Способ фосфатирования магнитомягких сплавов типа пермаллой (варианты)

Изобретение относится к химической обработке поверхности металла, в частности прецизионных магнитомягких сплавов типа пермаллой, для получения фосфатного электроизоляционного покрытия толщиной 8-15 мкм. Первый вариант способа включает нанесение на поверхность сплава типа пермаллой гальванического цинкового покрытия из цинкатного электролита, содержащего ZnO – 6-14 г/дм3 и NaOH – 80-140 г/дм3, при плотности тока 3-4 А/дм2, отношении анодной и катодной поверхности 1:2 и температуре 15-30°C в течение 5-7 мин. После этого на слой цинка наносят фосфатный слой при температуре 95-98°C в течение 2-3 минут раствором, содержащим, г/дм3: P2O5 – 7,4-9,8, Mn2+ – 2,1-2,8, Zn2+ – 11,0-13,0, NO3- – 21,0-25,0, NO2- – 0,3-0,5. Во втором варианте способа на поверхность сплава наносят гальваническое цинковое покрытие из цианистого электролита, содержащего ZnO – 15-45 г/дм3, NaCN – 30-120 г/дм3, NaOH – 35-100 г/дм3, при плотности тока 1-5 А/дм2, отношении анодной и катодной поверхности 1:1 и температуре 15-30°C в течение 14-17 мин, после чего наносят фосфатный слой по первому варианту. Техническим результатом является получение плотной, мелкокристаллической однородной фосфатной пленки толщиной 8-15 мкм, имеющей величину пробивного напряжения не ниже 70 В. 2 н. и 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к химической обработке поверхности металла, в частности прецизионных магнитомягких сплавов типа пермаллой, для получения фосфатного электроизоляционного покрытия толщиной 8-15 мкм.

Прецизионные магнитомягкие сплавы типа пермаллой (сплавы марок 40НКМ, 40НКМП, 45Н, 47НК, 50Н, 50НП, 50НХС, 64Н, 65Н, 68НМ, 68МП, 76НХД, 76НХДП, 79НМ, 79НМП, 79НЗМ, 80НХС, 81НМА), благодаря высокой магнитной проницаемости и малым потерям на гистерезис, повсеместно используются при изготовлении деталей электрических устройств, в частности сердечников магнитопроводов. Магнитопровод собирается из большого количества сердечников-пластин, между которыми должен быть нанесен диэлектрический слой, имеющий величину пробивного напряжения выше 70 В и толщину не превышающую 15 мкм. Указанными характеристиками обладают неорганические фосфатные покрытия, полученные, например, на поверхности железокобальтового сплава (Патент РФ №2560891, МПК С23С 22/07. Способ фосфатирования железокобальтового сплава/Селиванов В.Н., Николотов А.Д. - №2014118064; заявл. 05.05.2014; опубл. 24.07.2015).

Однако при нанесении фосфатного покрытия на сплавы типа пермаллой толщина изоляционной пленки получалась значительно больше 15 мкм, что отрицательно сказывалось на габаритных размерах магнитопроводов. Трудность нанесения фосфатных покрытий на сплавы, содержащие в своем составе более 50% никеля, вероятно, обусловлена большим количеством легирующих элементов в составе сплава.

Задачей заявляемого изобретения является получение плотной, мелкокристаллической однородной фосфатной пленки толщиной 8-15 мкм, имеющей величину пробивного напряжения не ниже 70 В, что является достаточным для предотвращения возникновения вихревых токов и, как следствие, исключения потерь энергии на нагревание магнитопроводов.

Поставленная задача достигается тем, что на поверхность сплава типа пермаллой наносят гальваническое цинковое покрытие из цинкатного электролита, содержащего (г/дм3) ZnO - 6-14; NaOH - 80-140 при плотности тока 3-4 А/дм2, отношении анодной и катодной поверхности 1:2, температуре 15-30°C в течение 5-7 мин. После этого на слой цинка наносят фосфатный слой при температуре 95-98°C в течение 2-3 минут раствором, содержащим (г/дм3) P2O5 - 7,4…9,8; Mn2+ - 2,1…2,8; Zn2+ - 11,0…13,0; NO3- - 21,0…25,0; NO2- - 0,3…0,5.

Фосфатирование проводят в динамическом режиме.

Второй вариант способа заключается в том, что на поверхность сплава типа пермаллой наносят гальваническое цинковое покрытие из цианистого электролита, содержащего (г/дм3) ZnO - 15-45; NaCN - 30-120; NaOH - 35-100 при плотности тока 1-5 А/дм2, отношении анодной и катодной поверхности 1:1, температуре 15-30°C в течение 14-17 мин. После этого на слой цинка наносят фосфатный слой при температуре 95-98°C в течение 2-3 минут раствором, содержащим (г/дм3) P2O5 - 7,4-9,8; Mn2+ - 2,1-2,8; Zn2+ - 11,0-13,0; NO3- - 21,0-25,0; NO2- - 0,3-0,5.

Фосфатирование проводят в динамическом режиме.

Поскольку цинковый подслой, нанесенный на детали из сплавов типа пермаллой, будет впоследствии участвовать в процессе образования фосфатной пленки, то его толщина не должна превышать 4 мкм (оптимальное значение 3-4 мкм), а время фосфатирования должно составлять 2-3 минуты. При этом большая часть осажденного цинка будет израсходована на формирование электроизоляционного фосфатного слоя, что позволит сохранить геометрические размеры обрабатываемой детали в заданных допусках. Непрореагировавшая часть цинкового подслоя будет впоследствии осуществлять функцию субстрата, удерживающего на своей поверхности фосфатное покрытие. Расчетная площадь обрабатываемой поверхности в единице объема фосфатирующего раствора равна 0,1 м2/дм3.

Пример 1

Испытания проводили на деталях из магнитомягкого сплава 79НМ.

Обрабатываемые детали, предварительно подвергнутые термической обработке, вертикально устанавливают партиями (из расчета 0,1 м2 обрабатываемой поверхности на 1 дм3 раствора фосфатирования) на специальные штанги, которые во избежание взаимодействия с фосфатирующим раствором защищены инертным материалом (плотно прилегающей к штанге гибкой полипропиленовой трубкой). Детали обезжиривают в растворе состава (г/дм3):

NaOH - 10;

Na3PO4⋅12H2O - 35;

Na2CO3 - 30;

Na2SiO3 - 7,

при температуре 22°C в течение 10-15 минут. Промывку деталей осуществляют струйным методом в течение 1 минуты сначала в горячей, а затем в холодной воде. После этого детали подвергают травлению в растворе состава (г/дм3):

HCl – 250;

C6H12N4 (уротропин) – 45;

при температуре 25°C в течение 1-3 минут.

После травления детали промывают струйным методом в течение 1 минуты в холодной воде.

Нанесение гальванического цинкового покрытия производят из цинкатного электролита состава (г/дм3):

ZnO - 10;

NaOH – 110;

при плотности тока 4 А/дм2, отношении анодной и катодной поверхности 1:2, температуре 25°C в течение 5-7 мин.

Фосфатирование проводят при температуре 96°C в течение 3 минут раствором при следующем соотношении компонентов (г/дм3):

P2O5 - 7,4;

Mn2+ - 2,1;

Zn2+ - 11,0;

NO3- - 21,0;

NO2- - 0,3.

Во избежание слипания деталей между собой, процесс фосфатирования проводят в динамическом режиме при энергичном встряхивании штанги. После этого проводят промывку деталей струйным методом в течение 1 минуты сначала в горячей, а затем в холодной воде. Высушивание деталей осуществляют в струе теплого воздуха.

Пример 2

Процесс обработки деталей проводят как в примере 1 за исключением процесса гальванического покрытия, которое в данном случае проводят из раствора цианистого электролита, содержащего (г/дм3):

ZnO – 30;

NaCN – 75;

NaOH – 70;

при плотности тока 3 А/дм2, отношении анодной и катодной поверхности 1:1, температуре 25°C в течение 15 мин.

При выполнении фосфатирования деталей из прецизионного сплава типа пермаллой с предварительно нанесенным гальваническим цинковым покрытием необходимо учитывать, что при увеличении толщины цинкового подслоя и времени фосфатирования толщина полученных фосфатных покрытий также будет повышаться. При этом электроизоляционные свойства фосфатного покрытия, полученного на оцинкованном сплаве типа пермаллой, будут находиться в интервале 70…100 В при обеспечении толщины осажденного цинкового слоя в интервале 3…4 мкм.

1. Способ фосфатирования магнитомягких сплавов типа пермаллой, включающий обработку поверхности при температуре 95-98°С в течение 2-3 мин раствором при следующем соотношении компонентов, г/дм3: Р2О5 – 7,4-9,8, Mn2+ – 2,1-2,8, Zn2+ – 11,0-13,0, NO3- – 21,0-25,0, NO2- – 0,3-0,5, отличающийся тем, что перед нанесением фосфатного покрытия наносят гальваническое цинковое покрытие из цинкатного электролита при следующем соотношении компонентов, г/дм3: ZnO – 6-14, NaOH – 80-140, при плотности тока 3-4 А/дм2, отношении анодной и катодной поверхности 1:2, температуре 15-30°С в течение 5-7 мин.

2. Способ по п. 1, отличающийся тем, что фосфатирование проводят в динамическом режиме.

3. Способ фосфатирования магнитомягких сплавов типа пермаллой, включающий обработку поверхности при температуре 95-98°С в течение 2-3 мин раствором при следующем соотношении компонентов, г/дм3: P2O5 – 7,4-9,8, Mn2+ – 2,1-2,8, Zn2+ – 11,0-13,0, NO3- – 21,0-25,0, NO2- – 0,3-0,5, отличающийся тем, что перед нанесением фосфатного покрытия наносят гальваническое цинковое покрытие из цианистого электролита при следующем соотношении компонентов, г/дм3: ZnO – 15-45, NaCN – 30-120, NaOH – 35-100, при плотности тока 1-5 А/дм2, отношении анодной и катодной поверхности 1:1, температуре 15-30°С в течение 14-17 мин.

4. Способ по п. 3, отличающийся тем, что фосфатирование проводят в динамическом режиме.



 

Похожие патенты:
Изобретение относится к гальванотехнике, а именно: к электрохимическому нанесению цинка, и может найти применение в авиационной технике, машиностроении, автомобильной промышленности и других отраслях техники.
Изобретение относится к области гальванотехники и может быть использовано для получения цинковых покрытий на деталях из стали с целью защиты их от коррозии. .

Изобретение относится к области гальванотехники. .

Изобретение относится к области электрохимии, в частности к нанесению гальванических покрытий, и может быть использовано в отраслях машиностроения для защиты металлоконструкций от коррозии.
Изобретение относится к области нанесения гальванических покрытий, в частности цинковых, и может быть использовано в машиностроении для защиты металлоконструкций от коррозии.
Изобретение относится к гальванотехнике и может быть использовано для получения цинковых покрытий на деталях различного назначения с целью защиты от коррозии. .

Изобретение относится к гальваностегии, в частности к электролитическому нанесению цинковых блестящих покрытий, и может быть использовано в различных отраслях промышленности для защиты металла от коррозии и обеспечения декоративного вида.

Изобретение относится к гальваностегии, в частности к электрохимическому осаждению цинка, и может быть использовано в различных отраслях промышленности для покрытия деталей с целью защиты их от коррозии.

Изобретение относится к гальваностегии, в частности к электрохимическому осаждению цинка, и может быть использовано в различных отраслях промышленности для покрытия деталей с целью защиты их от коррозии.

Изобретение относится к гальванотехнике, в частности к нанесению цинковых покрытий, и может быть использовано в различных отраслях промышленности. .

Настоящее изобретение относится к способу получения стального листа с очерненным цинковым покрытием, который может быть использован в качестве кровельного и наружного материала зданий, бытовых приборов и автомобилей.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности. Способ включает химическую подготовку поверхностей деталей, флюсование в расплавах хлоридов щелочных и щелочноземельных металлов при температуре 700…800°C, жидкостное алитирование в расплаве электротехнического алюминия при температуре 730…760°C с последующим охлаждением до температуры 200…300°C, оксидирование и нагрев в три приема с выдержкой по 3…5 мин - сначала до 260…270°C, затем до 460…470°C и далее до 620…640°C, при этом детали оксидируют в анодно-катодном микродуговом режиме 20…25 мин при плотности тока 15…20 А/дм2 в растворе, содержащем едкое кали 4…6 г/л с низкомодульным жидким стеклом 4…6 г/л или едкое кали 6…8 г/л с борной кислотой 30…50 г/л, а также мелкодисперсный корунд 40…60 г/л и оксид хрома 1…2 г/л, при оксидировании деталям, подключенным к одному выходу источника тока, сообщают поступательные и вращательные движения, а на их обрабатываемые поверхности через распылители из нержавеющей стали, подключенные к противоположному выходу источника тока, под давлением подают кислород при температуре 5…15°C и воздействуют ультразвуком.
Наверх