излучением, запомненными в блоке памяти; определение первой различительной области изображения, полученного при досмотре путем сканирования излучением, исходя из наиболее подходящего эталонного изображения, полученного путем просвечивания излучением, посредством сравнения изображения, полученного при досмотре путем сканирования излучением досматриваемого транспортного средства, с наиболее подходящим эталонным изображением, полученным путем просвечивания излучением. Также раскрыта система досмотра транспортного средства. Технический результат: обеспечение возможности различать в изображении конструкции самого транспортного средства и загруженных товаров. 4 н. и 16 з.п. ф-лы, 9 ил.

Использование: для неразрушающего исследования синтетических тросов. Сущность изобретения заключается в том, что на трос в процессе использования воздействует рентгеновское излучение, терагерцевое излучение, постоянное магнитное поле или электромагнитное поле для определения изображения, результаты анализа сравниваются со стандартным изображением, определенным анализом, и результаты сравнения используются в определении того, является ли трос подходящим для использования, причем трос содержит волокна по меньшей мере двух типов, где волокно первого типа имеет плотность, которая отличается от плотности волокна второго типа, и где волокно второго типа состоит из такого же полимерного материала, как волокно первого типа, но имеет материал высокой плотности или низкой плотности. Технический результат: повышение достоверности неразрушающего исследования синтетических тросов. 3 н. и 11 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области досмотра система досмотра контейнеров/транспортных средств с использованием линейного ускорителя электронов на стоячей волне. Описаны линейный ускоритель (107) электронов на стоячей волне, а также содержащие его двухканальная быстросканирующая система досмотра контейнеров/транспортных средств, мобильная система досмотра контейнеров/транспортных средств и передвижная система досмотра контейнеров/транспортных средств. Линейный ускоритель (107) электронов на стоячей волне содержит модулятор и магнетрон (17) для создания микроволн радиочастотного диапазона; множество ускорительных труб (13, 18) для разгона электронов; систему передачи микроволн для передачи микроволн во множество ускорительных труб (13, 18); множество электронных пушек (22, 23) для испускания пучков электронов во множество ускорительных труб (13, 18); множество мишеней (19, 20), выполненных с возможностью столкновения с электронами из множества ускорительных труб (13, 18) для формирования сплошных рентгеновских спектров; множество экранирующих устройств (11) для экранирования сплошных рентгеновских спектров, созданных мишенями (19, 20); и распределитель (21) микроволн, расположенный рядом с концом системы передачи микроволн, причем распределитель (21) микроволн характеризуется наличием входа для микроволн и множества выходов для микроволн для перенаправления микроволн в системе передачи микроволн в ускорительные трубы. Технический результат - повышение эффективности досмотра. 4 н. и 12 з.п. ф-лы, 18 ил.

Изобретение относится к медицине, а именно к педиатрии при диагностике врожденных заболеваний, и может быть использовано для ранней диагностики синдрома Алажилля у детей. Способ обследования детей с подозрением на синдром Алажилля заключается в том, что детям первых 3-5 месяцев жизни, при наличии симптомокомплекса, проявляющегося низкой массой тела при рождении, длительным, более 2-х недель, желтушным периодом, а детям старше 5-ти месяцев наличием кожного зуда, гепато/гепатоспленомегалии, ахолии/гипохолии стула, проводят биохимический анализ крови для подтверждения признаков холестаза, таких как прямая гипербилирубинемия, умеренная цитолитическая активность, повышение уровня холестерина, после чего, при выявлении признаков холестаза, проводят ультразвуковое исследование органов брюшной полости и, при выявлении неоднородности печеночной паренхимы и утолщения стенок внутрипеченочных желчных протоков, проводят ультразвуковое исследование сердца и рентгенографию грудопоясничного отдела позвоночника, а при выявлении изменений со стороны сердечно-сосудистой системы, скелета и почек дополнительно проводят молекулярно-генетическое исследование для верификации синдрома Алажилля. 5 ил., 1 пр.

Использование: для неразрушающего контроля композитных структур. Сущность изобретения заключается в том, что система для неразрушающего контроля структур, имеющих внедренные частицы, содержит структуру, включающую частицы, внедренные на некотором уровне внутри структуры, устройство получения рентгеновских изображений для получения изображений частиц на указанном уровне и компьютер, запрограммированный для анализа указанных изображений с целью определения напряжений в разных местах на указанном уровне. Технический результат: обеспечение возможности недеструктивного определения напряжений внутри композитных структур. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к области геологии и может быть использовано для моделирования многофазного потока текучей среды. Структура пор горных пород и других материалов может быть определена посредством микроскопии и подвержена цифровому моделированию для определения свойств потоков текучей среды, проходящих сквозь материал. Для экономии вычислительных ресурсов моделирование предпочтительно осуществляют на стандартном элементе объема (СЭО). В некоторых вариантах осуществления способа определение многофазного СЭО может быть выполнено путем выведения параметра, связанного с пористостью, из модели пор и матрицы материала; определения многофазного распределения внутри пор материала; разделения модели пор и матрицы на несколько моделей фаз и матрицы; и выведения параметра, связанного с пористостью, из каждой модели фаз и матрицы. Затем можно определить и проанализировать зависимость параметра от фазы и насыщения для выбора подходящего размера СЭО. Технический результат – повышение точности и достоверности получаемых данных. 2 н. и 18 з.п. ф-лы, 15 ил.

Использование: для досмотра тела человека. Сущность изобретения заключается в том, что система для досмотра тела человека в целях безопасности включает в себя: источник рентгеновских лучей, выполненный с возможностью подачи рентгеновского излучения для сканирования тела подлежащего досмотру человека; детектор, выполненный с возможностью приема рентгеновского излучения, пропускаемого через тело подлежащего досмотру человека, и генерирования сигнала пропускания; датчик, выполненный с возможностью получения веса тела подлежащего досмотру человека; несущее устройство, выполненное с возможностью нести и перемещать тело подлежащего досмотру человека в некотором направлении, так что тело человека сканируется; и контроллер, выполненный с возможностью приема сигнала из датчика, определения веса тела подлежащего досмотру человека на основании сигнала из датчика и определения и управления напряжением или током, приложенным к источнику рентгеновских лучей, и скоростью перемещения несущего устройства в соответствии с весом. Технический результат: обеспечение возможности повышения качества изображения и уменьшение дозы излучения, принимаемой досматриваемым человеком. 2 н. и 8 з.п. ф-лы, 6 ил.

Группа изобретений относится к области исследования материалов радиографическими методами с применением ударных нагружений и воздействием магнитного поля. Сущность изобретений заключается в том, что пучок протонов направляют под углом к силовым линиям магнитного поля, после облучения области исследования получают три изображения отклоненного магнитным полем протонного пучка путем его поочередной фокусировки с помощью трех магнитооптических линзовых систем на трех конверторах систем регистрации, первое из которых формируют без изменения интенсивности пучка, а следующие - с последовательным изменением интенсивности пучка путем его ослабления в зависимости от его отклонения магнитным полем во взаимно перпендикулярных направлениях, обработку осуществляют путем деления полученных изображений отклоненного магнитным полем пучка между собой и на изображение пучка до пропуска его через область исследования с учетом обратного преобразования функции ошибок с вычислением углов рассеяния пучка протонов под действием магнитного поля и последующей реконструкцией изображения компонентов вектора магнитной индукции во взаимно перпендикулярных направлениях, по которому определяют поля деформации области исследования. Технический результат – расширение функциональных возможностей способа и устройства. 2 н. и 1 з.п. ф-лы, 21 ил.

Группа изобретений относится к области исследования материалов радиографическими методами с применением ударных нагружений и воздействием магнитного поля. Сущность изобретений заключается в том, что пучок протонов направляют под углом к силовым линиям магнитного поля, после облучения области исследования получают три изображения отклоненного магнитным полем протонного пучка путем его поочередной фокусировки с помощью трех магнитооптических линзовых систем на трех конверторах систем регистрации, первое из которых формируют без изменения интенсивности пучка, а следующие - с последовательным изменением интенсивности пучка путем его ослабления в зависимости от его отклонения магнитным полем во взаимно перпендикулярных направлениях, обработку осуществляют путем деления полученных изображений отклоненного магнитным полем пучка между собой и на изображение пучка до пропуска его через область исследования с учетом обратного преобразования функции ошибок с вычислением углов рассеяния пучка протонов под действием магнитного поля и последующей реконструкцией изображения компонентов вектора магнитной индукции во взаимно перпендикулярных направлениях, по которому определяют поля деформации области исследования. Технический результат – расширение функциональных возможностей способа и устройства. 2 н. и 1 з.п. ф-лы, 21 ил.
Наверх