Способ безотходной подготовки скважинной продукции (варианты)

Группа изобретений относится к способам подготовки газа путем низкотемпературной конденсации и может быть использована в газовой промышленности для промысловой подготовки скважинной продукции газоконденсатных месторождений. Согласно первому варианту предложенного способа сырой газ сепарируют на первой ступени с получением газа, водного и углеводородного конденсатов, последний редуцируют и стабилизируют совместно с конденсатом второй ступени с получением первого газа стабилизации и остатка. Газ первой ступени редуцируют и в смеси с первым газом стабилизации сепарируют на второй ступени путем охлаждения в условиях дефлегмации с получением конденсата и газа, который редуцируют, смешивают со вторым газом стабилизации и сепарируют на третьей ступени с получением конденсата и газа, который нагревают и выводят в качестве товарного. Остаток стабилизации редуцируют и стабилизируют совместно с конденсатом третьей ступени с получением товарного конденсата и второго газа стабилизации. Согласно второму варианту предложенного способа углеводородный конденсат первой ступени редуцируют и стабилизируют, а остаток стабилизации редуцируют и стабилизируют совместно с конденсатом третьей ступени и редуцированным конденсатом второй ступени. Техническим результатом является повышение степени извлечения углеводородов C3+ и исключение потерь легких компонентов газа. 2 н. и 6 з.п. ф-лы, 2 пр., 2 ил.

 

Изобретение относится к способам подготовки газа путем низкотемпературной сепарации и может быть использовано в газовой промышленности для промысловой подготовки скважинной продукции газоконденсатных месторождений (сырого газа).

Известен способ подготовки газа (A.M. Чуракаев. Низкотемпературная ректификация нефтяного газа. - М.: «Недра», 1989, с. 6), включающий компримирование, адсорбционную осушку и очистку газа с использованием части осушенного газа для регенерации адсорбента, низкотемпературную сепарацию газа путем рекуперативного охлаждения и сепарации с получением газа и конденсата, которые подают в колонну деметанизации, первый - после расширения в детандере, второй - после дросселирования и дегазации, продукт низа колонны нагревают в рекуперативных теплообменниках и подают в колонну деэтанизации, с низа которой выводят ШФЛУ, а верха отбирают газ, который нагревают в рекуперативных теплообменниках, смешивают с нагретой в рекуперативных теплообменниках смесью продукта верха колонны деметанизации и газа дегазации, компримируют и выводят в качестве товарного газа.

Недостатками известного способа, затрудняющими его использование в промысловых условиях, являются сложность, большое количество оборудования, применение огневого нагрева и пропанового охлаждения.

Наиболее близким по технической сущности к заявляемому способу является способ низкотемпературной сепарации газа (RU 2543867, опубл. 10.03.2015 г., МПК B01D 3/14, B01D 3/28), включающий трехступенчатую сепарацию сырого газа с получением на первой ступени конденсата и газа, сепарацию которого на второй ступени осуществляют в условиях дефлегмации за счет охлаждения газом и конденсатом третьей ступени, с получением конденсата и газа, который редуцируют совместно с газом дегазации и сепарируют на третьей ступени с получением газа, который нагревают и выводят в качестве товарного, и конденсата, который нагревают и дегазируют совместно с конденсатами первой и второй ступени с получением нестабильного конденсата и газа дегазации.

Недостатком данного способа является низкая степень извлечения углеводородов C3+ из-за высокого содержания в газе тяжелых компонентов газа и потери легких компонентов с конденсатом, которые в условиях промысла безвозвратно теряются при сжигании газов дегазации конденсата.

Задача изобретения - повышение степени извлечения углеводородов C3+ и исключение потерь легких компонентов газа.

Техническим результатом является повышение степени извлечения углеводородов C3+ за счет двухстадийной стабилизации конденсата и исключение потерь легких компонентов за счет смешения перед сепарацией: газа первой ступени - с первым, а газа второй ступени - со вторым газом стабилизации. Предложено два варианта осуществления способа.

Указанный технический результат в способе по первому варианту достигается тем, что в известном способе, включающем трехступенчатую сепарацию сырого газа с получением на каждой ступени газа и конденсата, с дефлегмацией газа на второй ступени за счет охлаждения газом третьей ступени, который затем выводят в качестве товарного газа, особенностью является то, что газ первой ступени перед сепарацией редуцируют и смешивают с первым газом стабилизации, конденсат первой ступени редуцируют и стабилизируют совместно с конденсатом второй ступени с получением первого газа стабилизации и остатка, газ второй ступени перед сепарацией смешивают со вторым газом стабилизации, а конденсат третьей ступени стабилизируют совместно с редуцированным остатком стабилизации с получением второго газа стабилизации и товарного конденсата.

Способ по второму варианту отличается тем, что конденсат первой ступени редуцируют и стабилизируют, а конденсат третьей ступени стабилизируют совместно с редуцированными конденсатом второй ступени и остатком стабилизации.

Для повышения выхода товарного конденсата целесообразно газ первой ступени предварительно охлаждать, а конденсат первой ступени предварительно нагревать. Для снижения нагрузки на стадию стабилизации конденсата второй ступени целесообразно его предварительно стабилизировать, например, за счет нагрева. При подготовке влажного газа целесообразно или подавать ингибитор гидратообразования, например метанол, в точки, определяемые расчетом, или осушать газ первой ступени и первый газ стабилизации (или конденсат первой ступени), например, путем адсорбции.

Стабилизацию осуществляют, например, путем фракционирования в колонне с охлаждаемой верхней и нагреваемой нижней частью. Оптимальные термобарические условия стабилизации рассчитывают в зависимости от состава и характеристики сырого газа.

Двухступенчатая стабилизация конденсатов позволяет повысить качество товарного конденсата за счет снижения содержания легких компонентов, а смешение первого и второго газов стабилизации с газами первой и второй ступени, соответственно, позволяет исключить потери легких компонентов газа.

Согласно первому варианту предлагаемого способа (фиг. 1) сырой газ 1 сепарируют на первой ступени 2 на газ 3, водный конденсат 4, который выводят, и углеводородный конденсат 5, который редуцируют с помощью устройства 6 и стабилизируют в колонне 7 совместно с конденсатом второй ступени 8 с получением первого газа стабилизации 9 и остатка 10. Газ первой ступени 3 редуцируют с помощью устройства 11 и в смеси с первым газом стабилизации 9 сепарируют на второй ступени в дефлегматоре 12 путем охлаждения в условиях дефлегмации с получением конденсата 8 и газа 13, который редуцируют с помощью устройства 14, смешивают со вторым газом стабилизации 15 и сепарируют на третьей ступени в сепараторе 16 с получением конденсата 17 и газа, который нагревают в дефлегматоре 12 и выводят в качестве товарного газа 18. Остаток стабилизации 10 редуцируют с помощью устройства 19 и совместно с конденсатом третьей ступени 17 стабилизируют в колонне 20 с получением товарного конденсата 21 и второго газа стабилизации 15. При необходимости газ первой ступени 3 охлаждают в теплообменнике 22, а конденсат первой ступени нагревают в теплообменнике 23, кроме того, низ дефлегматора 12 может подогреваться теплоносителем 24 (показано пунктиром). Для предотвращения гидратообразования в точки, определяемые расчетом, может или подаваться ингибитор гидратообразования, или осуществляться осушка газа первой ступени 3, газа сепарации 9 или конденсата 5 (не показано).

Во втором варианте (фиг. 2) в колонне 7 стабилизируют редуцированный конденсат первой ступени 5, а в колонне 20 - конденсат третьей ступени 17 совместно с редуцированным остатком стабилизации 10 и редуцированным с помощью устройства 25 конденсатом второй ступени 8.

Пример 1 (вариант 1). Сырой газ состава, % об.: углекислый газ 0,2; азот 0,7; метан 82,9; этан 4,9; пропан 3,4; бутаны 2,6; пентаны 1,7; C6+ - остальное, в количестве 20,8 тыс. Нм3/ч при температуре 26,8°C и давлении 12,0 МПа сепарируют на первой ступени с получением 6,5 т/ч конденсата и 18,3 тыс. Нм3/ч газа, который редуцируют до 3,6 МПа, смешивают с 1,2 тыс. Нм3/ч первого газа стабилизации и сепарируют на второй ступени в условиях дефлегмации и с получением 2,2 т/ч конденсата и 18,6 тыс. Нм3/ч газа второй ступени, который редуцируют до 1,6 МПа, смешивают с 0,5 тыс. Нм3/ч второго газа стабилизации и сепарируют на третьей ступени с получением 1,0 т/ч конденсата и 18,4 тыс. Нм3/ч газа, который после нагрева и сжатия выводят в качестве товарного газа по СТО Газпром 089-2010. Конденсаты первой и второй ступени совместно стабилизируют с получением первого газа стабилизации и 7,6 т/ч остатка, который редуцируют и стабилизируют совместно с конденсатом третьей ступени с получением второго газа стабилизации и 8,2 т/ч широкой фракции легких углеводородов марки "В" по ТУ 38.101524-93. Степень извлечения углеводородов C3+ составила 95,1%.

Пример 2 (вариант 2). В условиях примера 1 18,3 тыс. Нм3/ч газа входной сепарации при 3,6 МПа смешивают с 1,1 тыс. Нм3/ч первого газа стабилизации и сепарируют на второй ступени в условиях дефлегмации и стабилизации флегмы с получением 2,1 т/ч конденсата и 18,5 тыс. Нм3/ч газа второй ступени, который редуцируют до 1,6 МПа, смешивают с 0,5 тыс. Нм3/ч второго газа стабилизации и сепарируют на третьей ступени с получением 1,0 т/ч конденсата и 18,4 тыс. Нм3/ч газа, который после нагрева и сжатия выводят в качестве товарного газа по СТО Газпром 089-2010. Конденсат первой ступени стабилизируют с получением первого газа стабилизации и 5,5 т/ч остатка, который редуцируют и стабилизируют совместно с конденсатами второй и третьей ступени с получением второго газа стабилизации и 8,2 т/ч широкой фракции легких углеводородов марки "B" по ТУ 38.101524-93. Степень извлечения углеводородов C3+ составила 95,1%.

В условиях примера 1 способ по прототипу не может быть реализован из-за сверхкритических условий на стадии промежуточной сепарации, а при его осуществлении при давлении на стадии промежуточной сепарации 3,6 МПа степень извлечения углеводородов C3+ составила 92,3%, а потери легких компонентов газа с конденсатом - 1190 кг/ч.

Таким образом, предлагаемое изобретение позволяет повысить степень извлечения углеводородов C3+, исключить потери легких компонентов и может быть использовано в промышленности.

1. Способ безотходной подготовки скважинной продукции, включающий трехступенчатую сепарацию сырого газа с получением на каждой ступени газа и конденсата, с дефлегмацией газа на второй ступени за счет охлаждения газом третьей ступени, который затем выводят в качестве товарного газа, отличающийся тем, что газ первой ступени перед сепарацией редуцируют и смешивают с первым газом стабилизации, конденсат первой ступени редуцируют и стабилизируют совместно с конденсатом второй ступени с получением первого газа стабилизации и остатка, газ второй ступени перед сепарацией смешивают со вторым газом стабилизации, а конденсат третьей ступени стабилизируют совместно с редуцированным остатком стабилизации с получением второго газа стабилизации и товарного конденсата.

2. Способ по п. 1, отличающийся тем, что газ первой ступени предварительно охлаждают.

3. Способ по п. 1, отличающийся тем, что конденсат первой ступени предварительно нагревают.

4. Способ по п. 1, отличающийся тем, что конденсат второй ступени дополнительно стабилизируют.

5. Способ безотходной подготовки скважинной продукции, включающий трехступенчатую сепарацию сырого газа с получением на каждой ступени газа и конденсата, с дефлегмацией газа на второй ступени за счет охлаждения газом третьей ступени, который затем выводят в качестве товарного газа, отличающийся тем, что газ первой ступени перед сепарацией редуцируют и смешивают с первым газом стабилизации, конденсат первой ступени редуцируют и стабилизируют с получением первого газа стабилизации и остатка, газ второй ступени перед сепарацией смешивают со вторым газом стабилизации, а конденсат третьей ступени стабилизируют совместно с редуцированными конденсатом второй ступени и остатком стабилизации с получением второго газа стабилизации и товарного конденсата.

6. Способ по п. 5, отличающийся тем, что газ первой ступени предварительно охлаждают.

7. Способ по п. 5, отличающийся тем, что конденсат первой ступени предварительно нагревают.

8. Способ по п. 5, отличающийся тем, что конденсат второй ступени дополнительно стабилизируют.



 

Похожие патенты:

Изобретение относится к способам компримирования газа и может быть использовано в различных отраслях промышленности для компримирования многокомпонентных газов, содержащих пары тяжелых компонентов.

Изобретение относится к способам переработки низконапорных газов и конденсатов, образующихся при трубопроводном транспорте газа. Газ сжимают и охлаждают в условиях дефлегмации и стабилизации флегмы на начальных ступенях компримирования совместно с газами стабилизации низкого давления, с получением конденсата низкого давления и сжатого газа, который осушают, очищают и смешивают с газом стабилизации высокого давления, сжимают и охлаждают в условиях дефлегмации и стабилизации флегмы на третьей ступени с использованием в качестве хладоагента газа низкотемпературной сепарации с получением пропан-бутановой фракции и сжатого газа.

Изобретение относится к криогенной технике. Малогабаритная установка сжижения природного газа включает в себя участок газопровода, криогенную газовую машину (КГМ), работающую по обратному циклу Стирлинга, теплообменники вымораживатели-конденсаторы природного газа (ПГ), криогенную емкость для сжиженного природного газа (СПГ), газодувку и подогреватель азота.

Изобретение относится к способам подготовки углеводородных газов путем низкотемпературной сепарации и может быть использовано для подготовки попутного нефтяного газа в нефтяной промышленности.

Изобретение относится к способам подготовки углеводородных газов методом низкотемпературной сепарации и может быть использовано для подготовки попутного нефтяного газа в нефтяной промышленности.

В соответствии с одним аспектом настоящего изобретения предложены способы конденсации диоксида углерода (СО2) из потока СО2. Способ включает (i) сжатие и охлаждение потока СО2 с образованием частично охлажденного потока CO2, причем частично охлажденный поток СО2 охлаждают до первой температуры.

Способ газодинамической сепарации относится к технике низкотемпературной обработки многокомпонентных углеводородных газов - природных и нефтяных, а именно для осушки газа путем конденсации и сепарации из него водных и/или углеводородных компонентов, и может найти применение в системах сбора, подготовки и переработки многокомпонентных углеводородных газов.

Изобретение относится к способу переработки природного углеводородного газа с варьируемым содержанием азота, включающему стадию подготовки газа к криогенному разделению, стадию криогенного разделения газов с использованием метана в качестве хладагента в криогенном блоке, стадию компримирования внутренних и внешних технологических продуктов, стадию фракционирования тяжелой углеводородной части природного газа (С2 и выше).

Группа изобретений относится к нефтяной и газовой отраслям промышленности и используется в системе промысловой подготовки газа при пониженном расходе поступающего газа.

Изобретение относится к технологии и оборудованию для подготовки углеводородных газов и может быть использовано для отбензинивания низконапорного попутного нефтяного газа в нефтяной промышленности.

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к области технического обустройства нефтедобычи, и может быть использована для разделения жидкой и газообразной фаз.

Группа изобретений относится к способам, системам и многофазным сепараторам обработки воды для гидроразрывов. Технический результат заключается в обеспечении безопасности при гидроразрыве пластов.

Изобретение относится к нефтяной промышленности и может быть использовано на нефтепромысле. Устройство для разделения нефтяной эмульсии включает цилиндрический корпус 1 с системой ввода эмульсии в виде трубчатого перфорированного коллектора 7 и патрубками вывода продуктов ее разделения 5, 6, установленный в продольном сечении корпуса 1 V-образный коалесцирующий пакет 15, систему сбора и вывода воды 3, 4, 21, датчики контроля уровня воды, систему контроля и управления открытием и закрытием системы вывода воды, перфорированную неполную перегородку 9, патрубок вывода газа 6, верхнюю сплошную наклонную поперечную перегородку 11, одинарный коалесцирующий пакет 10, нижнюю сплошную вертикальную перегородку 12, нижнюю вертикальную перфорированную в нижней части перегородку 13, нижнюю неполную перегородку 18, верхнюю вертикальную неполную перегородку 14, параллельные перегородки 16 со щелями 17 в нижней части от V-образного коалесцирующего пакета 15 до низа корпуса 1.

Изобретение относится к подготовке скважинного продукта и может быть использовано в нефтяной промышленности для подготовки нефти и воды. Установка подготовки скважинной продукции содержит емкость 5 сбора и дегазации скважинного продукта, устройство для обезвоживания 14, насосы 6, 8, 13, теплообменное устройство 11, измерительные приборы, трубопроводную обвязку, запорно-регулирующую арматуру.

Изобретение относится к нефтяной и газовой промышленности. Система содержит входной двухфазный сепаратор (2) с трубопроводом (3) подачи отделившегося в нем высоконапорного газа потребителю, трехфазный отстойник-сепаратор (5) с трубопроводом (6) сброса низконапорного газа на факельную трубу, трубопроводом (7) подачи нефтепромысловой сточной воды на блок подготовки воды, соединенным с буфером-сепаратором (12), соединенным с трубопроводом (14) подачи сточной воды на горизонтальную факельную установку (ГФУ) (15).

Изобретение относится к нефтяной промышленности и может найти применение при получении дистиллята в условиях нефтепромысла. Способ получения дистиллята включает разделение продукции на фракции в ректификационной колонне, направление широкой фракции легких углеводородов из ректификационной колонны в теплообменник, охлаждение до температуры, достаточной для конденсации, сепарирование, возврат части широкой фракции легких углеводородов в верхнюю часть ректификационной колонны, направление остальной части на склад, способ отличается тем, что широкую фракцию углеводородов направляют из ректификационной колонны в дополнительную малую ректификационную колонну, где жидкие углеводороды отделяют от газообразных углеводородов, получая дистиллят, затем дистиллят нагревают в испарителе и направляют обратно в дополнительную малую ректификационную колонну в зону массобмена жидких и газообразных углеводородов, где утяжеляют жидкую фракцию углеводородов за счет дополнительного отделения газообразных углеводородов и легкокипящих жидких углеводородов, по мере накопления утяжеленного дистиллята в дополнительной малой ректификационной колонне балансовое количество дистиллята направляют на охлаждение в теплообменнике, отделяют от дистиллята воду и газ в буферно-сепарационной емкости и направляют дистиллят в накопительную емкость, где отделяют газ, накапливают дистиллят и в последующем отправляют потребителю, при этом газообразные углеводороды из верха дополнительной малой ректификационной колонны, буферно-сепарационной емкости и накопительной емкости направляют в систему газосбора, а жидкие легкокипящие углеводороды из дополнительной малой ректификационной колонны подают в шлемовую трубу ректификационной колонны и включают в технологическую схему конденсации широкой фракции легких углеводородов.

Изобретение относится к способам модернизации установок подготовки природного и попутного нефтяного газа к транспорту методом низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности.

Изобретение относится к сепараторам для разделения жидких сред, имеющих различный удельный вес, и для выделения накопившейся в жидкости газообразной среды. Сепаратор содержит корпус, вертикальную разделительную перегородку, трубопровод ввода газожидкостной смеси, патрубки вывода газообразной среды, более тяжелой и более легкой фракций жидкой среды, пакет фазоразделительных насадок, переливную перегородку и сливной лоток, который соединен своим верхним краем с верхней кромкой вертикальной разделительной перегородки и своим нижним краем - с пакетом фазоразделительных насадок со стороны входа в него, закрепленных к поперечной перегородке, пропускающей более тяжелые фракции жидкой среды снизу, а газ сверху.

Изобретение относится к нефтедобывающей промышленности, в частности к подготовке товарной нефти. Установка подготовки продукции скважин включает подводящий трубопровод, устройство подогрева, узел разрушения бронирующих оболочек, соединенный с концевым делителем фаз, трехфазный сепаратор с линией отвода воды, нефтяную и водяную буферные емкости, линию выхода воды, соединенную посредством кустовой насосной станции с входом узла разрушения бронирующих оболочек, при этом концевой делитель фаз снабжен двумя дозвуковыми соплами с возбудителями акустических колебаний в виде упругих пластин, закрепленных на соплах поперек потока воды, первый из которых с постоянной настройкой, а второй - с возможностью изменения длины активной части, при этом сопла соединены с кустовой насосной станцией патрубком.

Изобретение относится к области добычи углеводородов. Разделяют смесь, содержащую две текучие фазы, по меньшей мере частично несмешиваемые друг с другом и с различной удельной плотностью.

Изобретение раскрывает установку подготовки попутного нефтяного газа, включающую нагреватель и конвертор, оснащенный линией вывода конвертированного газа с рекуперационным устройством, при этом установка оборудована конвертором селективного метанирования попутного нефтяного газа с линией ввода парогазовой смеси и оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи попутного нефтяного газа и оснащенным линиями вывода солевого концентрата, ввода воды и подачи дегазированного водного конденсата из дефлегматора, который установлен на линии ввода парогазовой смеси.

Группа изобретений относится к способам подготовки газа путем низкотемпературной конденсации и может быть использована в газовой промышленности для промысловой подготовки скважинной продукции газоконденсатных месторождений. Согласно первому варианту предложенного способа сырой газ сепарируют на первой ступени с получением газа, водного и углеводородного конденсатов, последний редуцируют и стабилизируют совместно с конденсатом второй ступени с получением первого газа стабилизации и остатка. Газ первой ступени редуцируют и в смеси с первым газом стабилизации сепарируют на второй ступени путем охлаждения в условиях дефлегмации с получением конденсата и газа, который редуцируют, смешивают со вторым газом стабилизации и сепарируют на третьей ступени с получением конденсата и газа, который нагревают и выводят в качестве товарного. Остаток стабилизации редуцируют и стабилизируют совместно с конденсатом третьей ступени с получением товарного конденсата и второго газа стабилизации. Согласно второму варианту предложенного способа углеводородный конденсат первой ступени редуцируют и стабилизируют, а остаток стабилизации редуцируют и стабилизируют совместно с конденсатом третьей ступени и редуцированным конденсатом второй ступени. Техническим результатом является повышение степени извлечения углеводородов C3+ и исключение потерь легких компонентов газа. 2 н. и 6 з.п. ф-лы, 2 пр., 2 ил.

Наверх