Способ формирования нитей кремния металл-стимулированным травлением с использованием серебра

Использование: для создания металлстимулированным травлением полупроводниковых структур с развитой поверхностью. Сущность изобретения заключается в том, что способ формирования нитей кремния металлстимулированным травлением с использованием серебра заключается в выращивании слоя пористых кремниевых нанонитей химическим травлением монокристаллического кремния с кристаллографической ориентацией поверхности пластины (100) р-типа проводимости в местах, покрытых серебром, в растворе, содержащем плавиковую кислоту, перекись водорода, с дальнейшим промыванием в 65%-ном растворе азотной кислоты для удаления частиц серебра и продуктов реакции, удельное сопротивление пластин как р-, так и n-типа проводимости находится в диапазоне от 10 мΩ·см до 12 Ω·см, раствор для травления содержит деионизованную воду, объем которой составляет 1/10 часть раствора для травления HF:H2O2:H2O с соотношением компонентов 25:10:4 соответственно, и серебро с концентрацией в растворе от 2,9·10-4 до 26·10-4 моль/л. Технический результат: обеспечение возможности улучшения качества слоев пористых нанонитей кремния.

 

Изобретение относится к области микроэлектроники, в частности к технологии создания металлстимулированным травлением с использованием серебра в качестве катализатора полупроводниковых структур с развитой поверхностью, таких как нитевидные нанокристаллы, пористые слои, являющихся элементной базой функциональной микроэлектроники.

Известен способ, согласно которому нитевидные кристаллы кремния получают способом, который включает две стадии, на первой из которых выдержку подложки кремния осуществляют в водном растворе: фтористоводородной кислоты или ее соли, при концентрации от 1,5 до 10 М; соли металла при содержании от 5 до 100 мМ, способной к химическому осаждению металла на поверхность кремния в присутствии ионов фторида, и спирта при содержании от 1 до 40 об. % при температуре от 0 до 30°С, например 20°С, в течение от 5 до 15 мин, а на второй, следующей за первой, во втором растворе, содержащем фтористоводородную кислоту и соль трехвалентного железа, например Fe(NO3)3, или другие вещества, вызывающие увеличение содержания нитрат-ионов, температуру раствора повышают до 40-75°С на время 40-45 мин [1]. Недостатком данного способа является необходимость повышения температуры раствора для увеличения высоты кремниевых столбиков.

Известен способ, по которому формирование массива нанонитей кремния производят в растворах HF, Н2О2 и Н2О или NH4F, Н2О2, и Н2О с использованием многослойной пористой пленки металла [2]. Недостатком данного способа является необходимость использования пористой маски металла, что является технологически сложным процессом, так как требует ее нанесение и последующее удаление.

Наиболее близким является способ, заключающийся в том, что на подложке монокристаллического кремния р-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм⋅см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода [3]. Недостатком данного способа является узкий спектр длины получаемых кремниевых нанонитей и широкий спектр длины поперечного сечения, а также не указана возможность контроля данных параметров.

Задачей изобретения является улучшение качества слоев пористых нанонитей кремния за счет узкого диапазона поперечного сечения, широкого диапазона длины, возможности их саморегулирования.

Способ формирования нитей кремния металлстимулированным травлением с использованием серебра, заключающийся в выращивании слоя пористых кремниевых нанонитей химическим травлением монокристаллического кремния с кристаллографической ориентацией поверхности пластины (100) р-типа проводимости в местах, покрытых серебром, в растворе, содержащем плавиковую кислоту, перекись водорода, с дальнейшим промыванием в 65%-ном растворе азотной кислоты для удаления частиц серебра и продуктов реакции, отличающийся тем, что удельное сопротивление пластин как p-, так и n-типа проводимости находится в диапазоне от 10 мΩ⋅cм до 12 Ω⋅см, раствор для травления содержит деионизованную воду, объем которой составляет 1/10 часть раствора для травления НF:H2O22О с соотношением компонентов 25:10:4 соответственно, и серебро с концентрацией в растворе от 2,9⋅10-4 до 26⋅10-4 моль/л.

Удельное сопротивление пластины кремния в диапазоне от 10 мΩ⋅cм до 12 Ω⋅см является необходимым условием для решения задачи, поскольку при значениях ρ, превышающих 12 Ω⋅см, длина формируемых нитей будет ниже 450 мкм вследствие меньшей концентрации основных носителей заряда h+. Концентрация серебра в растворе от 2,9⋅10-4 до 26⋅10-4 моль/л является необходимым условием для решения задачи, поскольку только такая концентрация Ag позволяет формировать массив нанонитей Si. При концентрации серебра в растворе ниже 2,9⋅10-4 моль/л на поверхности кремния образуется пористый слой, при концентрации серебра в растворе выше 26⋅10-4 моль/л происходит полное растворение кремния. Добавка 1/10 части воды в раствор способствует уменьшению концентрации Н2О2 и HF, вследствие чего обеспечивается размер поперечного сечения кремниевых нанонитей от 100 до 300 нм.

Способ выполняется следующим образом. Очищенную по стандартной методике подложку кремния р- и n-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 0,01 до 12 Ω⋅см помещают во фторопластовую ячейку для жидкостного химического травления в раствор следующего состава: 25 частей плавиковой кислоты HF (40%); 10 частей перекиси водорода Н2О2 (30%); 4 частей деионизованной воды, содержащего серебро с концентрацией в растворе от 2,9⋅10-4 до 26⋅10-4 моль/л до образования кремниевых нанонитей длиной от 2 до 450 мкм вследствие последовательно протекающих реакций осаждения серебра на поверхность кремния и травления. Окончание травления визуально фиксируется при остановке процесса газовыделения, так как все серебро переходит в водонерастворимое соединение силиката серебра. После этого пластина с кремниевыми нанонитями промывается в деионизованной воде, сушится и погружается в азотную кислоту (65%) на 15 минут для удаления Ag2SiO3. После этого пластина кремния еще раз промывается в деионизованной воде и высушивается. Все действия проводятся при комнатной температуре.

Пример конкретного выполнения. Саморегулируемый способ позволяет формировать пористые нити кремния длиной от 2 до 450 мкм и поперечного сечения от 100 до 300 нм, заключающийся в том, что на пластине кремния, легированной бором или фосфором, с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 0,01 до 12 Ом⋅см методом металлстимулированного травления в растворе HF:H2O2:H2O (25:10:4), содержащем серебро с концентрацией в растворе от 2,9⋅10-4 до 26⋅10-4 моль/л, при температуре от 20 до 30°С в течение времени от 20 до 60 мин формируется слой пористых кремниевых нитей, образуемых вследствие последовательно протекающих реакций осаждения серебра на поверхность Si и травления, причем длина нитей строго определяется концентрацией серебра в растворе; далее подложки кремния с локально расположенными пористыми нитями выдерживают в 65%-ном растворе азотной кислоты в течение времени 15 минут для удаления водонерастворимого силиката серебра, образование которого способствует остановке травления кремния за счет перехода ионов серебра в связанное состояние и постепенного истощения.

Процесс травления является саморегулируемым, то есть травление останавливается вследствие истощения катализатора при переходе ионов серебра в силикат серебра. Это позволяет контролировать длину нитей кремния путем введения серебра концентрацией от 2,9⋅10-4 до 26⋅10-4 моль/л в раствор HF-H2O2-H2O.

Источники информации

[1] Патент РФ №2429553.

[2] Патент СА 2532991 А1.

[3] Патент РФ №2539120.

Способ формирования нитей кремния металлстимулированным травлением с использованием серебра, заключающийся в выращивании слоя пористых кремниевых нанонитей химическим травлением монокристаллического кремния с кристаллографической ориентацией поверхности пластины (100) р-типа проводимости в местах, покрытых серебром, в растворе, содержащем плавиковую кислоту, перекись водорода, с дальнейшим промыванием в 65%-ном растворе азотной кислоты для удаления частиц серебра и продуктов реакции, отличающийся тем, что удельное сопротивление пластин как р-, так и n-типа проводимости находится в диапазоне от 10 мΩ·см до 12 Ω·см, раствор для травления содержит деионизованную воду, объем которой составляет 1/10 часть раствора для травления HF:H2O2:H2O с соотношением компонентов 25:10:4 соответственно, и серебро с концентрацией в растворе от 2,9·10-4 до 26·10-4 моль/л.



 

Похожие патенты:
Изобретение относится к области микроэлектроники и может найти применение при формировании оксидных слоев в технологии МДП-приборов. Электролит для анодного окисления полупроводниковых соединений на основе AIIIBV включает ортофосфорную кислоту и глицерин.

Изобретение относится к технологии микроэлектроники и может быть использовано для изготовления функциональных элементов наноэлектроники. Техническим результатом является возможность совмещения острия зонда с выполняемой на нем наноструктурой на предопределенных расстояниях 0-50 нм от оконечности острия.

Изобретение относится к области обработки поверхности теллурида кадмия-ртути ориентации (310) химическим селективным травлением. Cостав для селективного травления теллурида кадмия-ртути содержит ингредиенты при следующем соотношении, в объемных долях: 25%-ный водный раствор оксида хрома (VI) (CrO3) – 24, концентрированная соляная кислота (HCl) – 1, 5%-ный раствор лимонной кислоты – 8.

Изобретение относится к оборудованию для производства полупроводниковых приборов и может быть использовано для операции обезжиривания и отмывки пластин. Технический результат выражается в снижении себестоимости и трудоемкости процесса отмывки за счет того, что установка для отмывки пластин выполнена в виде камеры, состоящей из верхнего и нижнего отсеков, соединенных патрубком, нижний отсек камеры предназначен для растворителя, а в верхнем отсеке установлена кассета с обрабатываемыми пластинами, при этом дно верхнего отсека выполнено наклонным, в нижней точке наклонного дна расположен вход в сливной патрубок, выход которого размещен в нижнем отсеке камеры, а верхняя часть сливного патрубка расположена на уровне верхнего края пластин в кассете, камера снабжена патрубком-холодильником, расположенным в верхнем отсеке, и нагревательным элементом, расположенным под нижним отсеком.

Изобретение относится к радиоэлектронике, а точнее к технологии производства печатных плат. Сущность способа подготовки кристаллической или поликристаллической подложки под металлизацию заключается в том, что кристаллическую или поликристаллическую подложку стандартным образом шлифуют, на подложку наносят фоторезист, который затем засвечивают и травят, фоторезист покрывают маской и активным металлом для снятия заряда, создают внедренные дислокации, для чего выбранный металл обрабатывают потоком ионов от ионного ускорителя и после активации подложки маску и активный металл смывают жидким веществом, не реагирующим с активирующим металлом.

Изобретение относится к составам селективных полирующих травителей, используемых в процессах химического утонения эпитаксиальных кремниевых пластин при производстве полупроводниковых приборов и интегральных микросхем.

Изобретение используется в технологии химического утонения кремния при производстве формирователей видеосигналов для приборов с зарядовой связью, освещаемых с обратной стороны.

Изобретение относится к области измерений температуры тонких поверхностных слоев, в частности пористого диэлектрического слоя в химической промышленности (катализ), при изготовлении оптических и химических сенсоров, а так же в процессе криогенного травления диэлектриков в технологии микроэлектроники.

Изобретение относится к изготовлению средств выявления примесей газов и определения концентрации газов в воздушной среде. Способ изготовления чувствительных элементов датчиков концентрации газа согласно изобретению включает нанесение диэлектрической пленки на лицевую сторону кремниевой подложки, формирование на пленке структуры чувствительных элементов и создание тонких диэлектрических мембран методом анизотропного травления кремниевой подложки с обратной стороны, проводимого в два этапа, первый до нанесения диэлектрической пленки, а второй после завершения всех операций формирования структуры чувствительных элементов с предварительной защитой от травителя лицевой стороны подложки, при этом первый этап травления проводят сначала в водном растворе смеси этилендиамина с пирокатехином, а затем в водном растворе гидроокиси калия, а второй этап проводят только в водном растворе смеси этилендиамина с пирокатехином.

Изобретение относится к области электрического оборудования, в частности к устройствам химико-динамического травления. Технический результат, достигаемый в предлагаемом устройстве химико-динамического травления германиевых подложек, заключается в упрощении конструкции и улучшении однородности травления.

Изобретение относится к обработке поверхности теллурида кадмия-цинка химико-механическим полирующим травлением. Предложенный состав включает серную кислоту, перекись водорода, воду, этиленгликоль и глицерин, при следующем соотношении компонентов, объемные доли: серная кислота (98%) – 7, перекись водорода (30%) – 1, вода – 1, этиленгликоль - 3,5, глицерин - 3,5. Изобретение обеспечивает полирующее травление теллурида кадмия-цинка с образованием однородной поверхности с шероховатостью в среднем не более 7 нм. 3 ил.

Изобретение относится к технологии изготовления изделий оптической техники, конкретно к способу удаления фоторезистивных пленок с поверхности оптических стекол, служащих в качестве основной маски при формировании микроэлементов на их поверхности. Технический результат изобретения заключается в обеспечении высокой скорости удаления фоторезистивной пленки с поверхности габаритных по площади и толщине оптических стекол без науглевоживания поверхности. В способе удаления фоторезистивных пленок с поверхности оптических стекол, включающем плазмохимическое травление пластины низкотемпературной плазмой в присутствии атомарного кислорода, согласно изобретению обрабатываемой пластиной является оптическое стекло, а нагрев фоторезистивной пленки до оптимальной температуры травления осуществляется инфракрасным излучателем, расположенным под поверхностью обрабатываемой пластины. 1 ил.
Наверх