Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи



Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи
Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи
H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2624771:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный университет телекоммуникаций и информатики" (ФГБОУ ВО ПГУТИ) (RU)

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала. 3 ил.

 

Изобретение относится к области электросвязи, а именно к комбинированным системам волоконно-эфирной структуры RoF (Radio-Over-Fiber) сетей мобильной радиосвязи, и предназначено для организации дуплексного канала связи по распределенной волоконно-эфирной структуре.

Известен способ построения базовой станции волоконно-эфирной телекоммуникационной системы распределенной структуры [1], заключающийся в том, что центральную станцию соединяют с базовой станцией отдельным оптическим волокном, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, на базовой станции это модулированное оптическое излучение из оптического волокна подают на фотоприемник базовой станции, где преобразуют его в радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентской станции, а оптическое излучение лазера базовой станции модулируют принимаемым по радиоканалу от абонентской станции с помощью антенны базовой станции радиосигналом обратного канала, подают его в оптическое волокно, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал обратного канала.

Реализацию данного способа поясняет функциональная схема сети, представленная на фиг. 1. Здесь 1 - центральная станция (ЦС), 2 - базовые станции (БС), 3 - абонентские станции, 4 - оптические волокна, 5 - лазер центральной станции, 6 - фотоприемник центральной станции, 7 - лазер базовой станции, 8 - фотоприемник базовой станции, 9 - устройство развязки и согласования, 10 - антенна базовой станции, 11 - антенна абонентской станции.

К основным недостаткам данного способа относится необходимость применения лазера на каждой базовой станции, что увеличивает стоимость реализации и ограничивает область применения способа, особенно при использовании технологии спектрального уплотнения.

От данного недостатка свободен способ построения базовой станции волоконно-эфирной телекоммуникационной системы распределенной структуры [2], заключающийся в том, что центральную станцию соединяют с базовыми станциями отдельными оптическими волокнами, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, на базовой станции это модулированное оптическое излучение из оптического волокна разделяют на две части, первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть подают на вход полупроводникового оптического усилителя, на выходе которого установлен отражающий элемент, модулируют его принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, модулированное отраженное оптическое излучение с выхода полупроводникового оптического усилителя подают в оптическое волокно, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал обратного канала.

Реализацию данного способа поясняет функциональная схема сети мобильной радиосвязи, представленная на фиг. 2. Здесь 1 - центральная станция, 2 - базовые станции, 3 - абонентские комплекты, 4 - оптическое волокно, 5 - лазер центральной станции, 6 - фотоприемник центральной станции, 7 - оптический разветвитель центральной станции, 8 - оптический разветвитель базовой станции, 9 - полупроводниковый оптический усилитель, 10 - отражающий элемент, 11 - фотоприемник базовой станции, 12 - устройство развязки и согласования, 12 - антенна базовой станции, 13 - антенна абонентской станции.

К основным недостаткам данного способа относится необходимость подключения каждой базовой станции к центральной станции через отдельное оптическое волокно. Это ограничивает варианты построения сети мобильной радиосвязи схемой «звезда». Для реализации других схем, таких как «шина», «кольцо» и т.п., требуется включение дополнительных оптических разветвителей, что приводит к существенным дополнительным потерям, ограничивая расстояние до базовых станций и количество последних. Все это ограничивает область применения способа.

Сущностью предлагаемого изобретения является расширение области применения.

Эта сущность достигается тем, что согласно способу построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала.

На фиг. 3 представлен один из примеров структурной схемы устройства для реализации заявляемого способа.

Устройство включает центральную станцию 1, первую базовую станцию 2, вторую базовую станцию 3. абонентский комплект 4, первое оптическое волокно 5, второе оптическое волокно 6, лазер центральной станции 7, модулятор центральной станции 8 с одним электрическим входом, одним оптическим входом и оптическим выходом, оптический разветвитель центральной станции 9, фотоприемник центральной станции 10 с фильтром 11, два оптических разветвителя базовой станции 12 и 13, полупроводниковый оптический усилитель 14, отражающий элемент 15, фотоприемник базовой станции 16 с фильтром 17, блок согласования и развязки 18 и антенну базовой станции 19. Выход лазера центральной станции 7 соединен с оптическим входом модулятора центральной станции 8, оптический выход которого подключен к первому выходу оптического разветвителя центральной станции 9. Второй выход оптического разветвителя центральной станции 9 соединен с входом фотоприемника базовой станции 10, а вход оптического разветвителя центральной станции 9 соединен с первым оптическим волокном 5. На другом конце первое оптическое волокно 5 на входе базовой станции соединено с первым выходом оптического разветвителя базовой станции 12, второй выход которого соединен с входом фотоприемника базовой станции 17, а его вход соединен с оптическим входом полупроводникового оптического усилителя 14. Оптический выход полупроводникового оптического усилителя 14 соединен с входом оптического разветвителя базовой станции 13, первый выход которого соединен со вторым оптическим волокном 6, а его второй выход подключен к отражающему элементу 15. На другом конце второе оптическое волокно подключено к входу второй базовой станции 3. Выход фотоприемника базовой станции соединен с первым входом блока согласования 18, выход которого соединен с электрическим входом полупроводникового оптического усилителя 14, а его второй вход подключен к антенне базовой станции 19.

Устройство работает следующим образом. Оптическое излучение лазера центральной станции 7 поступает в модулятор центральной станции 8, где модулируется радиосигналом прямого канала, поступающим на электический вход модулятора центральной станции 8, с выхода которого модулированное оптическое излучение через оптический разветвитель центральной станции 9 поступает в первое оптическое волокно 5. На другом конце первого оптического волокна 5 модулированное оптическое излучение из первого оптического волокна 5 через оптический разветвитель базовой станции 12 поступает на оптический вход полупроводникового оптического усилителя 14, на выходе которого оптическое излучение с помощью оптического разветвителя базовой станции 13 разделяется на две части. Одна часть через второе оптическое волокно 6 направляется ко второй базовой станции 3, а другая часть подается на отражающий элемент 15, на котором отражается и через оптический разветвитель базовой станции 13 и оптический вход полупроводникового оптического усилителя 14 поступает обратно в полупроводниковый оптический усилитель 14, а затем через оптический вход полупроводникового оптического усилителя 14 поступает на вход оптического разветвителя базовой станции 12. В полупроводниковом оптическом усилителе 14 оптическое излучение усиливается и модулируется радиосигналом обратного канала, принимаемым по радиоканалу от абонентского комплекта 4 с помощью антенны базовой станции 19 и поступающим от нее через блок согласования и развязки 18 на электрический вход полупроводникового оптического усилителя 14. Это модулированное оптическое излучение с помощью оптического разветвителя базовой станции 12 разделяется на две части. Одна часть этого оптического излучения через первое оптическое волокно 5 и оптический разветвитель центральной станции 9 поступает на вход фотоприемника центральной станции 10, преобразуется фотоприемником центральной станции 10 в комплексный радиосигнал, из которого с помощью фильтра 11 фотоприемника центральной станции 10 выделяется радиосигнал обратного канала. Вторая часть этого оптического излучения поступает на вход фотоприемника базовой станции 16, преобразуется фотоприемником базовой станции 16 в комплексный радиосигнал, из которого с помощью фильтра 17 фотоприемника базовой станции 16 выделяется радиосигнал прямого канала. Этот радиосигнал прямого канала через блок согласования и развязки 18 поступает на антенну 19 базовой станции, а затем по радиоканалу к абонентскому комплекту 4.

В отличие от известного способа, которым является прототип, предлагаемый способ допускает последовательное включение большего числа базовых станций в оптическое волокно за счет частичной компенсации дополнительных потерь из-за включения разветвителей усилением полупроводниковыми оптическими усилителями базовых станций. Это расширяет возможности применения вариантов построения сети мобильной радиосвязи, в том числе по схемам «шина», «кольцо» и т.п., что расширяет область применения способа.

ЛИТЕРАТУРА

1. Патент RU 2472290.

2. Патент US 2007183788.

Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи, заключающийся в том, что центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, отличающийся тем, что базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала.



 

Похожие патенты:

Способ и устройство формирования внутренней шкалы времени устройств сравнения и синхронизации шкал времени и оптоволоконных рефлектометров основаны на генерации оптических импульсов и направлении их в циркулятор, регистрации момента излучения импульсов с помощью фотоприемника, циркулятора и полупрозрачного зеркала, расположенного между выходом циркулятора и входом в исследуемую, в случае рефлектометрии, или соединяющую удаленные объекты, в случае синхронизации шкал времени, волоконно-оптическую линию.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении пропускной способности передачи.

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый модулятор, волоконное зеркало и однофотонный детектор.

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей.

Изобретение относится к области лазерной техники и касается устройства ввода импульсного лазерного пучка в волоконно-оптическую линию связи. Устройство включает в себя фокусирующую систему линз и волоконный световод с коллектором.

Изобретение относится к технике связи и может использоваться для регистрации импульсного ионизирующего и импульсного оптического излучения микро-, наносекундного временного диапазона и передаче по волоконно-оптическим линиям связи (ВОЛС) с использованием внешней модуляции излучения.

Изобретение относится к технике связи и может использоваться в системах передачи аналоговых сигналов микро-наносекундного временного диапазона по волоконно-оптическим линиям связи (ВОЛС) с использованием внешней модуляции излучения.

Изобретение относится к области радиоэлектроники, а именно к технике проводной связи, и может быть использовано для организации связи с глубокопогруженными подводными объектами.

Устройство передачи информации включает в себя корпус, выполненный из двух П-образных колец, одно из которых содержит внутренние перегородки. Кольца вложены одно в другое.

Изобретение относится к радиоэлектронике и может использоваться для приема и спектрального анализа сложных сигналов с фазовой манипуляцией (ФМн). Технический результат состоит в расширении диапазона рабочих частот акустооптического приемника без расширения диапазона частотной перестройки гетеродина путем использования дополнительных каналов приема.

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением приемника, фиксируют расстояние от оси лазерного пучка до выгорающего материала. На фиксированной длине волны источника оптического излучения предварительно регистрируют значение сигнала, соответствующее уровню мощности лазерного излучения при отсутствии потока воздушной плазмы, далее регистрируют значения сигналов в присутствии плазмы, которое соответствует уровню мощности лазерного излучения, прошедшего через слой толщиной воздушной плазмы и при фиксированном расстоянии, и регистрируют значение сигнала, соответствующее уровню мощности лазерного излучения, прошедшего поглощающий слой плазмы исследуемого выгорающего материала. Технический результат заключается в обеспечении возможности определения затухания оптического канала и определения области частот лазерного излучения, для которых поглощающий слой плазмы прозрачен, а также обеспечении возможности выбора оптимального типа лазера на основании величины затухания оптического канала. 1 ил.

Изобретение относится к области устройств для представления меняющегося информационного материала, а также к области устройств или схем для управления индикаторными устройствами и может быть использовано для создания устройств демонстрации наружной видеорекламы. Технический результат заключается в обеспечении возможности определения позиции светодиодных модулей внутри светодиодного экрана при оптической передаче данных светодиодным модулям. Такой результат достигается за счет того, что при сборке сегментов, позиции светодиодных модулей с уникальными идентификаторами светодиодных модулей заносятся в центральную базу данных, при включении видеоконтроллер запрашивает у светодиодных модулей сегмента их уникальные идентификаторы, если позиций светодиодных модулей с такими уникальными идентификаторами нет в памяти видеоконтроллера, эти позиции запрашиваются из центральной базы данных и сохраняются в памяти видеоконтроллера. 4 з.п. ф-лы, 13 ил.

Способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния заключается в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму. На основании анализа рефлектограммы определяют величину дополнительных потерь. Местоположение дефекта определяют с учётом периода следования зондирующих импульсов, выбранного на основании отношения заданного времени обнаружения нарушения и требуемого количества вычислений среднего значения принятых сигналов для обеспечения заданного отношения сигнал/шум. Технический результат заключается в уменьшении периода следования зондирующих импульсов для обеспечения заданной инерционности. 3 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении достоверности приема в системе связи. Для этого предложены способ и устройство для конфигурирования набора параметров тестирования, выполняемого с использованием оптического временного рефлектометра (OTDR). Способ включает получение, системой FMS, соответствующей информации о сети ODN согласно результатам тестирования, возвращенным рефлектометром; и конфигурирование, системой FMS, набора параметров тестирования, необходимого для одного или более последующих испытаний с использованием OTDR, в соответствии с упомянутой соответствующей информацией. В соответствии с техническими решениями, предложенными в настоящем изобретении, набор параметров тестирования, необходимый для запуска тестирования с использованием OTDR, может быть получен с высокой точностью. 2 н. и 15 з.п. ф-лы, 4 ил.

Изобретение относится к оптическим способам определения взаимного положения объектов и замкнутым телевизионным системам, в которых сигнал не используется для широкого вещания. Достигаемый технический результат - определение взаимного положения объектов для управления группой с учетом траектории ее движения, повышение точности благодаря использованию экстремально-корреляционного метода анализа изображений. Способ заключается в определении взаимного положения в группе перемещающихся объектов с измерением углов визирования комплекта оптических реперов объекта «ведущий» измерительными комплектами объектов «ведомые», причем координаты комплектов оптических реперов, их взаимное положение, а также координаты и положение измерительного комплекта каждого объекта в его системе координат известны, измерительные комплекты «ведомых» осуществляют измерение углов визирования максимумов диаграмм суммарного излучения комплекта оптических реперов «ведущего», передают, модулируя излучение оптических реперов «ведущего», идентификационные номера «ведомых», их изображения и координаты мест в системе координат «ведущего», где должны находиться изображения «ведомых», установленные для конкретной группы с учетом траектории ее перемещения, и вычисляют параметры взаимного положения измерительными комплектами каждого «ведомого». 2 з.п. ф-лы, 4 ил.

Изобретение относится к технике связи и может использоваться в системах передачи информации через свободное пространство. Технический результат состоит в повышении эффективности способа и устройства за счет учета спектральных характеристик оптической среды и стабильности разделения потоков при взаимном перемещении объектов связи. Для этого на передающей стороне опорный поток излучается точечными излучателями на длине волны λ1, модулируется синхронизирующей и служебной информацией, а основной информационный поток излучается матрицей точечных излучателей на длине волны λ2. Длины волн излучения λ1 и λ2 выбирают так, чтобы коэффициент ослабления оптической средой излучения с длиной волны λ1 был больше коэффициента ослабления излучения с длиной волны λ2. Устройство передачи информации в открытой оптической среде между перемещающимися объектами содержит приемную 1 и передающую 2 части, конструктивно связанные друг с другом, и состоит из телевизионной камеры 11, чувствительной к поступающим пространственно совмещенным потокам, вычислительного устройства 12, управляющего двумя модуляторами 23 и 24, подключенными к k точечным излучателям с длиной волны излучения λ1 и матрице 25 точечных излучателей с длиной волны излучения λ2. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области аудио- и радиотехники, в частности к защите информации от ее утечки по техническим каналам, и может преимущественно использоваться для контроля защищенности акустической речевой информации, циркулирующей в помещении, от утечки из помещения наружу сквозь оконную конструкцию (ОК). В способе контроля защищенности акустической речевой информации, циркулирующей в помещении, от ее утечки по акустическому каналу наружу сквозь ОК, основанном на определении звукоизоляции оконной конструкции путем ее сквозного зондирования тестовыми акустическими сигналами на частотах спектра речи, расчете по этим результатам достижимой словесной разборчивости речи и ее сравнении с установленной нормой, зондирование ОК с симметричным поперечным профилем конструкции осуществляют снаружи помещения. Технический результат заключается в обеспечении контроля защищенности акустической речевой информации, циркулирующей в помещении, от ее утечки из помещения наружу сквозь ОК при повышенной звукоизоляции ОК и ограниченном уровне звукового давления зондирующего сигнала. 2 ил., 1 табл.

Устройство передачи аналогового электрического сигнала по ВОЛС содержит N≥1 каналов. Каждый канал состоит из лазерного модуля, входного волокна, выходного волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для модулятора, приемника оптического излучения и оцифровщика. В каждом из N каналов устройства передачи содержит модулятор, высокочастотный сумматор электрических сигналов и источник высокочастотных электрических сигналов. Сумматор соединен с указанным источником и генератором электрических импульсов. Технический результат заключается в обеспечении возможности точного восстановления формы электрического сигнала по зарегистрированному оптическому аналогу, передающемуся по ВОЛС с внешней модуляцией, без проведения процедур настройки и периодического контроля рабочей точки модулятора, а следовательно, без контроллеров рабочей точки и без необходимости подачи постоянного оптического излучения на вход модулятора. 3 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи. Для этого в способе блок оптической сети (ONU) передает пакет мониторинга через первую конечную точку ассоциации технического обслуживания на первой линии связи, соединенной с ONU и устройством переключения на стороне агрегирования, чтобы выполнять мониторинг первой линии связи; ONU выполняет переключение с первой подлинии связи первой линии связи на первую подлинию связи второй линии связи, если обнаруживается, что неисправность линии связи возникает на первой линии связи; ONU отправляет сообщение уведомления на второй терминал оптической линии (OLT), так что второй OLT включает порт передачи; и ONU отправляет сообщение автоматического защитного переключения на устройство переключения на стороне агрегирования через вторую конечную точку ассоциации технического обслуживания на второй линии связи. Варианты осуществления настоящего изобретения применяются при переключении линий связи. 4 н. и 11 з.п. ф-лы, 13 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении качества связи путем повышения точности мониторинга питания. Для этого описаны варианты тональных модуляций пилот-сигнала к оптическим сигналам путем введения битов смещения в кадры данных, переносимые оптическими сигналами. Поскольку модуляция осуществляется путем изменения данных, глубина модуляции является точной, и нет необходимости для калибровки или управления обратной связью. В одном из вариантов осуществления передатчик определяет период тональной модуляции пилот-сигнала для отслеживания или идентификации оптического канала. Передатчик вставляет последовательность битов смещения, периодически в соответствии с определенным периодом, во множество кадров, содержащих исходные биты данных. Амплитуды оптических сигналов, переносящих кадры, модулируются на более высокой частоте, чем тональная модуляция пилот-сигнала. Оптические сигналы затем передаются, включая биты смещения в кадрах. 4 н. и 17 з.п. ф-лы, 8 ил.

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим волокном с базовыми станциями, оптическое излучение лазера центральной станции модулируют радиосигналом прямого канала и подают в оптическое волокно, при этом базовые станции включают в оптическое волокно последовательно, модулированное оптическое излучение из оптического волокна подают на вход полупроводникового оптического усилителя, модулированное оптическое излучение на выходе полупроводникового оптического усилителя разделяют на две части, первую часть вводят в оптическое волокно, которое подключено к другой базовой станции, вторую часть подают на отражающий элемент, отраженное оптическое излучение подают обратно на выход полупроводникового оптического усилителя, модулируют его в полупроводниковом оптическом усилителе принимаемым по радиоканалу от абонентского комплекта с помощью антенны базовой станции радиосигналом обратного канала, на входе полупроводникового оптического усилителя это модулированное отраженное оптическое излучение разделяют на две части, его первую часть подают на фотоприемник базовой станции, где преобразуют его в радиосигнал, выделяют из него радиосигнал прямого канала, который через антенну базовой станции по радиоканалу передают к абонентскому комплекту, а вторую часть модулированного отраженного оптического излучения подают в оптическое волокно, которое соединено с центральной станцией, на центральной станции поступающее из оптического волокна оптическое излучение подают на фотоприемник центральной станции, в котором преобразуют его в радиосигнал, из которого выделяют радиосигнал обратного канала. 3 ил.

Наверх