Способ изготовления т-образного затвора



Способ изготовления т-образного затвора
Способ изготовления т-образного затвора
Способ изготовления т-образного затвора
Способ изготовления т-образного затвора

 


Владельцы патента RU 2624600:

Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) (RU)

Изобретение относится к технологии формирования Т-образных металлических затворов транзисторов различного типа, предназначенных для работы в диапазонах СВЧ и выше, а также при создании монолитных интегральных схем. Суть изготовления коротких Т-образных затворов с высоким аспектным соотношением и пологим наклоном стенок ножки с помощью диэлектрической маски заключается в последовательном нанесении двухслойного диэлектрика SiO2/SiNx, травлении щели в верхнем диэлектрике SiNx с контролем по времени или до стоп-слоя, конформном осаждении тонкого слоя диэлектрика Al2О3, его травлении с размерами щелей, соответствующих длине затвора, и дальнейшем травлении нижнего слоя SiO2 сквозь полученную маску Al2O3. После этого остатки Al2O3, нависающие над щелью в нижнем слое SiO2, удаляются сухим травлением в хлорсодержащем газе (BCl3). Последняя операция, в зависимости от времени воздействия плазмы, может создать при необходимости подзатворное углубление для приближения затвора к области канала транзистора. Изобретение обеспечивает улучшение характеристик транзистора, в частности увеличение пробивного напряжения, снижение влияния ловушек в призатворной области, уменьшение коллапса тока, а также уменьшение емкости затвор-сток. 4 з.п. ф-лы, 10 ил.

 

Изобретение относится к технологии формирования Т-образных металлических затворов транзисторов различного типа (например, полевых с затвором Шоттки или МДП-затвором), предназначенных для работы в диапазонах СВЧ и выше, а также при создании монолитных интегральных схем (МИС), включающих подобные элементы.

Известен способ [US 5766967; H01L 21/8232] изготовления затвора к гетероструктуре с помощью трех слоев фоторезиста, которые позволяют сформировать Т-образный затвор. В данном способе трехслойный резист, в котором верхний и нижний слои менее чувствительны, а средний слой имеет наибольшую толщину и чувствительность, засвечивается электронным лучом в соответствии с рисунком затворов. После проявления всех слоев формируется грибообразный профиль. Недостатками этого и других подобных способов формирования профиля затвора в резисте являются плохая воспроизводимость размеров при увеличении аспектного соотношения размеров профиля (высоты к ширине), неустойчивость резиста к возможным необходимым воздействиям при обработке пластины перед напылением металлизации, а также возможная деградация профиля в процессе напыления в результате перегрева образца или воздействия дозы отраженных электронов при электронно-лучевом напылении.

Известен способ [US 7897446; H01L 21/338] изготовления затвора к гетероструктуре на основе нитрида галлия, заключающийся в нанесении слоя диэлектрика нитрида кремния SiN и/или нитрида алюминия AlN, нанесении слоя резиста, литографии окон в резисте, травлении диэлектрика сквозь окна в резисте, уширении окон в оставшемся резисте так, чтобы был сформирован обратный профиль, сужающийся кверху, осаждении металлов в образованные профили и последующем снятии резиста. Другой вариант, описанный там же, предполагает использование двух слоев диэлектрика с промежуточным стоп-слоем, обрабатывающихся аналогично первому варианту, но оставляя в итоге нижний слой диэлектрика в целости с осаждением металла на него. Среди недостатков этого способа можно отметить следующее: края ступеньки диэлектрик-резист, работающие как полевая пластина, недостаточно плавные, в целом профиль запыления неоптимален как с точки зрения распределения поля, так и с механической точки зрения. Кроме того, высокое аспектное соотношение, необходимое для создания эффективных транзисторов, работающих на частотах 100 ГГц и выше, в данном способе может быть достигнуто только с помощью недостаточно надежной резистивной маски.

Известен способ [ЕР 2479790; H01L 29/778] изготовления затвора к нитридной гетероструктуре, на которую нанесен слой, прекращающий травление (стоп-слой), и диэлектрический слой. Слой, прекращающий травление, может включать материалы A1N, GaN, AlGaN и/или SiO2. Диэлектрический слой может включать материалы SiN, SiO2 или SiON. Через литографическую маску различными методами селективно травят диэлектрический слой и затем, при необходимости, сквозь полученную щель травят стоп-слой. После осаждения металлов формируется Т-образный затвор с диэлектрическим подслоем или непосредственным контактом к гетероструктуре или ее кап-слою. Толщина диэлектрического слоя и, следовательно, высота ножки затвора типично выбирается 50-200 нм. Основными недостатками данного способа являются недостаточная надежность воспроизведения размеров, а также необходимость уменьшения высоты ножки при уменьшении длины затвора за счет использования резистивной литографической маски для травления. Все это позиционирует способ как прежде всего подходящий для изготовления мощных транзисторов с большой длиной затвора.

Известен способ изготовления Т-образного затвора [US 6087256 A; H01L 21/44], где для травления окон в диэлектрическом слое используется маска из слоя тугоплавкого металла (W), сформированная, например, электронно-лучевой литографией и плазмохимическим травлением. По этой маске плазмохимически травится узкое окно в диэлектрике на определенную неполную глубину, затем в том же месте после литографии более широких окон снова травится металлическая маска и сквозь нее опять травится слой диэлектрика до вскрытия дна таким образом, чтобы сформировать Т-образный профиль. Далее производится осаждение затворного металла и его обтрав по фотолитографической маске методом ионного физического травления. Данный метод позволяет получить высокое аспектное соотношение ножки затвора, но он является достаточно сложным, требующим множество газовых смесей для травления маски и диэлектрика, характеризуется вертикальными стенками профиля, что требует использования псевдоизотропного напыления металла для устранения эффектов затенения и приводит к слабому сглаживанию поля в призатворной области.

Известен способ [CN 102437182 А; H01L 29/778], принятый за прототип, изготовления затвора к нитридной гетероструктуре, в котором ножка затвора формируется путем медленного анизотропного плазмохимического травления двухслойного диэлектрика SiNx/SiO2 с суммарной толщиной до 130 нм сквозь маску электронного резиста с последующим формированием верхней области затвора в двухслойном резисте и запылением металлом получившейся полости. Недостатками этого метода являются небольшая высота ножки и отсутствие наклона стенок, облегчающего запыление металлом и улучшающего полевые характеристики затвора.

Техническим результатом изобретения является воспроизводимая и легкоконтролируемая на каждом этапе технология формирования оптимального Т-образного профиля сечения затвора, благодаря чему обеспечивается качественное заполнение металлизацией и улучшаются характеристики транзистора, в частности увеличивается пробивное напряжение Uпр, снижается влияние ловушек в призатворной области, уменьшается эффект коллапса тока, а также уменьшается емкость затвор-сток Сзс.

Технический результат достигается за счет формирования щели в двухслойном диэлектрике путем последовательного травления диэлектриков через конформные диэлектрические маски А12O3. Необходимо, чтобы тонкая диэлектрическая маска имела высокую селективность к плазмохимическому травлению в смеси газов для травления основных слоев диэлектрика. Диэлектриками, формирующими Т-образный профиль, являются последовательно осажденные SiO2 и SiNx, разделенные, при необходимости, тонкой прослойкой (5 нм) Al2O3 в качестве стоп-слоя. Диэлектрической маской служит слой Al2O3, конформно осажденный, например, методом атомно-слоевого осаждения. Для травления SiO2 и SiNx используется газовая смесь на основе фторсодержащих газов, например SF6, который не воздействует на маску. Маска Al2O3 травится в хлорсодержащей смеси, например с BCl3, в которой основные слои практически не травятся. Малая толщина слоя Al2O3 обеспечивает повышенную точность переноса размеров рисунка, сформированных в электронном резисте.

Метод позволяет формировать затвор с увеличенной высотой ножки, тем самым уменьшая емкость затвор-сток. При этом длина затвора может быть существенно меньше его высоты, тем самым обеспечивая реализацию высоких аспектных соотношений, т.е. создание сверхкоротких затворов с большой высотой ножки. Наклонные стенки ножки затвора позволяют качественно заполнить металлом профиль сечения, уменьшая сопротивление затвора и увеличивая его механическую прочность, а также работают как полевая пластина - электрод, сглаживающий распределение поля в призатворной области, что ослабляет эффект поверхностных ловушек и увеличивает пробивное напряжение.

Суть изготовления коротких Т-образных затворов с высоким аспектным соотношением и пологим наклоном стенок ножки с помощью диэлектрической маски заключается в последовательном нанесении двухслойного диэлектрика SiO2/SiNx, травлении щели в верхнем диэлектрике SiNx с контролем по времени или до стоп-слоя, конформном осаждении тонкого слоя диэлектрика Al2O3, его травлении с размерами щелей, соответствующих длине затвора, и дальнейшем травлении нижнего слоя SiO2 сквозь полученную маску Al2O3. После этого остатки Al2O3, нависающие над щелью в нижнем слое SiO2, удаляются сухим травлением в хлорсодержащем газе (BCl3). Последняя операция, в зависимости от времени воздействия плазмы, может создать при необходимости подзатворное углубление (рецесс) для приближения затвора к области канала транзистора.

Фиг. 1-8. Схематическое изображение, иллюстрирующее способ изготовления Т-образного затвора согласно примеру 1.

Фиг. 9 и фиг. 10. Схематическое изображение, иллюстрирующее способ изготовления Т-образного затвора согласно примеру 2.

ПРИМЕР 1

Предлагаемый способ позволяет надежно сформировать профиль затвора с повышенным аспектным соотношением и включает в себя следующую последовательность операций.

1. На подложку 1, на которой требуется сформировать затворную металлизацию, наносят слои диэлектрика SiO2 2 и SiNx 3 толщиной 120 и 200 нм соответственно. Затем в качестве маски наносят тонкий слой диэлектрика Al2O3 4 (5 нм). С помощью электронно-лучевой литографии с использованием резиста 6 ПММА (100 нм) в слое диэлектрика Al2O3 селективно по отношению к остальным слоям травятся окна 5 в газовой смеси BCl3:Ar (фиг. 1).

2. Далее через маску Al2O3 с окнами методом плазмохимического травления формируют щель 7 в слое диэлектрика SiNx, имеющую стенки с положительным наклоном благодаря использованию изотропного режима травления (фиг. 2).

3. Затем верхний слой Al2O3, в том числе нависающие над стенками щели участки, селективно удаляют и конформно осаждают тонкую пленку Al2O3 8 так, чтобы полностью покрыть боковые стенки верхней щели, защищая слой SiNx 3 от дальнейшего травления (фиг. 3).

4. С помощью электронно-лучевой литографии с использованием резиста ПММА в пленке Al2O3 травится щель 9 в газовой смеси BCl3:Ar (фиг. 4).

5. Сквозь щель 9 в пленке Al2O3 8 травится слой SiO2 2. Так как скорость травления SiO2 существенно ниже, чем SiNx, и при этом достигается оптимальная степень анизотропии, то при используемых толщинах SiO2 (100 нм) длительное время процесса позволяет улучшить качество травления щели и повысить воспроизводимость результатов, формируя щель 10 с положительным наклоном стенок и шириной внизу, соответствующей размеру окон в диэлектрической маске 8 (фиг. 5).

6. Завершающим этапом в формировании профиля затвора является травление Al2O3, при котором удаляется верхний слой, в том числе и нависающие участки над стенками нижней щели. При этом формируется углубление в подзатворной области 11 (рецесс), глубину которого можно задавать временем травления (фиг. 6).

7. Далее наносят систему резистов 14 для литографического формирования маски верхней области затвора - «шляпы» с шириной 0,6 мкм и высотой, достаточной для «взрыва» металлизации с толщиной, превышающей высоту ножки (>0,4 мкм). Металлизация 15 наносится методом резистивного напыления (фиг. 7).

8. После «взрыва» металлизации все слои диэлектриков последовательно удаляются плазмохимическим методом (фиг. 8).

ПРИМЕР 2

Отличается от примера 1 тем, что перед операцией 1 на подложку осаждается тонкий (5-15 нм) слой Al2O3 12, а на шаге 6 в процессе травления дна щели, в зависимости от соотношения толщин слоев 12 и 8 (фиг. 9), задавая время травления, достаточное для полного удаления верхнего слоя, можно оставить тонкий слой Al2O3 (2 нм) 13 под затвором для создания МДП-затвора вместо затвора Шоттки (фиг. 10). Слой Al2O3 около затвора будет являться пассивирующим.

1. Способ изготовления Т-образного затвора, включающий формирование щели в двухслойном диэлектрике, нанесение слоев резиста и последующую металлизацию, отличающийся тем, что формирование щели производится путем последовательного травления диэлектриков через конформные диэлектрические маски Al2O3.

2. Способ по п. 1, отличающийся тем, что в качестве двухслойного диэлектрика используются слои SiO2 и SiNx.

3. Способ по п. 2, отличающийся тем, что между слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.

4. Способ по п. 1, отличающийся тем, что между подложкой и слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.

5. Способ по п. 4, отличающийся тем, что между слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.



 

Похожие патенты:

Изобретение относится к способу формирования омических контактов к нитридным гетероструктурам по технологии вжигаемых омических контактов и может быть использовано при изготовлении полупроводниковых приборов с высокой степенью интеграции.

Использование: для изготовления тонкопленочных СВЧ-резонаторов с Брэгговским отражателем. Сущность изобретения заключается в том, что способ сглаживания поверхности пленки алюминия на диэлектрической подложке включает напыление пленки на подложку методом магнетронного распыления алюминиевой мишени в вакууме и с использованием металла иттрия, совместно распыляют алюминий и иттрий, причем иттрий равномерно распределен по поверхности в области эрозии алюминиевой мишени при отношении суммарной площади пластинок иттрия (SY) к суммарной площади области эрозии алюминиевой мишени (SAl) равном 2,0-6,0%, т.е.

Изобретение относится к области технологии изготовления многоуровневой металлизации сверхбольших интегральных микросхем. В способе формирования системы многоуровневой металлизации для высокотемпературных интегральных микросхем, включающем операции нанесения диэлектрических и металлических слоев, фотолитографию и травление канавок в этих слоях, нанесение барьерного и зародышевого слоев, нанесение слоя металла и его ХМП, процесс формирования одного уровня металлической разводки включает следующую последовательность основных операций: на пластину кремния со сформированным транзисторным циклом наносится слой вольфрама для формирования горизонтальных проводников, проводится его ХМП и сквозное травления областей под заполнение проводящим барьерным слоем нитрида титана и диэлектриком, ХМП диэлектрика, нанесение барьерного слоя нитрида титана и слоя вольфрама для формирования вертикальных проводников, ХМП слоя вольфрама, сквозное травление областей под заполнение диэлектрическим барьерным слоем нитрида кремния и диэлектриком, ХМП диэлектрика с последующим покрытием полученной структуры проводящим барьерным слоем нитрида титана.

Изобретение относится к технологии формирования омических контактов к гетероструктурам AlGaN/GaN и может быть использовано при изготовлении полупроводниковых приборов, в частности полевых транзисторов СВЧ диапазона.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования силицидных слоев с низким сопротивлением.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением.

Изобретение относится к области электронной техники и описывает возможность получения дырочной проводимости аморфной оксидной пленки на поверхности металлического стекла системы Ni-Nb путем искусственного оксидирования.

Изобретение относится к области нанотехнологий, а именно к способу создания упорядоченной ступенчатой поверхности Si(111)7×7, покрытой эпитаксиальным слоем силицида меди Cu2Si, и может быть использовано при создании твердотельных электронных приборов, например сенсоров газов или молекул.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов полупроводникового прибора.

Изобретение относится к технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с пониженным сопротивлением. В способе изготовления полупроводникового прибора формируют контакты на основе силицида платины.
Наверх