Беспроводное устройство для конъюнктивальной микроскопии

Изобретение относится к медицине. Беспроводное устройство для конъюнктивальной микроскопии содержит систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, блок беспроводной связи, выполненный с возможностью поддержания динамической обратной связи между блоком беспроводной связи оптической системы и блоком беспроводной связи системы управления, регистрации и анализа полученных изображений, оптическую систему, включающую видеокамеру с системой переноса изображений, осветитель с блоком переноса оптического излучения. Светодиоды осветителя отделены от видеокамеры теплоизоляционной перегородкой и сопряжены по оптической оси с торцом блока переноса оптического излучения, выполненным в виде пучка световодов из полиметилметакрилата, которые расположены вокруг оптической оси системы переноса изображений с равным шагом. Торцы блока переноса освещения жестко закреплены в корпусе устройства таким образом, что направление их выходящего светового потока составляет угол 36° относительно оптической оси системы переноса изображений. Длина волны, излучаемая каждым светодиодом, выбрана так, чтобы степень поглощения излучения различными формами гемоглобина была максимально близка 530 нм. Применение данного изобретения позволит повысить устойчивость устройства к внешнему электромагнитному излучению. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области медицинской оптики и может быть использовано для инструментального наблюдения микроциркуляции крови в сосудах конъюнктивы глазного яблока.

Известна система для мониторинга состояния микроциркуляции, включающая электрически связанные между собой видеокамеру с системой переноса изображений, оптический стенд с опорным источником облучения исследуемой зоны глаза спектром видимых световых волн, выполненный на базе щелевой лампы с галогеновым осветителем, а также систему управления, регистрации и анализа полученных изображений, выполненных на базе ЭВМ (см. RU № 46164, МПК A61B5/02, 2005).

Однако известному устройству, как и всем подобным устройствам на основе щелевых ламп, присущи и все их недостатки, а именно: известная система формирует блик на изображении, это затрудняет или делает невозможным морфологический анализ изображения, требует фиксации головы пациента, освещение точечным источником приводит к неравномерному освещению исследуемого поля, что также затрудняет количественный морфологический анализ площади микрососудистого русла по изображению, получение качественного изображения требует затрат времени, поскольку установка освещения, наводка на резкость проводится оператором.

Известно устройство для конъюнктивальной микроскопии, включающее видеокамеру с системой переноса изображений, осветитель и связанные с ней системы управления, регистрации, анализа полученных изображений, реализованной на базе ЭВМ, при этом оптическая система связана с системой управления динамической обратной связью, обеспечивающей оптимизацию качества для каждого изображения, осветитель представляет собой два конструктивно объединенных сверхярких белых светодиода, жестко закрепленных на видеокамере таким образом, что направление их световых потоков составляет угол не менее 36° относительно оптической оси системы переноса изображений (см. RU № 2311113, МПК A61B3/10, 2007).

Недостатками известного устройства также являются формирование блика на изображении, что затрудняет или делает невозможным морфологический анализ изображения, кроме того, использование двух точечных источников света приводит к неравномерному освещению исследуемого поля, что затрудняет количественный морфологический анализ площади микрососудистого русла по изображению.

Известно также беспроводное устройство для конъюнктивальной микроскопии, содержащее систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, блок связи, выполненный с возможностью поддержания динамической обратной связи между оптической системой и системой управления, оптическую систему, включающую видеокамеру с системой переноса изображений, осветитель с блоком переноса оптического излучения (см. RU № 141613, МПК A61B3/10, 2014).

Недостатками этого устройства являются формирование блика на изображении, что затрудняет или делает невозможным морфологический анализ изображения, использование двух точечных источников света приводит к неравномерному освещению исследуемого поля, что затрудняет количественный морфологический анализ площади микрососудистого русла по изображению, закрепление источников света на корпусе видеокамеры снижает устойчивость устройства к внешнему электромагнитному излучению за счет длины проводников. Все это снижает достоверность диагностической информации получаемой с помощью устройства.

Задачей предлагаемого технического решения является повышение достоверности диагностической информации, получаемой с помощью устройства.

Технический результат, проявляющийся при решении поставленной задачи, выражается в исключении возможности появления бликов на изображении, нивелировании неоднородности освещения исследуемого поля и повышении устойчивости устройства к внешнему электромагнитному излучению.

Поставленная задача решается тем, что беспроводное устройство для конъюнктивальной микроскопии, содержащее систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, блок связи, выполненный с возможностью поддержания динамической обратной связи между оптической системой и системой управления, оптическую систему, включающую видеокамеру с системой переноса изображений, осветитель с блоком переноса оптического излучения, отличается тем, что светодиоды осветителя отделены от видеокамеры, например, теплоизоляционной перегородкой и сопряжены по оптической оси с торцом блока переноса оптического излучения, выполненным в виде пучка световодов, предпочтительно из полиметилметакрилата, которые расположены вокруг оптической оси системы переноса изображений с равным шагом, при этом торцы блока переноса освещения жестко закреплены в корпусе устройства таким образом, что направление их выходящего светового потока составляет угол 36° относительно оптической оси системы переноса изображений, причем длина волны, излучаемая каждым светодиодом, выбрана так, чтобы степень поглощения излучения различными формами гемоглобина была максимально близка, предпочтительно 530 нм. Кроме того, как светодиоды осветителя использованы зеленые светодиоды с длиной волны излучения 530 нм, например, марки LUXEON LXML-PM01-0090.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

При этом признаки отличительной части формулы изобретения обеспечивают решение следующего комплекса функциональных задач.

Признак «...светодиоды осветителя отделены от видеокамеры например, теплоизоляционной перегородкой…» обеспечивает уменьшение влияния как теплового излучения на матрицу видеокамеры, так и снижает влияние электромагнитных полей от радиоэлектронных компонентов, благодаря чему достигается качественная радиоэлектронная совместимость компонентов устройства при оценивании собственных электромагнитных полей.

Признак «...светодиоды осветителя … сопряжены по оптической оси с торцом блока переноса оптического излучения…» обеспечивает минимальные потери мощности освещения между блоком освещения и блоком переноса излучения.

Признак, указывающий, что блок переноса оптического излучения выполнен «в виде пучка световодов, предпочтительно из полиметилметакрилата» обеспечивает проведение необходимого светового потока, обеспечивающего качественный съем данных.

Признак, указывающий, что световоды «расположены вокруг оптической оси системы переноса изображений с равным шагом», обеспечивает равномерность распределения светового потока по поверхности глаза, что позволяет избежать перегибов, и, как следствие, искажения области антиградиентного освещения.

Признаки, указывающие, что «…торцы блока переноса освещения жестко закреплены в корпусе устройства таким образом, что направление их выходящего светового потока составляет угол 36° относительно оптической оси системы переноса изображений…» обеспечивают равномерный градиент освещения в заданной области конъюнктивы, расположенной в фокусном расстоянии оптической системы.

Признаки, указывающие, что длина волны, излучаемая каждым светодиодом, выбрана «предпочтительно 530 нм» выбрана так, чтобы степень поглощения излучения различными формами гемоглобина была максимально близка, что обеспечивает контраст сосудов на изображении.

Признаки, указывающие, что «светодиоды осветителя использованы зеленые светодиоды, с длиной волны излучения 530 нм, например, марки LUXEON LXML-PM01-0090» конкретизируют тип применяемого светодиода.

На фиг.1 показана блок схема беспроводного устройства для конъюнктивальной микроскопии; на фиг.2 – схема освещенности поверхности при наклоне оптического волокна под углом к оптической оси; на фиг.3 – вид корпуса беспроводного устройства для конъюнктивальной микроскопии; на фиг.4 – общий вид подведения оптического волокна внутри корпуса (разрез по А-А на фиг.3).

На чертежах показаны видеокамера 1, система 2 переноса изображений, осветитель 3, блок 4 оповещения, блок 5 питания, конъюнктива 6 глаза, область антиградиентного освещения 7, буфер 8 изображения, блок 9 отображения видео, блок 10 управления передаточными характеристиками видеокамеры, блок 11 ввода параметров, блок 12 предварительного анализа, блок 13 морфологического анализа, блок 14 управления яркостью осветителей, счетчик 15 записанных кадров, блок 16 записи изображения, блок 17 записи морфологического результатов анализа, блок 18 беспроводной связи оптической системы, первый элемент 19 беспроводной трансляции изображения, первый элемент 20 беспроводной трансляции характеристик изображения, первый элемент 21 беспроводного контроля характеристик освещения, первый элемент 22 беспроводного канала оповещения, блок 23 беспроводной связи анализатора, второй элемент 24 беспроводной трансляции изображения, второй элемент 25 беспроводной трансляции характеристик изображения, второй элемент 26 беспроводного контроля характеристик освещения, второй 27 элемент беспроводного канала оповещения, блок 28 переноса оптического (антиградиентного) излучения.

Участок, обозначенный на фиг. 2 символом a, – зона максимальной интенсивности, обусловленная формированием блика, b – зона постепенного снижения градиента освещенности, с – зона резкого снижения уровня градиента освещенности.

Беспроводное устройство для конъюнктивальной микроскопии содержит видеокамеру 1 с системой 2 переноса изображений, осветителем 3, блоком 28 переноса оптического излучения, блок 4 оповещения и блоком 5 питания. В корпусе видеокамеры 1 жестко закреплены три конструкционно разделенные с видеокамерой, например, теплоизоляционной перегородкой, светодиоды осветителя 3, сопряженные по оптической оси с торцом блока 28 переноса оптического излучения. Блок 28 переноса оптического излучения выполнен, например, из полиметилметакрилатного (ПММА) оптоволокна. При этом оптическое волокно расположено вокруг оптической оси системы 2 переноса изображений с равным угловым шагом и второй торцевой частью жестко закреплено на блоке переноса изображений таким образом, что направление выходящего светового потока составляет угол 36° относительно оптической оси системы 2 переноса изображений, причем длина волны, излучаемая светодиодом, выбирается таким образом, чтобы степень поглощения излучения различными формами гемоглобина была максимально близкой, например, зеленые светодиоды (530 нм) марки LUXEON LXML-PM01-0090. Блок 5 питания соединен с блоком 18 беспроводной связи оптической системы, блоком 4 оповещения, видеокамерой 1 и осветителем 3. Осветители 3 соединены с блоком 14 управления яркостью осветителей 3 через первый 21 и второй 26 элементы беспроводного контроля характеристик освещения и формируют световые пятна (область антиградиентного освещения 7) на конъюнктиве 6 глаза. Видеокамера 1 соединена с буфером 8 изображений через первый 19 и второй 24 элементы беспроводной трансляции изображения и блоком 10 управления передаточными характеристиками видеокамеры 1 через первый 20 и второй 25 элементы беспроводной трансляции характеристик изображения. Блок 11 ввода параметров связан с блоком 14 управления яркостью осветителей и блоком 12 предварительного анализа изображений, а также блоком 10 управления передаточными характеристиками видеокамеры, блоком 13 морфологического анализа изображений и счетчиком 15 записанных кадров. Счетчик 15 записанных кадров соединен с блоком 4 оповещения через первый 22 и второй 27 элементы беспроводного канала оповещения. Буфер 8 изображений соединен с блоком 12 предварительного анализа и блоком 16 записи изображений, который в свою очередь соединен с блоком 13 морфологического анализа. Блок 9 отображения видеоинформации соединен с буфером 8 изображения и блоком 13 морфологического анализа, который соединен с блоком 17 записи результатов морфологического анализа изображений.

Для достижения равномерного градиента освещения применена технология рассеянного освещения.

Устройство работает следующим образом.

Оптическую систему располагают вблизи от глаза пациента таким образом, чтобы выбранный участок конъюнктивы 6 находился на фокусном расстоянии системы 2 переноса изображения, перпендикулярно оптической оси устройства, ждут автоматической регулировки яркости блока 3 освещения или производят ручную настройку через блок 11 ввода параметров.

Видеокамера 1 через первый 19, второй 24 элементы беспроводной трансляции изображения заполняет буфер 8 изображения. Блок 12 предварительного анализа изображений определяет характеристики каждого изображения из последовательности, поступившей из буфера 8, и выдает управляющие сигналы на блок 10 управления передаточными характеристиками видеокамеры, которые передаются через первый 20, второй 25 элементы беспроводной трансляции характеристик изображения на видеокамеру 1. Блок 12 предварительного анализа изображений также корректирует работу блока 14 управления яркостью осветителей. Блок 14 управления яркостью осветителей сравнивает уровни яркости, заданные в блоке 11 ввода параметров, с текущими, полученными из блока 12 предварительного анализа, и устанавливает яркость осветителей через первый 21 и второй 26 элементы беспроводного контроля характеристик освещения таким образом, чтобы уровень яркости текущего изображения соответствовал уровню яркости заданному в блоке 11 ввода параметров. При появлении в динамической последовательности изображения, соответствующего заданным в блоке 11 параметрам качества яркость, контраст, неравномерность яркости по полю изображения, частоту кадров, блок 12 предварительного анализа направляет это изображение на блок 16 записи изображений, выводит изображение на блок 9 отображения видеовывода и выдает счетчику 15 записанных кадров сигнал для подсчета и сравнения количества записанных изображений с количеством заданным в блоке 11 ввода параметров. Счетчик 15 изображений при изменении своего состояния через первый 22, второй 27 элементы беспроводного канала оповещения на короткое время включает блок 4 оповещения для информирования оператора о ходе процесса записи и анализа. Блок 10 управления передаточной характеристикой видеокамеры и блок 14 управления яркостью осветителей согласуют световой поток, попадающий на приемную матрицу видеокамеры 1 с ее передаточными характеристиками для получения изображений заданного качества. Блок 13 морфологического анализа осуществляет анализ записанных изображений конъюнктивы, поступающих из блока 17 записи морфологического результатов анализа, рассчитывает характеристики микроциркуляции, а анализируемые изображения и результаты расчетов направляет на блок 9 отображения и в блок 17 записи результатов морфологического анализа.

Таким образом, за счет блока 28 переноса оптического излучения происходит устранение бликовых пятен на поверхности конъюнктивы 6 глаза, что устраняет артефакты изображения, что уменьшает вычислительную нагрузку блока 12 предварительного анализа.

Заявляемое устройство реализовано с использованием видеокамеры высокого разрешения (1280x1024), преимущественно высокоскоростной (60 кадров/сек и выше), например, камера HERO (3) Black Edition производства фирмы «GoPro», в составе которой КМОП матрица Sony IMX117 и видеокодер Ambarella A770 с Samsung S4LL011X01. Осветители 3 выполнены на базе зеленых светодиодов, например, зеленые светодиоды (530 нм) марки LUXEON LXML-PM01-0090. Размещение электронных компонентов осветительной системы приоритетно внутри корпуса, что не несет потери качества освещения. Блок 28 переноса оптического излучения выполнен, например, из полиметилметакрилатного волокна с диаметром сердцевины 0.75 мм. Среднее время обследования составляет 1 мин. 40 сек.

Функциональные блоки 8-17, 24-27 беспроводного устройства для конъюнктивальной микроскопии реализуют в виде аппаратно программного комплекса на базе портативного компьютера. Система в реальном времени заносит изображения с видеокамеры 1 в оперативную память и отображает их на экране монитора. Программное обеспечение анализирует резкость, яркость и контрастность каждого изображения и корректирует передаточную характеристику видеокамеры 1 таким образом, чтобы максимально использовать ее динамический диапазон. Каждое изображение подвергается процедуре Фурье и Вейвлет-анализа для оценки его частотных и контрастных характеристик, и если они удовлетворяют параметрам, введенным в блок 11 ввода параметров, сохраняется в памяти или на жестком диске компьютера. Это сопровождается активацией первого 22, второго 27 элементов беспроводного канала оповещения, что вызывает изменение состояния блока 4 оповещения, что вызывает появление звукового и светового сигнала. Записанное изображение и результаты предварительной обработки могут отображаться в отдельном окне монитора. Этот процесс повторяется, пока не будет записано заданное в блоке 10 параметров количество изображений. После чего сигнал блока 4 оповещения прекращается, что служит сигналом оператору для прекращения съемки конъюнктивы. Затем в блоке 12 предварительного морфологического анализа проводится детальный анализ серии записанных изображений, сохранение и отображение его результатов.

Таким образом, беспроводное устройство для конъюнктивальной микроскопии, включающее в себя блок антиградиентного излучения, позволяет повысить количество информативных снимков, что ускоряет процесс обработки данных.

Собственно процесс съемки сосудов конъюнктивы включает следующие стадии. В компьютер, например типа ноутбук, работающий под управлением операционной системы Windows NT, MacOS или Linux с подключенным к нему блоком беспроводной связи загружается разработанная заявителем программа управления и обработки процессом измерений. Затем в интерактивном режиме вводится информация о пациенте и параметры управления процессом съемки (количество изображений, линейное увеличение камеры и т.п.). После этого при необходимости для обеспечения электробезопасности, если компьютер был подключен к сети, его отключают, и переходят на автономное питание.

Изменения в процессе съемки сосудов конъюнктивы предлагаемого устройства заключается в следующем.

Оператор в одну руку берет оптическую систему, а другой раздвигает веки пациента и располагает видеокамеру 1 так, чтобы изучаемый участок конъюнктивы 6 находился в области антиградиентного освещения 7 блока 28 переноса оптического освещения. Далее, он плавно перемещает видеокамеру 1 в направлении оптической оси в обе стороны от этого положения на расстоянии 3-5 мм вдоль оптической оси устройства, наблюдая за положением освещенной области антиградиентного освещения 7 блока 28 переноса оптического освещения излучения осветителем 3. Прекращение сигнала блока 4 оповещения информирует оператора о завершении процесса измерений. После этого пациента оставляют в покое и приступают к анализу результатов экспресс-съемки, представленных на компьютере и дублирующихся на блок 4 оповещения оптической системы. Весь процесс записи и анализа снимков составляет не более 55-100 секунд, что в несколько раз быстрее, чем с использованием известных устройств.

Для детального исследования определенной зоны можно увеличить размер снимка. На экран можно выводить сразу несколько любых изображений. Данные изображения затем могут быть отпечатаны на видеопринтере. Изображения и информация по пациенту хранятся в компьютере и могут быть записаны на любое запоминающее устройство для передачи пациенту и для создания своей видеобиблиотеки.

Заявляемое портативное устройство за счет предлагаемой компоновки составляющих его элементов, а именно использования блока проведения освещения, производит устранения артефактов изображения без усложнения программного кода процесса обработки изображения, обеспечивает экспресс съемку конъюнктивы глаза, результатом работы имеет наиболее качественные данные, полученные за меньший временной промежуток, позволяет исследовать конъюнктиву пациента, находящегося как в любом положении, в том числе вынужденном, что бывает часто необходимо в экстренных ситуациях для анализа состояний, например ожоговых больных и больных в состоянии шока, и может успешно применяться персоналом медицины катастроф в чрезвычайных ситуациях, военнослужащими в вооруженных конфликтах, например при сортировке раненых и больных.

1. Беспроводное устройство для конъюнктивальной микроскопии, содержащее систему управления, регистрации и анализа полученных изображений, реализованную на базе ЭВМ, блок связи, выполненный с возможностью поддержания динамической обратной связи между блоком беспроводной связи оптической системы и блоком беспроводной связи системы управления, регистрации и анализа полученных изображений, оптическую систему, включающую видеокамеру с системой переноса изображений, осветитель с блоком переноса оптического излучения, отличающееся тем, что светодиоды осветителя отделены от видеокамеры теплоизоляционной перегородкой и сопряжены по оптической оси с торцом блока переноса оптического излучения, выполненным в виде пучка световодов из полиметилметакрилата, которые расположены вокруг оптической оси системы переноса изображений с равным шагом, при этом торцы блока переноса освещения жестко закреплены в корпусе устройства таким образом, что направление их выходящего светового потока составляет угол 36° относительно оптической оси системы переноса изображений, причем длина волны, излучаемая каждым светодиодом, выбрана так, чтобы степень поглощения излучения различными формами гемоглобина была максимально близка 530 нм.

2. Беспроводное устройство по п. 1, отличающееся тем, что как светодиоды осветителя использованы зеленые светодиоды с длиной волны излучения 530 нм, например, марки LUXEON LXML-PM01-0090.



 

Похожие патенты:

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для прогнозирования состояния зрительных функций у детей при ретинобластоме на фоне системной химиотерапии.

Изобретение относится к медицине, в частности к офтальмологии и может быть использовано в офтальмологии при аномалиях рефракции для прогнозирования прогрессирования миопии у детей на этапе первичного клинического осмотра пациента с применением доступных исследований биомеханических характеристик переднего отрезка глазного яблока и данных анамнеза на поликлиническом этапе.

Изобретение относится к медицине, офтальмологии, нейрохирургии, челюстно-лицевой, реконструктивно-восстановительной и пластической хирургии, диагностике, планированию и оценке результатов лечения больных с врожденными и приобретенными патологическими изменениями глазницы и ее содержимого.

Изобретение относится к медицине, офтальмологии, эндокринологии, кардиологии, ранней диагностике ретинопатии (ДР) у больных с сочетанным течением сахарного диабета 2 типа (СД 2 типа) и гипертонической болезни (ГБ).
Изобретение относится к области медицины, а именно к офтальмологии. Для оценки переносимости различных лекарственных препаратов при их эпибульбарном применении проводится оптическое Шеймпфлюг сканирование роговицы инфракрасным излучением до, через 10, 20 и 30 минут после разового применения или на фоне курсового лечения лекарственным препаратом.

Изобретение относится к области медицины, а именно к офтальмологии. Проводят регистрацию зрительных вызванных потенциалов (ЗВП) на предъявление черно-белого, красно-черного, зелено-черного и сине-черного шахматных паттернов.

Предложена группа изобретений, относящаяся к медицине, а именно к офтальмологии, и включающая способ и устройство для определения оптических аберраций глаза, оптическая система которого содержит роговицу и хрусталик.

Изобретение относится к медицине. Устройство для мониторинга одного или более параметров глаза пациента на протяжении двух сеансов, которые разнесены во времени и между которыми глаз пациента может иметь перемещение, содержит: камеру для получения одного или более изображений глаза; осветительное устройство для освещения глаза световой картиной в форме кольца для генерации отражений от роговицы, причем осветительное устройство располагается так, чтобы ось кольца совпадала с оптической осью камеры; модуль для определения во время первого сеанса положения отражений от роговицы в изображении глаза; модуль для определения во время первого сеанса, основываясь на определенном положении отражений от роговицы одного дополнительного параметра глаза и его координат в первой системе координат, основанной на геометрической модели, представляющей глаз в виде сферического глазного яблока, имеющего наложенную на него роговицу сферической формы; модуль для определения во время второго сеанса положения отражений от роговицы глаза и, основываясь на этом, дополнительного параметра глаза и его координат во второй системе координат; модуль для определения перемещения глаза по шести степеням свободы между сеансами и для определения на основе этого преобразования координат; модуль для преобразования, основываясь на определенном перемещении глаза, дополнительного параметра глаза и его координат из первой системы координат во вторую систему координат; модуль для количественного определения и/или визуализации изменения дополнительного параметра глаза между сеансами на основе дополнительного параметра и его координат, измеренных во время второго сеанса, и преобразованного параметра и его координат, измеренных во время первого сеанса.

Группа изобретений относится к области медицинской техники. Офтальмологический датчик волнового фронта содержит: источник света; первый светонаправляющий элемент; первую оптическую систему ретрансляции волнового фронта; матрицу двухмерных устройств регистрации положения; и матрицу элементов отбора частичного волнового фронта, расположенную до матрицы двухмерных устройств регистрации положения.
Изобретение относится к офтальмологии. Проводят оптическую когерентную томографию (ОКТ) с измерением толщины перипапиллярного слоя нервных волокон сетчатки (СНВС) каждого глаза по четырем сегментам - височному, верхнему, носовому и нижнему. Если асимметрия средней толщины СНВС по результатам ОКТ составляет более 23% между худшим и лучшим в функциональном отношении глазом, толщина СНВС худшего в функциональном отношении глаза составляет менее 70 мкм по крайней мере в двух сегментах диска зрительного нерва, а на лучшем в функциональном отношении глазу составляет менее 80 мкм по крайней мере в одном сегменте, то показано лечение атрофии зрительного нерва обоих глаз. Способ позволяет повысить достоверность выявления показаний к проведению лечения, что достигается за счет дифференцированной оценки толщины перипапиллярного СНВС по четырем сегментам с учетом лучшего и худшего в функциональном отношении глаза. 2 пр.

Группа изобретений относится к медицине. Предлагаются устройства и способ, содержащие контактную линзу, которая облегчает сбор и/или обработку информации, связанной с измеренными признаками. В одном аспекте система может содержать контактную линзу с аналитическим компонентом. Контактная линза может включать в себя: подложку; и схему, расположенную на или в подложке. Схема может включать в себя: множество датчиков, сконфигурированных с возможностью измерения соответствующих признаков, связанных с носителем контактной линзы; и коммуникационный компонент, сконфигурированный с возможностью передачи информации, указывающей измеренные признаки. Аналитический компонент может быть сконфигурирован с возможностью: приема информации, указывающей измеренные признаки; и формирования статистической информации на основании, по меньшей мере, информации, указывающей измеренные признаки. Применение данной группы изобретений позволит расширить арсенал технических средств. 3 н. и 10 з.п. ф-лы, 9 ил.
Изобретение относится к области медицины, а именно к офтальмологии. Для определения показаний дифференцированного подхода к проведению и выбору метода рефракционной хирургической коррекции иррегулярного астигматизма роговицы после постинфекционных помутнений роговицы первоначально пациенту проводят авторефрактометрию и визометрию с коррекцией и без для определения сферического и цилиндрического компонентов рефракции. С помощью метода оптической когерентной томографии измеряют центральную толщину роговицы и глубину помутнения в оптической зоне в мкм. Проводят исследование топографии роговицы на кератотопографе с целью определения кератотопографических индексов: индекса регулярности роговицы (SRI) и индекса асимметрии роговицы (SAI). Если SRI более 1,0 и SAI более 0,5, центральная толщина роговицы более 450 мкм, глубина помутнения роговицы не более 65% от центральной толщины роговицы, то при величине миопического компонента рефракции более 1 диоптрии (дптр) проводят трансэпителиальную топографически ориентированную фоторефрактивную кератэктомию (ТТФРК), с первоначальной топографически ориентированной абляцией в зоне диаметром 6,0 мм и последующей абляцией конгруэнтно поверхности роговицы с удалением остатков эпителия в зоне диаметром 6,0 мм, с остаточной толщиной стромы роговицы не менее 300 мкм, а при величине гиперметропического компонента рефракции более 1 дптр проводят интраокулярную коррекцию гиперметропии с расчетом на целевой миопический компонент рефракции величиной от 2 до 3 дптр и после стабилизации рефракционного результата проводят ТТФРК вышеописанным способом. Способ позволяет достичь удовлетворительной зрительно-функциональной реабилитации пациентов после проведения хирургической коррекции рефракционных нарушений за счет использования дифференцированного подхода. 2 пр.

Группа изобретений относится к медицине, а именно к офтальмологии, и предназначена для расчета оптической силы интраокулярной линзы. Расчет оптической силы интраокулярной линзы (ИОЛ) включает определение положений частей глаза вдоль оси глаза. Указанные положения содержат положение роговицы, переднее и заднее положения хрусталика и положение сетчатки. Положение ИОЛ рассчитывают в соответствии с передним и задним положениями хрусталика. Также определяют данные о роговице. Оптическую силу ИОЛ рассчитывают, используя данные о роговице, положение ИОЛ и положение сетчатки. В некоторых вариантах осуществления изобретения для сегментов указанной оси определяют показатели преломления и регулируют по меньшей мере одно положение в соответствии с указанными показателями преломления. Группа изобретений позволяет осуществить надлежащую коррекцию зрения. 3 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к офтальмологии и предназначено для оценки положения склеропластического трансплантата на заднем полюсе миопического глаза. До и после операции проводят оптическую биометрию заднего полюса глаза в горизонтальном меридиане. Определяют центральную длину глаза в 0° от центра фовеа, парацентральную - в 15° в носовом и височном направлении, периферическую - в 30° от центра фовеа в носовом и височном направлении. При укорочении центральной и парацентральной длины по обоим направлениям на 0,25-0,5 мм и отсутствии укорочения периферической длины оценивают положение трансплантата и его натяжение как правильное. Способ позволяет повысить точность оценки положения и уровня натяжения склеропластического трансплантата для выбора дальнейшей адекватной тактики ведения пациента за счет проведения оптической биометрии заднего полюса глаза в горизонтальном меридиане. 2 пр.

Группа изобретений относится к медицине. Способ оптической когерентной томографии (ОКТ) глаза осуществляется с помощью аппарата для оптической когерентной томографии (ОКТ). При этом способ содержит этапы: захват изображений глаза с камеры с высоким временным разрешением, используя систему камер; получение изображения ОКТ глаза с высоким временным разрешением, используя блок получения изображения ОКТ, причем измерительная ось блока получения изображений ОКТ и измерительные оси системы камер выровнены вдоль общей измерительной оси аппарата, используя расщепитель луча; освещение роговицы глаза с использованием множества точечных источников света, расположенных в геометрическом порядке точечных источников света вокруг измерительной оси так, чтобы изображения камер с высоким временным разрешением содержали множество световых указателей в геометрическом порядке световых указателей; определение по изображениям камер с высоким временным разрешением данных о движении с высоким временным разрешением, представляющих движение глаза относительно измерительной оси, с использованием блока управления; определение с высоким временным разрешением, в качестве данных о движении, пространственного размера геометрического порядка, соответствующего множеству световых указателей, с использованием блока управления; назначение каждому пространственному размеру геометрического порядка, соответствующего световым указателям, соответствующего осевого смещения глаза по отношению к аппарату с использованием блока управления; преобразование изображений ОКТ на основе данных о движении с использованием блока управления; и генерирование томограммы глаза из изображений OКT с использованием блока управления. Применение группы изобретений позволит улучшить качество получаемой томограммы. 2 н. и 11 з.п. ф-лы, 5 ил.

Группа изобретений относится к медицине. Способ оптической когерентной томографии (ОКТ) глаза осуществляется с помощью аппарата для оптической когерентной томографии (ОКТ). При этом способ содержит этапы: захват изображений глаза с камеры с высоким временным разрешением, используя систему камер; получение изображения ОКТ глаза с высоким временным разрешением, используя блок получения изображения ОКТ, причем измерительная ось блока получения изображений ОКТ и измерительные оси системы камер выровнены вдоль общей измерительной оси аппарата, используя расщепитель луча; освещение роговицы глаза с использованием множества точечных источников света, расположенных в геометрическом порядке точечных источников света вокруг измерительной оси так, чтобы изображения камер с высоким временным разрешением содержали множество световых указателей в геометрическом порядке световых указателей; определение по изображениям камер с высоким временным разрешением данных о движении с высоким временным разрешением, представляющих движение глаза относительно измерительной оси, с использованием блока управления; определение с высоким временным разрешением, в качестве данных о движении, пространственного размера геометрического порядка, соответствующего множеству световых указателей, с использованием блока управления; назначение каждому пространственному размеру геометрического порядка, соответствующего световым указателям, соответствующего осевого смещения глаза по отношению к аппарату с использованием блока управления; преобразование изображений ОКТ на основе данных о движении с использованием блока управления; и генерирование томограммы глаза из изображений OКT с использованием блока управления. Применение группы изобретений позволит улучшить качество получаемой томограммы. 2 н. и 11 з.п. ф-лы, 5 ил.

Группа изобретений относится к медицинской технике, а именно к средствам обработки изображений в диагностике и лечении глазных болезней. Устройство содержит блок принятия решения, выполненный с возможностью принятия решения из вторых изображений в отношении по меньшей мере одного изображения, которое включает по меньшей мере одну область, которая не заснята в по меньшей мере одном изображении из первых изображений, и модуль генерации изображения, выполненный с возможностью генерации одного изображения путем использования по меньшей мере одного изображения из первых изображений, и принятия решения в отношении по меньшей мере одного изображения. Способ управления устройством обеспечивается работой устройства с использованием носителя данных, содержащего сохраненную на нем компьютерную программу. Использование изобретений позволяет расширить арсенал технических средств обработки изображений. 3 н. и 8 з.п. ф-лы, 14 ил.
Изобретение относится к офтальмологии и предназначено для оценки аккомодационного ответа у младенцев. Определяют рефракцию с расстояния 1 м. Проводят повторное определение с приставлением к глазу стекла (-) 3,0 дптр. Вычисляют величину аккомодационного ответа по формуле:АО=R2-R1-A3,где АО - величина аккомодационного ответа, R2 - рефракция со стеклом -3,0 дптр, R1 - исходная рефракция; A3 - аккомодационная задача: наведенный гиперметропический дефокус в 3,0 дптр. Если АО равен или выше -2,0 дптр - аккомодационный ответ оценивают как достаточный, если меньше -2,0 дптр - как сниженный, если нулю - как отсутствующий. Способ обеспечивает возможность объективного определения аккомодации у младенцев для назначения правильной стратегической коррекции, предусматривающей не только исправление имеющейся погрешности рефракции, но и потенциальное управление дальнейшим рефрактогенезом, профилактику амблиопии, косоглазия, прогрессирующий близорукости.
Изобретение относится к офтальмологии и предназначено для оценки аккомодационного ответа у младенцев. Определяют рефракцию с расстояния 1 м. Проводят повторное определение с приставлением к глазу стекла (-) 3,0 дптр. Вычисляют величину аккомодационного ответа по формуле:АО=R2-R1-A3,где АО - величина аккомодационного ответа, R2 - рефракция со стеклом -3,0 дптр, R1 - исходная рефракция; A3 - аккомодационная задача: наведенный гиперметропический дефокус в 3,0 дптр. Если АО равен или выше -2,0 дптр - аккомодационный ответ оценивают как достаточный, если меньше -2,0 дптр - как сниженный, если нулю - как отсутствующий. Способ обеспечивает возможность объективного определения аккомодации у младенцев для назначения правильной стратегической коррекции, предусматривающей не только исправление имеющейся погрешности рефракции, но и потенциальное управление дальнейшим рефрактогенезом, профилактику амблиопии, косоглазия, прогрессирующий близорукости.
Наверх