Способ цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения и устройство для его осуществления

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый технический результат - выравнивание среднего уровня яркости радиолокационного изображения в направлении дальней границы зоны обзора, увеличение дальности действия радиолокационной станции. Указанный результат достигается за счет выравнивания амплитудно-частотного спектра сигнала перед его оцифровкой, при этом после выравнивания уменьшается динамический диапазон амплитуды сигнала на входе аналого-цифрового преобразователя, что, в свою очередь, приводит к снижению минимального уровня сигнала, который может быть оцифрован с его помощью. Для практической реализации способа цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения в устройство, содержащее последовательно соединенные приемное устройство и умножитель, последовательно соединенные аналого-цифровой преобразователь и цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя, дополнительно введена частотная корректирующая цепь, вход которой соединен с выходом умножителя, а выход - со входом аналого-цифрового преобразователя, при этом амплитудно-частотная характеристика частотной корректирующей цепи имеет обратно пропорциональную зависимость относительно закона изменения амплитуд частотных составляющих от дальности. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности.

Наиболее близким по технической сущности и достигаемому техническому результату является способ цифровой обработки сигналов (прототип), основанный на реализации алгоритма цифрового синтезирования апертуры антенны в радиолокационной станции (РЛС) непрерывного излучения сигнала с линейной частотной модуляцией [1. Антипов В.Н., Колтышев Е.Е., Мухин В.В., Печенников А.В., Фролов А.Ю., Янковский В.Т. Радиолокационная система беспилотного летательного аппарата. Радиотехника, 2006. №7. С. 14-20].

Способ включает: зондирование земной (водной) поверхности, прием, демодуляцию, оцифровку сигналов, с последующим сжатием сигналов в цифровом процессоре по дальности и азимуту.

Наиболее близким по технической сущности и достигаемому техническому результату является устройство (прототип), содержащее последовательно соединенные приемное устройство, умножитель, аналого-цифровой преобразователь (АЦП), цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя.

Недостатком способа и устройства цифровой обработки сигналов в РЛС с синтезированной апертурой антенны непрерывного излучения является низкий уровень яркости формируемых РЛИ в направлении дальней границы зоны обзора, снижающий их информативность и усложняющий дешифрирование [2. Школьный Л.А. РЛС воздушной разведки, дешифрирование радиолокационных изображений. М.: ВВИА им. проф. Н.Е. Жуковского, 2008. С. 237]. Другим недостатком является малая дальность действия РЛС, обусловленная высоким динамическим диапазоном (ДД) принимаемых сигналов по сравнению с ДД АЦП.

Техническим результатом данного изобретения является выравнивание среднего уровня яркости РЛИ в направлении дальней границы зоны обзора за счет выравнивания амплитудно-частотного спектра сигнала перед его оцифровкой. Выравнивание амплитудно-частотного спектра также приводит к увеличению дальности действия РЛС за счет того, что после выравнивания уменьшается ДД амплитуды сигнала на входе АЦП, что, в свою очередь, приводит к снижению минимального уровня сигнала, который может быть оцифрован с помощью АЦП.

Технический результат достигается тем, что в известном способе формирования РЛИ, состоящем в зондировании земной (водной) поверхности, приеме, демодуляции, оцифровке и сжатии сигналов по дальности и азимуту дополнительно перед оцифровкой сигнала амплитуды частотных составляющих амплитудно-частотного спектра сигнала корректируют обратно пропорционально закону изменения амплитуд частотных составляющих от дальности.

Технический результат достигается тем, что в известном устройстве формирования РЛИ, содержащем последовательно соединенные приемное устройство и умножитель, последовательно соединенные АЦП и цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя, дополнительно введена частотная корректирующая цепь, вход которой соединен с выходом умножителя, а выход - со входом аналого-цифрового преобразователя, при этом амплитудно-частотная характеристика частотной корректирующей цепи имеет обратно пропорциональную зависимость относительно закона изменения амплитуд частотных составляющих от дальности.

Сущность способа заключается в следующем. В РЛС с непрерывным излучением с линейной частотной модуляцией реализуется частотный способ измерения дальности до цели [3. Ширман Я.Д. Теоретические основы радиолокации. М.: «Сов. радио», 1970. С. 365]. При этом дальность действия ограничивается динамическим диапазоном АЦП, который не должен быть меньше ДД амплитуды сигнала на его входе. Верхняя граница ДД соответствует суммарной амплитуде сигнала, представляющего собой сумму сигналов, отраженных от всех элементов разрешения в пределах зоны обзора, а нижняя - амплитуде сигнала, отраженного от отдельного элемента разрешения, расположенного на ее дальней границе. Известно, что в РЛС с непрерывным излучением после демодуляции принятого сигнала на выходе умножителя формируется сигнал, частота биений которого прямо пропорциональна дальности до объекта локации, а амплитуда - обратно пропорциональна ее квадрату [4. Caner Özdemir. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms. John Wiley&Sons, 2012. C. 42, 54]. Осуществление частотной коррекции амплитуд частотных составляющих амплитудно-частотного спектра сигнала на выходе умножителя обратно пропорционально закону изменения амплитуд сигналов от дальности обеспечивает равномерность амплитудно-частотного спектра сигнала на входе АЦП, что приводит к выравниванию яркости РЛИ в пределах зоны обзора и уменьшению амплитуды сигналов, отраженных от близкорасположенных элементов разрешения. В результате снижается верхняя граница ДД принимаемых сигналов вследствие уменьшения амплитуды суммарного сигнала, отраженного от всех элементов разрешения в пределах зоны обзора, обеспечивая тем самым возможность оцифровки более слабых сигналов, приходящих с больших дальностей. Значение верхней частоты амплитудно-частотной характеристики частотной корректирующей цепи определяется выражением fmax=2RmaxΔf/(Тпс), где Rmax - максимальная дальность действия радиолокатора, Δf - ширина спектра зондирующего сигнала, Тп - период частотной модуляции и с - скорость света.

Коррекция амплитуды частотных составляющих амплитудно-частотного спектра перед оцифровкой сигнала по закону, обратно пропорциональному закону изменения амплитуд частотных составляющих от дальности, может быть выполнена, например, с применением активных или пассивных фильтров [5. Зааль Р. Справочник по расчету фильтров. М.: «Радио и связь», 1983. С. 27, 46].

На фигуре представлена структурная схема устройства для осуществления способа цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения.

Устройство состоит из приемного устройства 1, умножителя 2, частотной корректирующей цепи 3, аналого-цифрового преобразователя 4, цифрового процессора 5, передающего устройства 6.

Последовательно соединенные приемное устройство 1, умножитель 2, частотная корректирующая цепь 3, аналого-цифровой преобразователь 4 подключены к цифровому процессору 5, а выход передающего устройства 6 соединен со вторым входом умножителя 2.

Частотная корректирующая цепь 3 предназначена для частотной коррекции амплитуд принятых сигналов на выходе умножителя и может быть выполнена, например, на пассивных или активных фильтрах [5. Зааль Р. Справочник по расчету фильтров. М.: «Радио и связь», 1983. С. 27, 46].

Работа устройства, реализующего способ цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны, не отличается от работы устройства способа-прототипа за исключением того, что перед оцифровкой сигналов в АЦП производится дополнительная частотная коррекция сигналов частотной корректирующей цепью 3, которая выравнивает амплитуды частотных составляющих амплитудно-частотного спектра сигнала на выходе умножителя обратно пропорционально закону изменения амплитуд сигналов от дальности. В результате обеспечивается равномерность амплитудно-частотного спектра сигнала на входе АЦП. Это приводит к выравниванию яркости РЛИ в пределах зоны обзора и уменьшению амплитуды сигналов, отраженных от близкорасположенных элементов разрешения. Следствием этого является снижение верхней границы ДД принимаемых сигналов из-за уменьшения амплитуды суммарного сигнала, отраженного от всех элементов разрешения в пределах зоны обзора. Тем самым обеспечивается возможность оцифровки более слабых сигналов, приходящих с бóльших дальностей.

1. Способ цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения, заключающийся в зондировании земной (водной) поверхности, приеме, демодуляции, оцифровке и сжатии сигналов по дальности и азимуту, отличающийся тем, что дополнительно перед оцифровкой сигнала амплитуды частотных составляющих амплитудно-частотного спектра сигнала корректируют обратно пропорционально закону изменения амплитуд частотных составляющих от дальности.

2. Устройство цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения, содержащее последовательно соединенные приемное устройство и умножитель, последовательно соединенные аналого-цифровой преобразователь и цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя, отличающееся тем, что дополнительно введена частотная корректирующая цепь, вход которой соединен с выходом умножителя, а выход - со входом аналого-цифрового преобразователя, при этом амплитудно-частотная характеристика частотной корректирующей цепи имеет обратно пропорциональную зависимость относительно закона изменения амплитуд частотных составляющих от дальности.



 

Похожие патенты:

Изобретение относится к области радиотехники, в частности к способам и технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА).

Изобретение относится к области радиолокации и предназначено для выполнения широкого круга задач при использовании на пилотируемых и беспилотных летательных аппаратах самолетного и вертолетного типа.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности.

Изобретение относится к области радиолокации, в частности к бортовым радиолокационным станциям, устанавливаемым на летательных аппаратах, и позволяет формировать радиолокационное изображение (РЛИ) поверхности Земли.

Изобретение относится к радиолокационной технике, в частности к аэрокосмическим бортовым радиолокационным станциям с синтезированием апертуры антенны (РСА), формирующим радиолокационные изображения (РЛИ) земной поверхности с использованием синтезирования антенного раскрыва (САР) в процессе сканирования этой поверхности диаграммой направленности антенны РСА.

Изобретение относится к области космического радиолокационного зондирования Земли, в частности к способу двумерного развертывания фазы при получении цифровых моделей рельефа земной поверхности по интерферометрическим парам радиолокационных изображений.

Изобретение относится к космическим радиоканалам передачи цифровой информации. Сущность заявленного радиокомплекса заключается в организации радиоканала передачи оперативной управляющей информации (ОУИ) «Земля - КА» введением в бортовые и наземные программно-аппаратные средства на пунктах приема целевой информации радиокомплекса устройств формирования и передачи ОУИ на Земле и приема и выделения ОУИ на КА, что позволит минимизировать взаимодействие с центром управления полетами и сокращать время от приема заявок на дистанционное зондирование Земли (ДЗЗ) от потребителей и формирования программы зондирования до получения результатов ее реализации на КА, в течение текущего сеанса связи адаптировать во введенных на КА перестраиваемых блоках кодирования и модуляции сигнально-кодовую структуру информации к его условиям, избирательно запрашивать из всего объема информации наиболее информационно емкие данные зондирования (ДЗ) с помощью введенных на КА устройств анализа ДЗ и каталога ДЗ, а в наземную аппаратуру - устройств восстановления структуры бортового информационного потока.

Сканирующее устройство формирования трехмерного голографического изображения, в миллиметровом диапазоне волн, которое обеспечивает реализацию способа исследования объекта, включает в себя модуль трансивера миллиметрового диапазона, содержащий антенную решетку, направляющее устройство рельсового типа, с которым соединен модуль трансивера.

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов воздушных объектов (ДпП ВО) признаков идентификации, а именно частоты и амплитуды спектральных откликов, соответствующих рассеивающим центрам (РЦ) ВО.

Изобретение относится к области радиолокации и может быть использовано для определения высоты полета летательного аппарата над земной, водной поверхностью, над поверхностью различных планет, а также при взлете и посадке.

Изобретение относится к радиолокационным системам летательных аппаратов. Достигаемый технический результат - расширение ширины полосы пропускания. Указанный результат достигается за счет того, что многофункциональная малогабаритная радиолокационная система для летательных аппаратов состоит из радиочастотного модуля (РЧМ) и бортовой вычислительной машины (БЦВМ). РЧМ состоит из приемопередающего модуля и антенного модуля, включающего волноводно-щелевую антенную решетку (ВЩАР), привод, четырехканальный сверхвысокочастотный приемник (СВЧ-приемник), циркулятора. Приемопередающий модуль состоит из передатчика, приемника промежуточной частоты (ПЧ-приемник) и синтезатора частот и синхросигналов управления (СЧС). СЧС состоит из источника питания, модуля управления, модуля формирования сигнала излучения F0, опорного генератора, генератора опорных частот и генератора частоты подставки. 3 ил.

Изобретение относится к области для контроля экологического загрязнения шельфовых, прибрежных зон. Способ включает зондирование прибрежных акваторий, содержащих эталонные участки средствами, установленными на воздушно-космическом носителе с получением синхронных изображений в ультрафиолетовом и ближнем инфракрасном диапазоне с привязкой изображений по координатам системой позиционирования ГЛОНАСС, контрастирование кадров путем формирования синтезированных матриц из попиксельных отношений этих изображений, выделение контуров на поле синтезированных матриц, вычисление идентифицируемых параметров сигнала внутри контуров: пространственного спектра волнения F, фрактального объема Ω, площади рельефа Sp взволнованной поверхности анализируемого участка, оценка индекса состояния (И) загрязнения в виде зависимости от произведения идентифицируемых параметров Технический результат – повышение достоверности идентификации аномалий морской поверхности, а также увеличение чувствительности измерений. 7 ил.

Изобретение относится к радиотехнике и может быть использовано в радиолокаторе с синтезируемой апертурой антенны (РСА). Достигаемый технический результат – измерение рельефа поверхности Земли и формирование цифровой модели рельефа с помощью РСА, установленного на борту носителя РСА. Сущность способа измерения рельефа поверхности Земли заключается в последовательном наблюдении за поверхностью при постоянной высоте полета носителя и скорости полета, при этом первый сеанс наблюдения, заключающийся в излучении зондирующих сигналов и приеме отраженных от поверхности Земли сигналов с синтезом радиолокационных изображений (РЛИ) при телескопическом обзоре на интервале синтезирования L, осуществляется на дальности до поверхности R1, угле места θ1 и угле азимута α1, отличном от строго бокового, т.е. меньше 90°. После естественного перемещения носителя радиолокатором с синтезируемой апертурой (РСА) на расстояние базы интерферометра В осуществляется второй сеанс наблюдения за той же области поверхности на дальности R2, азимуте α2, угле места θ2, также заключающийся в излучении зондирующих сигналов и приеме отраженных от поверхности Земли сигналов с синтезом РЛИ при телескопическом обзоре на интервале синтезирования L. После проведения пары сеансов наблюдения производится стандартная интерферометрическая обработка пары РЛИ с извлечением информации о рельефе подстилающей поверхности. 1 ил.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический результат - увеличение быстродействия, повышение пространственного разрешения изображения объектов, формируемого радиометром с большим шагом сканирования. Способ заключается в применении двух антенн, одновременно сканирующих по пространству в ортогональных направлениях, получении в результате сканирования двух матриц радиометрического изображения с пропусками строк и столбцов, заполнении недостающих строк и столбцов интерполяцией, обработке матриц восстанавливающим фильтром Винера и объединении результатов обработки в одной матрице с повышенным пространственным разрешением. 1 табл., 2 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения в процессе дистанционного зондирования земной поверхности. Достигаемый технический результат - выравнивание среднего уровня яркости радиолокационного изображения в направлении дальней границы зоны обзора, увеличение дальности действия радиолокационной станции. Указанный результат достигается за счет выравнивания амплитудно-частотного спектра сигнала перед его оцифровкой, при этом после выравнивания уменьшается динамический диапазон амплитуды сигнала на входе аналого-цифрового преобразователя, что, в свою очередь, приводит к снижению минимального уровня сигнала, который может быть оцифрован с его помощью. Для практической реализации способа цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения в устройство, содержащее последовательно соединенные приемное устройство и умножитель, последовательно соединенные аналого-цифровой преобразователь и цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя, дополнительно введена частотная корректирующая цепь, вход которой соединен с выходом умножителя, а выход - со входом аналого-цифрового преобразователя, при этом амплитудно-частотная характеристика частотной корректирующей цепи имеет обратно пропорциональную зависимость относительно закона изменения амплитуд частотных составляющих от дальности. 2 н.п. ф-лы, 1 ил.

Наверх